Chapter 4

Determinants

Types of Determinants and Their Properties

F. Determinant

(i) **Submatrix**: Let A be a given matrix. The matrix obtained by deleting some rows or columns of A is called as submatrix of A.

$$e.g. \ \, \mathbf{A} = \begin{bmatrix} a & b & c & d \\ x & y & z & w \\ p & q & r & s \end{bmatrix}$$

Then
$$\begin{bmatrix} a & c \\ x & z \\ p & r \end{bmatrix}$$
, $\begin{bmatrix} a & b & d \\ p & q & s \end{bmatrix}$, $\begin{bmatrix} a & b & c \\ x & y & z \\ p & q & r \end{bmatrix}$ are all submatrices of A.

(ii) Determinant of A Square Matrix:

Let A [a]_{1 x 1} be a 1 x 1 matrix. Determinant A is defined as |A| = a eg. A = $[-3]_{1 x}$ ₁ |A| = -3

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then $|A|$ is defined as ad -bc.

(iii)Minors & Cofactors : Let Δ be a determinant. Then minor of element a_{ij} , denoted by M_{ij} is defined as the determinant of the submatrix obtained by deleting i^{th} row & j^{th} column of Δ .

Cofactor of element a_{ij} , denoted by C_{ij} is defined as $C_{ij} = (-1)^{i+j} M_{ij}$.

eg.
$$\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix} \Rightarrow M_{11} = s = C_{11}$$

$$\mathsf{M}_{12} = \mathsf{c}, \, \mathsf{C}_{12} = -\, \mathsf{c} \,\, ; \,\, \, \mathsf{M}_{21} = \mathsf{b}, \, \mathsf{C}_{21} = -\mathsf{b} \,\, ; \,\, \, \mathsf{M}_{22} = \mathsf{a} = \mathsf{C}_{22}$$

eg.
$$\Delta = \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix} \Rightarrow M_{11} = \begin{vmatrix} p & r \\ y & z \end{vmatrix} = qz - yr = C_{11}$$
;

$$M_{23} = \begin{vmatrix} a & b \\ x & y \end{vmatrix} = ay - bx$$
, $C_{23} = -(ay - bx) = bx - ay$ etc.

(iv)Determinant: Let $A = [a_{ij}]_n$ be a square matrix (n > 1). Determinant of A is defined as the sum of products of elements of any one row (or one column) with corresponding cofactors.

eg.
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

 $|A| = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$ (using first row)

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

 $|A| = a_{12} C_{12} + a_{22} C_{22} + a_{32} C_{32}$ (using second column)

$$=-a_{12}\begin{vmatrix}a_{21}&a_{23}\\a_{31}&a_{33}\end{vmatrix}+a_{22}\begin{vmatrix}a_{11}&a_{13}\\a_{31}&a_{33}\end{vmatrix}+a_{32}\begin{vmatrix}a_{11}&a_{13}\\a_{21}&a_{23}\end{vmatrix}$$

G. PROPERTIES OF DETERMINANTS

P-1: The value of a determinant remains unaltered , if the rows & columns are inter changed . e.g. If

$$D = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = D' \implies D \& D'$$
are tr

are transpose of each other.

If D' = - D then it is SKEW SYMMETRIC determinant but D' = D \Rightarrow 2 D = 0 \Rightarrow D = 0 \Rightarrow Skew symmetric determinant of third order has the value zero .

P-2: If any two rows (or columns) of a determinant be interchanged, the value of determinant is changed in sign only. e.g.

$$\mbox{Let} \ D = \left| \begin{array}{ccc} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{array} \right| \ \& \ D' = \left| \begin{array}{ccc} a_2 & b_2 & c_2 \\ a_1 & b_1 & c_1 \\ a_3 & b_3 & c_3 \end{array} \right| \qquad \mbox{Then} \ D' = - D \ .$$

P-3: If a determinant has any two rows (or columns) identical, then its value is zero.

e.g. Let D =
$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_1 & b_1 & c_1 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 then it can be verified that D = 0.

P-4: If all the elements of any row (or column) be multiplied by the same number then the determinant is multiplied by that number.

P-5: If each element of any row (or column) can be expressed as a sum of two terms then the determinant can be expressed as the sum of two determinants.

e.g.
$$\begin{vmatrix} a_1 + x & b_1 + y & c_1 + z \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} + \begin{vmatrix} x & y & z \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

P-6: The value of a determinant is not altered by adding to the elements of any row (or column) the same multiples of the corresponding elements of any other row (or column).

e.g. Let D =
$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \text{ and } D' = \begin{vmatrix} a_1 + ma_2 & b_1 + mb_2 & c_1 + mc_2 \\ a_2 & b_2 & c_2 \\ a_3 + na_1 & b_3 + nb_1 & c_3 + nc_1 \end{vmatrix}. \text{ Then } D' = D \ .$$

Note that while applying this property atleast one row (or column) must remain unchanged.

P-7: If by putting x = a the value of a determinant vanishes then (x-a) is a factor of the determinant

Ex.17 Find the value of the determinant

$$\begin{array}{cccc} ^{n}C_{r-1} & ^{n}C_{r} & (r+1)^{n+2}C_{r+1} \\ ^{n}C_{r} & ^{n}C_{r+1} & (r+2)^{n+2}C_{r+2} \\ ^{n}C_{r+1} & ^{n}C_{r+2} & (r+3)^{n+2}C_{r+3} \end{array}$$

Sol.

Operating $C_1 \rightarrow C_1 + C_2$ and using ${}^nC_r = \frac{n}{r} {}^{n-1}C_{r-1}$ in C_3 , we get

$$\begin{vmatrix} ^{n+1}C_r & ^nC_r & (n+2)^{n+1}C_r \\ ^{n+1}C_{r+1} & ^nC_{r+1} & (n+2)^{n+1}C_{r+1} \\ ^{n+1}C_{r+2} & ^nC_{r+2} & (n+2)^{n+1}C_{r+2} \end{vmatrix} = 0 \text{, as } C_1 \text{ and } C_3 \text{ are identical.}$$

Ex.18 A is a n × n matrix (n > 2) [a_{ij}] where $a_{ij} = \cos\left(\frac{(i+j)2\pi}{n}\right)$ Find determinant A. Sol.

$$\Delta = \begin{bmatrix} \cos\frac{4\pi}{n} & \cos\frac{6\pi}{n} & \dots & \cos\frac{(n+1)2\pi}{n} \\ \cos\frac{6\pi}{n} & \cos\frac{8\pi}{n} & \dots & \cos\frac{(n+2)2\pi}{n} \\ \dots & \dots & \dots & \dots \\ \cos\frac{(n+1)2\pi}{n} & \cos\frac{(n+2)2\pi}{n} & \dots & \cos\frac{(n+n)2\pi}{n} \end{bmatrix}$$

Now,
$$\sum_{j=1}^{n} cos(j+1) \frac{2\pi}{n} = \sum_{j=1}^{n} cos(j+2) \frac{2\pi}{n} = = \sum_{j=1}^{n} cos(j+n) \frac{2\pi}{n}$$

$$= 1 + \cos \frac{2\pi}{n} + \cos \frac{4\pi}{n} + \dots + \cos 2(n-1)\frac{\pi}{n} = 0$$

 \Rightarrow value of determinant is zero.

H. MULTIPLICATION OF TWO DETERMINANTS

(i)

$$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} x \begin{vmatrix} I_1 & m_1 \\ I_2 & m_2 \end{vmatrix} = \begin{vmatrix} a_1I_1 + b_1I_2 & a_1m_1 + b_1m_2 \\ a_2I_1 + b_2I_2 & a_2m_1 + b_2m_2 \end{vmatrix}$$

Similarly two determinants of order three are multiplied.

(ii) If
$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \neq 0$$
 then $D^2 = \begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{vmatrix}$ where A_i , B_i , C_i are cofactors

Note: $a_1A_2 + b_1B_2 + c_1C_2 = 0$ etc.

therefore
$$D \times \begin{vmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix} = D^3$$

 $\Rightarrow \begin{vmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_2 \end{vmatrix} = D^2 \text{ or } \begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ CA_2 & B_2 & C_2 \end{vmatrix} = D^2$

Ex.19 Prove that

$$\Delta = \begin{vmatrix} 1 & bc + ad & b^2c^2 + a^2d^2 \\ 1 & ca + bd & c^2a^2 + b^2d^2 \\ 1 & ab + cd & a^2b^2 + c^2d^2 \end{vmatrix} = (a - b)(a - c)(a - d)(b - c)(b - d)(c - d).$$

Sol.

Applying $R_2 \rightarrow R_2$ - R_1 , $R_3 \rightarrow R_3$ - R_1 , we get

$$\Delta = \begin{vmatrix} 1 & bc + ad & b^2c^2 + a^2d^2 \\ 1 & (a-b)(c-d) & (a^2-b^2)(c^2-d^2) \\ 1 & (a-c)(b-d) & (a^2-c^2)(b^2-d^2) \end{vmatrix}$$

$$= \begin{vmatrix} (a-b)(c-d) & (a-b)(a+b)(c-d)(c+d) \\ (a-c)(b-d) & (a-c)(a+c)(b-d)(b+d) \end{vmatrix}$$

$$= (a - b) (c - d) (a - c) (b - d) \begin{vmatrix} 1 & (a + b)(c + d) \\ 1 & (a + c)(b + d) \end{vmatrix}$$

$$= (a - b) (c - d) (a - c) (b - d) [(a + c) (b + d) - (a + b) (c + d)]$$

$$= (a - b) (c - d) (a - c) (b - d) (ab + cd - ac - bd) = (a - b) (a - c) (a - d) (b - c) (b - d) (c - d).$$

Alternatively:

bc + ad = x
Let
$$ca + bd = y$$

 $ab + cd = z$ and using $c_3 \rightarrow c_3 + 2$ a b c d . c_3

$$\Delta = \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} = (x - y) (y - z) (z - x).$$

Ex.20 Show that

Show that
$$\begin{vmatrix} yz - x^2 & zx - y^2 & xy - y^2 \\ zx - y^2 & xy - z^2 & yz - x^2 \\ xy - z^2 & yz - x^2 & zx - y^2 \end{vmatrix} = \begin{vmatrix} r^2 & u^2 & u^2 \\ u^2 & r^2 & u^2 \\ u^2 & u^2 & r^2 \end{vmatrix}$$
 (where $r^2 = x^2 + y^2 + z^2 \& u^2 = xy + yz$)

Sol. Consider the determinant , $\Delta = \begin{vmatrix} x & y & z \\ y & z & x \\ z & x & y \end{vmatrix}$ We see that the L.H.S. determinant has its constituents

which are the co-factor of Δ . Hence L.H.S. determinant

$$= \left| \begin{array}{cccc} x & y & z \\ y & z & x \\ z & x & y \end{array} \right| \left| \begin{array}{cccc} x & y & z \\ y & z & x \\ z & x & y \end{array} \right|$$

$$= \begin{vmatrix} x^2 + y^2 + z^2 & xy + yz + zx & xy + yz + zx \\ xy + yz + zx & y^2 + z^2 + x^2 & yz + zx + xy \\ zx + xy + yz & yz + xz + xy & z^2 + x^2 + y^2 \end{vmatrix}$$

$$= \begin{vmatrix} r^2 & u^2 & u^2 \\ u^2 & r^2 & u^2 \\ u^2 & u^2 & r^2 \end{vmatrix}$$

Ex.21 Without expanding, as for as possible, prove that

$$\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^3 & y^3 & z^3 \end{vmatrix} = (x - y) (y - z) (z - x) (x + y + z)$$

Sol.

Let
$$D = \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^3 & y^3 & z^3 \end{vmatrix}$$
 for $x = y$, $D = 0$ (since C_1 and C_2 are identical)

Hence (x - y) is a factor of D (y - z) and (z - x) are factors of D. But D is a homogeneous expression of the 4th degree is x, y, z.

 \therefore There must be one more factor of the 1st degree in x, y, z say k (x + y + z) where k is a constant.

Let
$$D = k(x - y)(y - z)(z - x)(x + y + z)$$
, Putting $x = 0$, $y = 1$, $z = 2$

then
$$\begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 8 \end{vmatrix} = k(0-1)(1-2)(2-0)(0+1+2)$$

$$\Rightarrow L(8-2) = k(-1)(-1)(2)(3) : k = 1 : D = (x-y)(y-z)(z-x)(x+y+z)$$

$$\begin{bmatrix} x_1 & y_1 & 1 \\ ax_1 + bx_2 + cx_3 & ay_1 + by_2 + cy_3 & a+b+c \\ -ax_1 + bx_2 + cx_3 & -ay_1 + by_2 + cy_3 & -a+b+c \end{bmatrix} = 0.$$
 Ex.22 Prove that

Sol.

Given that
$$\Delta = \begin{vmatrix} x_1 & y_1 & 1 \\ ax_1 + bx_2 + cx_3 & ay_1 + by_2 + cy_3 & a + b + c \\ -ax_1 + bx_2 + cx_3 & -ay_1 + by_2 + cy_3 & -a + b + c \end{vmatrix} = 0$$

$$= \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ 1 & 1 & 1 \end{vmatrix} \times \begin{vmatrix} 1 & 0 & 0 \\ a & b & c \\ -a & b & c \end{vmatrix}$$

$$= \left| \begin{array}{ccc} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ 1 & 1 & 1 \end{array} \right| \times 0 = 0.$$

Sol. The given determinant is

$$\begin{array}{cccccc} 1 + 2ax + a^2x^2 & 1 + 2ay + a^2y^2 & 1 + 2az + a^2z^2 \\ 1 + 2bx + b^2x^2 & 1 + 2by + b^2y^2 & 1 + 2bz + b^2z^2 \\ 1 + 2cx + c^2x^2 & 1 + 2cy + c^2y^2 & 1 + 2cz + c^2z^2 \end{array}$$

as product of two determinants.

$$= \begin{vmatrix} 1 & 2a & a^2 \\ 1 & 2b & b^2 \\ 1 & 2c & c^2 \end{vmatrix} \times \begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix},$$

with the help of row-by-row multiplication rule.

Ex.24

 $\text{Let D} = \begin{bmatrix} 2a_1b_1 & a_1b_2 + a_2b_1 & a_1b_3 + a_3b \\ a_1b_2 + a_2b_1 & 2a_2b_2 & a_2b_3 + a_3b \\ a_1b_3 + a_3b_4 & a_2b_2 + a_3b_3 & 2a_2b_3 \end{bmatrix}$ Express the determinant D as a product of two determinants. Hence or otherwise show that D = 0.

Sol.

We have D = $\begin{vmatrix} a_1 & b_1 & 0 \\ a_2 & b_2 & 0 \\ a_3 & b_3 & 0 \end{vmatrix} \times \begin{vmatrix} b_1 & a_1 & 0 \\ b_2 & a_2 & 0 \\ b_3 & a_3 & 0 \end{vmatrix}$ as can be seen by applying row-by-row multiplication rule., Hence D = 0.

Determinant-Formulas

1. The symbol $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$ is called the determinant of order two. It's value is given by : $D = a_1 b_2 - a_2 b_1$

 $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ is called the determinant of order three. $\begin{vmatrix} a_1 & b_1 & c_1 \\ b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - \begin{vmatrix} a_1 & b_1 & c_1 \\ b_3 & c_3 \end{vmatrix} + \begin{vmatrix} a_1 & b_1 & c_1 \\ b_2 & c_2 \end{vmatrix}$ Its value can be found as: D =

 $D = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix} \dots$ and so on. In this manner

we can expand a determinant in 6 ways using elements of; R₁, R₂, R₃ or C₁, C₂, C₃.

3. Following examples of short hand writing large expressions are:

(i) The lines:
$$a_1x + b_1y + c_1 = 0$$
...... (1) $a_2x + b_2y + c_2 = 0$ (2)

$$a_3x + b_3y + c_3 = 0$$
.........(3)
$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$$
are concurrent if,

are concurrent if,
$$\begin{vmatrix} a_3 & b_3 & c_3 \end{vmatrix}$$
 Condition for the consistency of three simultaneous linear equations in 2 variables.

(ii)
$$ax^2 + 2 hxy + by^2 + 2 gx + 2 fy + c = 0$$
 represents a pair of straight lines if $abc + abc + bc = 0$

$$2 fgh - af^{2} - bg^{2} - ch^{2} = 0 = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix}$$

(iii) Area of a triangle whose vertices are
$$(x_r, y_r)$$
; $r = 1, 2$,

$$D = \frac{1}{2} \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_2 & y_2 & 1 \end{bmatrix}$$

$$(x_1, y_1) & (x_2, y_2) \text{ is } \begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$$
through

4. MINORS: The minor of a given element of a determinant is the determinant of the elements which remain after deleting the row & the column in which the given

element stands For example, the minor of
$$a_1$$
 in (Key Concept 2) is $\begin{vmatrix} b_3 & c_3 \end{vmatrix}$ & the minor of b_2 is

$$\begin{vmatrix} a_1 & c_1 \\ a_3 & c_3 \end{vmatrix}$$
. Hence a determinant of order two will have "4 minors" & a determinant of order three will have "9 minors".

5. COFACTOR: If M_{ii} represents the minor of some typical element then the cofactor is defined as:

$$C_{ij}=(-1)^{i+j}$$
. M_{ij} ; Where i & j denotes the row & column in which the particular element lies. Note that the value of a determinant of order three in terms of 'Minor' & 'Cofactor' can be written as : $D=a_{11}M_{11}-a_{12}M_{12}+a_{13}M_{13}$ OR $D=a_{11}C_{11}+a_{12}C_{12}+a_{13}C_{13}$ & so on

6. PROPERTIES OF DETERMINANTS:

P-1: The value of a determinant remains unaltered, if the rows & columns are inter

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} =$$

changed. e.g. if $D = D' D \otimes D'$ are transpose of each other. If D' = D then it is SKEW SYMMETRIC determinant but $D' = D \Rightarrow 2 D = 0 \Rightarrow D = 0 \Rightarrow 0$ Skew symmetric determinant of third order has the value zero.

P-2: If any two rows (or columns) of a determinant be interchanged, the value of determinant is changed in sign only. e.g.

$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} & & D' = \begin{vmatrix} a_2 & b_2 & c_2 \\ a_1 & b_1 & c_1 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
Then D' = - D.

Let:

P-3: If a determinant has any two rows (or columns) identical, then its value is

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$$

zero. e.g. Let $D = \begin{vmatrix} a_3 & b_3 & c_3 \end{vmatrix}$ then it can be verified that D = 0.

P-4: If all the elements of any row (or column) be multiplied by the same number, then the determinant is multiplied by that number.

Then D' = KD

P-5: If each element of any row (or column) can be expressed as a sum of two terms then the determinant can be expressed as the sum of two determinants.

P-6: The value of a determinant is not altered by adding to the elements of any row (or column) the same multiples of the corresponding elements of any other row (or

$$= \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \text{ and } D' = \begin{vmatrix} a_1 + ma_2 & b_1 + mb_2 & c_1 + mc_2 \\ a_2 & b_2 & c_2 \\ a_3 + na_1 & b_3 + nb_1 & c_3 + nc_1 \end{vmatrix}$$

Then D' = D.

Note: that while applying this property ATLEAST ONE ROW (OR COLUMN) must remain unchanged.

P-7: If by putting x = a the value of a determinant vanishes then (x - a) is a factor of the determinant.

7. MULTIPLICATION OF TWO DETERMINANTS:

 $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} x \begin{vmatrix} l_1 & m_1 \\ l_2 & m_2 \end{vmatrix} = \begin{vmatrix} a_1 l_1 + b_1 l_2 & a_1 m_1 + b_1 m_2 \\ a_2 l_1 + b_2 l_2 & a_2 m_1 + b_2 m_2 \end{vmatrix}$ Similarly two determinants of order three are multiplied.

8. SYSTEM OF LINEAR EQUATION (IN TWO VARIABLES):

- (i) Consistent Equations : Definite & unique solution. [intersecting lines]
- (ii) Inconsistent Equation : No solution. [Parallel line]
- (iii) Dependent equation : Infinite solutions. [Identical lines]

Let $a_1x + b_1y + c_1 = 0$ & $a_2x + b_2y + c_2 = 0$ then:

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2} \Longrightarrow \text{ Given equations are inconsistent \& } \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \Longrightarrow \text{ Given equations are dependent}$$

9. CRAMER'S RULE : [SIMULTANEOUS EQUATIONS INVOLVING THREE UNKNOWNS]

Let,
$$a_1x + b_1y + c_1z = d_1 \dots (I)$$
 ; $a_2x + b_2y + c_2z = d_2 \dots (II)$; $a_3x + b_3y + c_3z = d_3 \dots$

(III)
$$Then, x = \frac{D_1}{D}, Y = \frac{D_2}{D}, Z = \frac{D_3}{D}.$$

$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \; ; \; D_1 = \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix} \; ; \; D_2 = \begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix} \; \& \; D_3 = \begin{vmatrix} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{vmatrix}$$

NOTE: (a) If $D \neq 0$ and alteast one of D_1 , D_2 , $D_3 \neq 0$, then the given system of equations are consistent and have unique non trivial solution.

- (b) If $D \neq 0$ & $D_1 = D_2 = D_3 = 0$, then the given system of equations are consistent and have trivial solution only.
- (c) If $D = D_1 = D_2 = D_3 = 0$, then the given system of equations are consistent and

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$

 $\left.\begin{array}{c} a_1x+b_1y+c_1z=d_1\\ a_2x+b_2y+c_2z=d_2\\ a_3x+b_3y+c_3z=d_3 \end{array}\right\}$ have infinite solutions. In case then also $D = D_1 = D_2 = D_3 = 0$ but the system is inconsistent.

- (d) If D = 0 but at least one of D_1 , D_2 , D_3 is not zero then the equations are in consistent and have no solution.
- **10.** If x, y, z are not all zero, the condition for $a_1x + b_1y + c_1z = 0$; $a_2x + b_2y + c_2z = 0$ $\begin{vmatrix} a_1 & b_1 & c_1 \end{vmatrix}$

 $\begin{vmatrix} a_2 & b_2 & c_2 \end{vmatrix} = 0.$

0 & $a_3x + b_3y + c_3z = 0$ to be consistent in x, y, z is that $\begin{vmatrix} a_3 & b_3 & c_3 \end{vmatrix}$ Remember that if a given system of linear equations have Only Zero Solution for all its variables then the given equations are said to have TRIVIAL SOLUTION.