Short Notes for FLUID MECHANICS

Pressure (P):

If F' be the normal force acting on a surface of area 4 in contact with liquid, then
pressure exerted by liquid on this surface is: P=F/ A4

Units : N/m? or Pascal (S.1.) and D}rnefc'ml (CGS)
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Dimension : [P]= m - ]

Atmospheric pressure: [ts value on the surface of the earth at sea level is nearly

1.013 x 10° N /m* or Pascal in S.1. other practical units of pressure are atmosphere,
bar and torr (mm of Hg)

latm =1.01 x10° Pa=1.01bar = 760 torr

Density (p )

Fluid Pressure at a Point: p= E
dA
: . ) ) Am dm
Ina fluid, at a point, t 1sdefinedas: p= lm —=—
uid, at a point, density p B B s o

In case of homogenous isotropic substance, it has no directional properties. so is a
scalar.

It has dimensions [MI] and S.I unit Rgfm3 while C.G.S. unit g/ce with
lglec=10"kg/m®

Density of body = Density of substance

Density of body
Density of water

Relative density or specific gravity which is defined as : RD =

If m, mass of hiqud of density p, and m, mass of density p, are mixed, then as

m=m,+m, and V=(m, [ p)+ims ! ps) [As V=m/p]
p_m__ m, +n, _ Xm,
Veoomy d g +imy  py)  Hmg p)
If m, =m2.,p=ﬂ=l-lannunic mean
At

If ¥, volume of liqmd of density p, and ¥, volume of liquid of density p, are
mixed, thenas: m=p,V, + p,}, and V=V, + 1, [As p=m/V"]

IfV,=V,=V p=(p +p,)/2 = Arithmetic Mean



e  With rise in temperature due to thermal expansion of a given body, volume will
increase while mass will remain unchanged, so density will decrease, i.e.,
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*  With increase in pressure due to decrease in volume, density will increase, i.e.,

pe (mIVy) ¥ v

o By definition of bulk-modulis: B = —¥; 2L je, V=V,|1-22
AV " B

-1
= X of - ap
P—ﬂa[l B) ﬂa[1+ B]

Specific Weight ( w):
e [t 1s defined as the weight per unit volume.

Weight  mg

s Specific weight = =
Volume Volume

Specifie Gravity or Relative Density (s):
e [t 15 the ratio of specific weight of fluid to the specific weight of a standard fluid.
Standard fluid 1s water in case of liquid and H; or air in case of gas.
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Where, y, =Specific weight of water, and p_ = Density of water specific.

Specific Volume ( v ):
e Specific volume of liquid is defined as volume per unit mass. It 1s also defined as the
reciprocal of specific density.
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e Specific volume = —=—
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Inertial force per unit area= o



Viscous force per unit area: rF/4="=—

Reynold’s number: v, =

Inertial force per unit area

v
r

Viscous force per unit area
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Pascal’s Law: p =p = p_;where, p, . p and p. are the pressure at point X,y,z respectively.

Hydrostatic Law:

G
. 5‘5_]-=Pgﬂf dp = pg dz
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e p=pghand h= i; where, h is known as pressure head.

Pg

Pressure Energy

Potential energy

Kinetic energy

It 1s the energy possessed by a
liqgmd by virtue of its pressure. It
is the measure of work done in
pushing the liquid against
pressure without imparting any
velocity to it.

It 1s the energy possessed by
liquid by virtue of its height or
position above the surface of
earth or any reference level
taken as zero level.

It is the energy possessed by a
liquid by virtue of its motion or
velocity.

Pressure energy of the liquid PV

Potential energy of the liquid
mgh

Kinetic energy of the liquid
mv/2

Pressure energy per unit mass of
the liquid P/ p

Potential energy per unit mass of
the liquid gh

Kinetic energy per unit mass of
the liquid v*/2

Pressure energy per unit volume
of the liquid P

Potential energy per unit volume
of the liquid pgh

Kinetic energy per unit volume
of the liquid p v¥/2

Quantities that Satisfy a Balance Equation
Quantit | mass | X momentum | y momentum z Energy Species
v momentum
@ m mu my mw E+mV2 m'™
b 1 u v W e+ V2 wH

In this table, u, v, and w are the x, y and z velocity components, E is the total
thermodynamic internal energy, e 15 the thermod
and m'™ is the mass of a chemical species, K. W

Fnami{: mternal energy per unit mass,
%) is the mass fraction of species K.




| The other energy term, mV-/2, is the kinetic energy.
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The Mass Balance Equations:
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Momentum Balance Equation:

do,, 0o, 0ay; do
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e Net j—direction sourceterm=
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For a Newtonian fluid, the stress, o, is given by the following equation:
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Energy Balance Equation:

cpu.  Cpuu, Ju. du. )
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¢ This directional heat flux 1s given the symbol q;: g, ==k ?—T
ox

Net xDirectionhear Y ‘L]Hh . '?:L g R L '?xl,

Unit Volume AxAypA= Ax

Limit Neg xDirectionheat source aq,

Ax =0 Unit Volume o
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e Body-force work rate = pfuB; + vB, + wB.) =pu;B,

¢ The work term on each face is given by the following equation:

y-face surface force work = (ugy, + voy, + Woy)dx Az =woy Ax Az
duc,, +vo,, +wo, ) y cu,o
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e Net yFace Surface Force Work =

« Energy balance equation:
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Substitutions for Stresses and Heat Flux:

Using only the Fourier Law heat transfer, the source term involving the heat flux in the energy
balance equation:
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Dissipation to avoid confusion with the general quantity in a balance equation:
du, oOu, |ou 2
. @, = b T L g - T A
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The temperature gradient in the Fourier law conduction term may also be written as a gradient
of enthalpy or internal energy:
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General Balance Equations
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Bernoulli’s Equation:
This equation has four variables: velocity (v), elevation (z), pressure (p), and density (p). It also
has a constant (g), which 15 the acceleration due to gravity. Here 1s Bernoulli’s equation:

vz

P
— + gz + = = constant
s 2 g g2

1
. P+J@h+5,m*"' = constant

i
¥ iR lw constant; F s called pressure head. # 1s called gravitational head and

iy 2g e

Y is called velocity head.
2g

Factors that influence head loss due to friction are:

Length of the pipe (1)

Effective diameter of the pipe (Dy,)

Velocity of the water in the pipe (v)

Acceleration of gravity (g)

Friction from the surface roughness of the pipe (1)

e The head loss due to the pipe is estimated by the following equation:

2

hf,majo-r = Am

e To estimate the total head loss in a piping system, one adds the head loss from the fittings

and the pipe:
hf,tata! = Z hfmi:mr + Z hf,nmjar

¢ Note that the summation symbol ( ¥, ) means to add up the losses from all the different
sources. A less compact-way to write this equation is:

hf,mta.l i hf.m!wl + hf,minwz + hf,miu::ra z i
hf,majnri + hf.m;or: + hf.mjwﬂ i

Combining Bernoulli’s Equation With Head Loss:
mow P Y

— — zi = — 4 —
Y 2g

v ¥ 3 + 22+ Ryrorar



Relation between coefficient of viscosity and temperature:

A Eﬂ'pi?'

Andrade formula n = —_—

Stoke's Law: F=6xnry

Terminal Velocity:
e Weight of the body (W) = mg = (volume x density) X g = %m--" e
e Upward thrust (T) = weight of the fluid displaced
= (volume = density) of the fluid = g= %ﬂrjag

¢  Viscous force (F) = 6xnpry

¢ When the body attains terminal velocity the net force acting on the body 1s zero.
o W-T-F=0 or F=W-T

. ﬁ:rm-‘=%::rr3pg— %}rr3a‘g= %m‘j(p—d]g

; ; 2r(p—
e Terminal velocity v=EM
T

¢ Terminal velocity depend on the radius of the sphere so if radius 1s made n - fold,
terminal velocity will become »” times.

e Greater the density of solid greater will be the terminal velocity
o Greater the density and viscosity of the fluid lesser will be the terminal velocity.

¢ [f p> o then terminal velocity will be positive and hence the spherical body will attain
constant velocity in downward direction.

s [f p< & then terminal velocity will be negative and hence the spherical body will attain
constant velocity in upward direction.

Poiseuille’s Formula:
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. I;U:Pr - p,=}ffIP1r
nl nl
. aPrt T . ;
V= T where K o 1s the constant of proportionality.
n

Buovant Force:

¢ Buoyant force = Weight of fluid displaced by body



e Buovant force on cylinder =Weight of fluid displaced by cylinder
¢ | =Value of immersed part of solid

e Fp=p  *gxVolume of fluid displaced

e Fp=p, .. xgxVolume of cylinder immersed inside the water
e Fy,=mg

. Fk,=1;:r“_‘gr%4:1"3 (ww=mg=plg)

» V, plg=Vpg

I T

* pg—dxX=pg—dh
4 4

. PX= Pc_til'mi‘rh

Relation between B, G and M:

s OGM = i{- — BG ; where = Least moment of inertia of plane of body at water surface, G =

Centre of gravity, B = Centre of buoyancy, and M = Metacentre.
bd" bd’
e J=min(l_[ ) I, =—, 1 =—
e VR T
 ["=bhdx
Energy Equations:

¢ Fra=F;+F,+F,+F.+F, . where Gravity force F,, Pressure force F, Viscous force F, ,
Compressibility force F. |, and Turbulent force Fy

o [If fluid is incompressible, then F. =0
S F,, =F, +F +F +F This is known as Reynolds equation of motion.
¢ If fluid is incompressible and turbulence is negligible, then
F.=0.F, =0 o F_=F +F, +F, This equation is called as Navier-Stokes equation.
e If fluid flow is considered ideal then, viscous effect will also be negligible. Then

F. = F_+F, . This equation is known as Euler’s equation.

; A ]
¢ FEuler’s equation can be written as: i gdz+vdv=10



Dimensional analysis:

Quantity Symbel Dimensions
Mass m M
Length 1 L
Time L T
Temperature E ]
Velocity e LT
Acceleration e LT™
Momentum/Impulse my MLT ™'
Force F MLT ™
Energy - Work W ML ﬁT'ﬂ'
Power P ML 2T
Moment of Force M szz
Angular momentum - ML 7l
Angle n gRI°L T
Angular Vt[m:itj o) o
Angular acceleration a T
Area A =
Volume v B
First Moment of Area Ar L7
Second Moment of Area 3 1>
Density p ML~
Specific heat- Ea LT 4"
Constant Pressure
Elastic Modulus E ML T
Flexural Rigidity ML *T =
Shear Modulus G ML T~
Torsional rigidity Gl ML *T ™
Stiffness k MT =




Angular stiffness T ML T =
Flexibiity 1k MIT?
Vorticity = T
Circulation - 1o
XIoe'y m ML T
Kinematic Viscosity = LI
Diffusivity = e 7
Friction coefficient fin MO O
Restitution coefficient M LT
Specific heat- c, EEETE
Constant volume
Boundary layer:

. Reynolds number = pL 7 (Re) = %

&
*  Displacement Thickness (& *): 6* = J{l - %}dy
1]
: U u
- Momentum Thickness (8): 6 = _L E[1 - —qu}r

. Energy Thickness (8 #%): 8= ri[l—u—]@

)

73

2
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¢  Boundary Conditions for the Velocity Profile: Boundary conditions are as

o}

Turbulent flow:

e Shear stress in turbulent flow: 1=7 +7, =u—+n

du du
(a) Aty=0,u=0"—=0:(b) dry=5u=U. =0
dy dy

¢  Turbulent shear stress by Reynold:

] Shear stress in turbulent flow due to Prodtle : 7= p:‘z[

dit

r=pu'v'

du

dy

du

i
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