The wristwatches worn by the people in
this commercial jetliner properly record
the passage of time as experienced by
the travelers. Amazingly, however, the
duration of the trip as measured by an
Earth-bound observer is very slightly
longer. How can high-speed travel affect
something as regular as the ticking of a
clock? (®© Larry Mulvehill/Photo
Researchers, Inc.)
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39.1 The Principle of Galilean Relativity

ost of our everyday experiences and observations have to do with objects

that move at speeds much less than the speed of light. Newtonian mechan-

ics was formulated to describe the motion of such objects, and this formal-
ism is still very successful in describing a wide range of phenomena that occur at
low speeds. It fails, however, when applied to particles whose speeds approach that
of light.

Experimentally, the predictions of Newtonian theory can be tested at high
speeds by accelerating electrons or other charged particles through a large electric
potential difference. For example, it is possible to accelerate an electron to a
speed of 0.99¢ (where ¢ is the speed of light) by using a potential difference of sev-
eral million volts. According to Newtonian mechanics, if the potential difference is
increased by a factor of 4, the electron’s kinetic energy is four times greater and its
speed should double to 1.98¢. However, experiments show that the speed of the
electron—as well as the speed of any other particle in the Universe —always re-
mains less than the speed of light, regardless of the size of the accelerating voltage.
Because it places no upper limit on speed, Newtonian mechanics is contrary to
modern experimental results and is clearly a limited theory.

In 1905, at the age of only 26, Einstein published his special theory of relativ-
ity. Regarding the theory, Einstein wrote:

The relativity theory arose from necessity, from serious and deep contradic-
tions in the old theory from which there seemed no escape. The strength of
the new theory lies in the consistency and simplicity with which it solves all
these difficulties . . . . !

Although Einstein made many other important contributions to science, the
special theory of relativity alone represents one of the greatest intellectual achieve-
ments of all time. With this theory, experimental observations can be correctly pre-
dicted over the range of speeds from v = 0 to speeds approaching the speed of
light. At low speeds, Einstein’s theory reduces to Newtonian mechanics as a limit-
ing situation. It is important to recognize that Einstein was working on electromag-
netism when he developed the special theory of relativity. He was convinced that
Maxwell’s equations were correct, and in order to reconcile them with one of his
postulates, he was forced into the bizarre notion of assuming that space and time
are not absolute.

This chapter gives an introduction to the special theory of relativity, with em-
phasis on some of its consequences. The special theory covers phenomena such as
the slowing down of clocks and the contraction of lengths in moving reference
frames as measured by a stationary observer. We also discuss the relativistic forms
of momentum and energy, as well as some consequences of the famous mass—
energy formula, £ = me2.

In addition to its well-known and essential role in theoretical physics, the spe-
cial theory of relativity has practical applications, including the design of nuclear
power plants and modern global positioning system (GPS) units. These devices do
not work if designed in accordance with nonrelativistic principles.

We shall have occasion to use relativity in some subsequent chapters of the ex-
tended version of this text, most often presenting only the outcome of relativistic
effects.

1 A. Einstein and L. Infeld, The Evolution of Physics, New York, Simon and Schuster, 1961.
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CHAPTER 39  Relativity

39.1 _~ THE PRINCIPLE OF GALILEAN RELATIVITY

To describe a physical event, it is necessary to establish a frame of reference. You
should recall from Chapter 5 that Newton’s laws are valid in all inertial frames of
reference. Because an inertial frame is defined as one in which Newton’s first law
is valid, we can say that an inertial frame of reference is one in which an object
is observed to have no acceleration when no forces act on it. Furthermore,
any system moving with constant velocity with respect to an inertial system must
also be an inertial system.

There is no preferred inertial reference frame. This means that the results of
an experiment performed in a vehicle moving with uniform velocity will be identi-
cal to the results of the same experiment performed in a stationary vehicle. The
formal statement of this result is called the principle of Galilean relativity:

The laws of mechanics must be the same in all inertial frames of reference.

Let us consider an observation that illustrates the equivalence of the laws of
mechanics in different inertial frames. A pickup truck moves with a constant veloc-
ity, as shown in Figure 39.1a. If a passenger in the truck throws a ball straight up,
and if air effects are neglected, the passenger observes that the ball moves in a ver-
tical path. The motion of the ball appears to be precisely the same as if the ball
were thrown by a person at rest on the Earth. The law of gravity and the equations
of motion under constant acceleration are obeyed whether the truck is at rest or in
uniform motion.

Now consider the same situation viewed by an observer at rest on the Earth.
This stationary observer sees the path of the ball as a parabola, as illustrated in Fig-
ure 39.1b. Furthermore, according to this observer, the ball has a horizontal com-
ponent of velocity equal to the velocity of the truck. Although the two observers
disagree on certain aspects of the situation, they agree on the validity of Newton’s
laws and on such classical principles as conservation of energy and conservation of
linear momentum. This agreement implies that no mechanical experiment can
detect any difference between the two inertial frames. The only thing that can be
detected is the relative motion of one frame with respect to the other. That is, the
notion of absolute motion through space is meaningless, as is the notion of a pre-
ferred reference frame.

(b)

Figure 39.1 (a) The observer in the truck sees the ball move in a vertical path when thrown
upward. (b) The Earth observer sees the path of the ball as a parabola.
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Quick Quiz 39.1

Which observer in Figure 39.1 is right about the ball’s path?

Suppose that some physical phenomenon, which we call an event, occurs in an
inertial system. The event’s location and time of occurrence can be specified by the
four coordinates (x, v, z, ). We would like to be able to transform these coordinates
from one inertial system to another one moving with uniform relative velocity.

Consider two inertial systems S and S’ (Fig. 39.2). The system S’ moves with a
constant velocity v along the xx' axes, where v is measured relative to S. We assume
that an event occurs at the point P and that the origins of S and S’ coincide at
t = 0. An observer in S describes the event with space—time coordinates (x, v, z, ),
whereas an observer in S’ uses the coordinates (x’, y’, z’, ') to describe the same
event. As we see from Figure 39.2, the relationships between these various coordi-
nates can be written

x =x—u

y =y (39.1)
2=z

=1t

These equations are the Galilean space-time transformation equations. Note
that time is assumed to be the same in both inertial systems. That is, within the
framework of classical mechanics, all clocks run at the same rate, regardless of
their velocity, so that the time at which an event occurs for an observer in S is the
same as the time for the same event in S'. Consequently, the time interval between
two successive events should be the same for both observers. Although this as-
sumption may seem obvious, it turns out to be incorrect in situations where v is
comparable to the speed of light.

Now suppose that a particle moves a distance dx in a time interval d¢ as mea-
sured by an observer in S. It follows from Equations 39.1 that the corresponding
distance dx’' measured by an observer in S’ is dx’ = dx — v di, where frame S’ is
moving with speed v relative to frame S. Because dt = dt’, we find that

dx' dx
—=——y
dt’ dt
or
Up = Uy — V (39.2)

where u, and u, are the x components of the velocity relative to S and S’, respec-
tively. (We use the symbol u for particle velocity rather than v, which is used for
the relative velocity of two reference frames.) This is the Galilean velocity trans-
formation equation. It is used in everyday observations and is consistent with our
intuitive notion of time and space. As we shall soon see, however, it leads to serious
contradictions when applied to electromagnetic waves.

Quick Quiz 39.2

Applying the Galilean velocity transformation equation, determine how fast (relative to the
Earth) a baseball pitcher with a 90-mi/h fastball can throw a ball while standing in a boxcar
moving at 110 mi/h.
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Figure 39.2 An event occurs at a
point P. The event is seen by two
observers in inertial frames S and
S’, where S’ moves with a velocity v
relative to S.
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Figure 39.3 If the velocity of the
ether wind relative to the Earth is v
and the velocity of light relative to
the ether is ¢, then the speed of
light relative to the Earth is

(a) ¢ + vin the downwind direc-
tion, (b) ¢ — v in the upwind direc-
tion, and (¢) (¢2 — v2)/%in the
direction perpendicular to the

wind.
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The Speed of Light

It is quite natural to ask whether the principle of Galilean relativity also applies to
electricity, magnetism, and optics. Experiments indicate that the answer is no. Re-
call from Chapter 34 that Maxwell showed that the speed of light in free space is
¢ = 3.00 X 108 m/s. Physicists of the late 1800s thought that light waves moved
through a medium called the ether and that the speed of light was ¢ only in a spe-
cial, absolute frame at rest with respect to the ether. The Galilean velocity transfor-
mation equation was expected to hold in any frame moving at speed v relative to
the absolute ether frame.

Because the existence of a preferred, absolute ether frame would show that
light was similar to other classical waves and that Newtonian ideas of an absolute
frame were true, considerable importance was attached to establishing the exis-
tence of the ether frame. Prior to the late 1800s, experiments involving light trav-
eling in media moving at the highest laboratory speeds attainable at that time were
not capable of detecting changes as small as ¢ = v. Starting in about 1880, scien-
tists decided to use the Earth as the moving frame in an attempt to improve their
chances of detecting these small changes in the speed of light.

As observers fixed on the Earth, we can say that we are stationary and that the
absolute ether frame containing the medium for light propagation moves past us
with speed v. Determining the speed of light under these circumstances is just like
determining the speed of an aircraft traveling in a moving air current, or wind;
consequently, we speak of an “ether wind” blowing through our apparatus fixed to
the Earth.

A direct method for detecting an ether wind would use an apparatus fixed to
the Earth to measure the wind’s influence on the speed of light. If vis the speed of
the ether relative to the Earth, then the speed of light should have its maximum
value, ¢ + v, when propagating downwind, as shown in Figure 39.3a. Likewise, the
speed of light should have its minimum value, ¢ — v, when propagating upwind, as
shown in Figure 39.3b, and an intermediate value, (¢2 — v?)V2 in the direction
perpendicular to the ether wind, as shown in Figure 39.3c. If the Sun is assumed to
be at rest in the ether, then the velocity of the ether wind would be equal to the or-
bital velocity of the Earth around the Sun, which has a magnitude of approxi-
mately 3 X 10% m/s. Because ¢ = 3 X 10% m/s, it should be possible to detect a
change in speed of about 1 part in 10* for measurements in the upwind or down-
wind directions. However, as we shall see in the next section, all attempts to detect
such changes and establish the existence of the ether wind (and hence the absolute
frame) proved futile! (You may want to return to Problem 40 in Chapter 4 to see a
situation in which the Galilean velocity transformation equation does hold.)

If it is assumed that the laws of electricity and magnetism are the same in all
inertial frames, a paradox concerning the speed of light immediately arises. We
can understand this by recognizing that Maxwell’s equations seem to imply that
the speed of light always has the fixed value 3.00 X 108 m/s in all inertial frames, a
result in direct contradiction to what is expected based on the Galilean velocity
transformation equation. According to Galilean relativity, the speed of light should
not be the same in all inertial frames.

For example, suppose a light pulse is sent out by an observer S’ standing in a
boxcar moving with a velocity v relative to a stationary observer standing alongside
the track (Fig. 39.4). The light pulse has a speed ¢ relative to S’. According to
Galilean relativity, the pulse speed relative to S should be ¢ + v. This is in contra-
diction to Einstein’s special theory of relativity, which, as we shall see, postulates
that the speed of the pulse is the same for all observers.
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Figure 39.4 A pulse of light is sent out by a person in a moving boxcar. According to Galilean
relativity, the speed of the pulse should be ¢ + v relative to a stationary observer.

To resolve this contradiction in theories, we must conclude that either (1)
the laws of electricity and magnetism are not the same in all inertial frames or
(2) the Galilean velocity transformation equation is incorrect. If we assume the
first alternative, then a preferred reference frame in which the speed of light has
the value ¢ must exist and the measured speed must be greater or less than this
value in any other reference frame, in accordance with the Galilean velocity
transformation equation. If we assume the second alternative, then we are forced
to abandon the notions of absolute time and absolute length that form the basis
of the Galilean space—time transformation equations.

39.2 _~ THE MICHELSON—-MORLEY EXPERIMENT

The most famous experiment designed to detect small changes in the speed of
light was first performed in 1881 by Albert A. Michelson (see Section 37.7) and
later repeated under various conditions by Michelson and Edward W. Morley
(1838—-1923). We state at the outset that the outcome of the experiment contra-
dicted the ether hypothesis.

The experiment was designed to determine the velocity of the Earth relative to
that of the hypothetical ether. The experimental tool used was the Michelson in-
terferometer, which was discussed in Section 37.7 and is shown again in Figure
39.5. Arm 2 is aligned along the direction of the Earth’s motion through space.
The Earth moving through the ether at speed v is equivalent to the ether flowing
past the Earth in the opposite direction with speed v. This ether wind blowing in
the direction opposite the direction of Earth’s motion should cause the speed of
light measured in the Earth frame to be ¢ — v as the light approaches mirror My
and ¢ + v after reflection, where c is the speed of light in the ether frame.

The two beams reflected from M; and My recombine, and an interference
pattern consisting of alternating dark and bright fringes is formed. The interfer-
ence pattern was observed while the interferometer was rotated through an angle
of 90°. This rotation supposedly would change the speed of the ether wind along
the arms of the interferometer. The rotation should have caused the fringe pat-
tern to shift slightly but measurably, but measurements failed to show any change
in the interference pattern! The Michelson—Morley experiment was repeated at
different times of the year when the ether wind was expected to change direction
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Figure 39.5 According to the
ether wind theory, the speed of
light should be ¢ — v as the beam

approaches mirror Mg and ¢ + v
after reflection.
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Albert Einstein (1879-1955)
Einstein, one of the greatest physi-
cists of all times, was born in Ulm,
Germany. In 1905, at the age of 26, he
published four scientific papers that
revolutionized physics. Two of these
papers were concerned with what is
now considered his most important
contribution: the special theory of rel-
ativity.

In 1916, Einstein published his
work on the general theory of relativ-
ity. The most dramatic prediction of
this theory is the degree to which
light is deflected by a gravitational
field. Measurements made by as-
tronomers on bright stars in the vicin-
ity of the eclipsed Sun in 1919 con-
firmed Einstein’s prediction, and as a
result Einstein became a world
celebrity.

Einstein was deeply disturbed by
the development of quantum mechan-
ics in the 1920s despite his own role
as a scientific revolutionary. In partic-
ular, he could never accept the prob-
abilistic view of events in nature that

is a central feature of quantum theory.

The last few decades of his life were
devoted to an unsuccessful search
for a unified theory that would com-
bine gravitation and electromagnet-
ism. (AIP Niels Bohr Library)
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and magnitude, but the results were always the same: no fringe shift of the mag-
nitude required was ever observed.?

The negative results of the Michelson—Morley experiment not only contra-
dicted the ether hypothesis but also showed that it was impossible to measure the
absolute velocity of the Earth with respect to the ether frame. However, as we shall
see in the next section, Einstein offered a postulate for his special theory of relativ-
ity that places quite a different interpretation on these null results. In later years,
when more was known about the nature of light, the idea of an ether that perme-
ates all of space was relegated to the ash heap of worn-out concepts. Light is now
understood to be an electromagnetic wave, which requires no medium for
its propagation. As a result, the idea of an ether in which these waves could travel
became unnecessary.

Optional Section

Details of the Michelson-Morley Experiment

To understand the outcome of the Michelson—Morley experiment, let us assume
that the two arms of the interferometer in Figure 39.5 are of equal length L. We
shall analyze the situation as if there were an ether wind, because that is what
Michelson and Morley expected to find. As noted above, the speed of the light beam
along arm 2 should be ¢ — v as the beam approaches My and ¢ + v after the beam is
reflected. Thus, the time of travel to the right is L /(¢ — v), and the time of travel to
the leftis L/ (¢ + v). The total time needed for the round trip along arm 2 is

oL L 2L _£<l_v_2>1
! ct v c— v 2 — ¢? ¢ 2

Now consider the light beam traveling along arm 1, perpendicular to the
ether wind. Because the speed of the beam relative to the Earth is (¢? — v%)!/? in
this case (see Fig. 39.3), the time of travel for each half of the trip is
L/(¢2 — v?)V2 and the total time of travel for the round trip is

9L oL ( v? >—1/2

o= —5 908 =
2 (¢2 — v2)1/2 c

2

Thus, the time difference between the horizontal round trip (arm 2) and the verti-
cal round trip (arm 1) is

or 02\ 1 02 \~1/2
Atztl—tgz—c|:<l—7) —(1—?

Because v?/c? << 1, we can simplify this expression by using the following bino-
mial expansion after dropping all terms higher than second order:

(1—x"=1- nx for x<<1
In our case, x = v%/¢2, and we find that
L 2
At=1 — tg= z; (39.3)
¢

This time difference between the two instants at which the reflected beams ar-
rive at the viewing telescope gives rise to a phase difference between the beams,

2 From an Earth observer’s point of view, changes in the Earth’s speed and direction of motion in the
course of a year are viewed as ether wind shifts. Even if the speed of the Earth with respect to the ether
were zero at some time, six months later the speed of the Earth would be 60 km/s with respect to the
ether, and as a result a fringe shift should be noticed. No shift has ever been observed, however.
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producing an interference pattern when they combine at the position of the tele-
scope. A shift in the interference pattern should be detected when the interferom-
eter is rotated through 90° in a horizontal plane, so that the two beams exchange
roles. This results in a time difference twice that given by Equation 39.3. Thus, the
path difference that corresponds to this time difference is

2102

Ad = ¢(2 At) = ==
4

Because a change in path length of one wavelength corresponds to a shift of one
fringe, the corresponding fringe shift is equal to this path difference divided by
the wavelength of the light:

2102

Shift =
Ac2

(39.4)

In the experiments by Michelson and Morley, each light beam was reflected by
mirrors many times to give an effective path length L of approximately 11 m. Us-
ing this value and taking v to be equal to 3.0 X 10* m/s, the speed of the Earth
around the Sun, we obtain a path difference of

_ 2(11 m) (3.0 X 10* m/s)?

=292 %1077
(3.0 X 105 m/s)2 2.2 m

Ad

This extra travel distance should produce a noticeable shift in the fringe pattern.
Specifically, using 500-nm light, we expect a fringe shift for rotation through 90° of
Ad  22x10"m

Shift = —

== =~ (0.44
A 5.0 X 107" m

The instrument used by Michelson and Morley could detect shifts as small as 0.01
fringe. However, it detected no shift whatsoever in the fringe pattern. Since
then, the experiment has been repeated many times by different scientists under a
wide variety of conditions, and no fringe shift has ever been detected. Thus, it was
concluded that the motion of the Earth with respect to the postulated ether can-
not be detected.

Many efforts were made to explain the null results of the Michelson—-Morley
experiment and to save the ether frame concept and the Galilean velocity transfor-
mation equation for light. All proposals resulting from these efforts have been
shown to be wrong. No experiment in the history of physics received such valiant
efforts to explain the absence of an expected result as did the Michelson—Morley
experiment. The stage was set for Einstein, who solved the problem in 1905 with
his special theory of relativity.

39.3 _~ EINSTEIN’S PRINCIPLE OF RELATIVITY

In the previous section we noted the impossibility of measuring the speed of the
ether with respect to the Earth and the failure of the Galilean velocity transforma-
tion equation in the case of light. Einstein proposed a theory that boldly removed
these difficulties and at the same time completely altered our notion of space and
time.? He based his special theory of relativity on two postulates:

3 A. FEinstein, “On the Electrodynamics of Moving Bodies,” Ann. Physik 17:891, 1905. For an English
translation of this article and other publications by Einstein, see the book by H. Lorentz, A. Einstein,
H. Minkowski, and H. Weyl, The Principle of Relativity, Dover, 1958.
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The postulates of the special
theory of relativity
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1. The principle of relativity: The laws of physics must be the same in all iner-
tial reference frames.

2. The constancy of the speed of light: The speed of light in vacuum has the
same value, ¢ = 3.00 X 108 m/s, in all inertial frames, regardless of the ve-
locity of the observer or the velocity of the source emitting the light.

The first postulate asserts that all the laws of physics—those dealing with me-
chanics, electricity and magnetism, optics, thermodynamics, and so on—are the
same in all reference frames moving with constant velocity relative to one another.
This postulate is a sweeping generalization of the principle of Galilean relativity,
which refers only to the laws of mechanics. From an experimental point of view,
Einstein’s principle of relativity means that any kind of experiment (measuring the
speed of light, for example) performed in a laboratory at rest must give the same
result when performed in a laboratory moving at a constant velocity past the first
one. Hence, no preferred inertial reference frame exists, and it is impossible to de-
tect absolute motion.

Note that postulate 2 is required by postulate 1: If the speed of light were not
the same in all inertial frames, measurements of different speeds would make it
possible to distinguish between inertial frames; as a result, a preferred, absolute
frame could be identified, in contradiction to postulate 1.

Although the Michelson—Morley experiment was performed before Einstein
published his work on relativity, it is not clear whether or not Einstein was aware of
the details of the experiment. Nonetheless, the null result of the experiment can
be readily understood within the framework of Einstein’s theory. According to his
principle of relativity, the premises of the Michelson—Morley experiment were in-
correct. In the process of trying to explain the expected results, we stated that
when light traveled against the ether wind its speed was ¢ —v, in accordance with
the Galilean velocity transformation equation. However, if the state of motion of
the observer or of the source has no influence on the value found for the speed
of light, one always measures the value to be c¢. Likewise, the light makes the
return trip after reflection from the mirror at speed ¢, not at speed ¢ + v. Thus,
the motion of the Earth does not influence the fringe pattern observed in the
Michelson—-Morley experiment, and a null result should be expected.

If we accept Einstein’s theory of relativity, we must conclude that relative mo-
tion is unimportant when measuring the speed of light. At the same time, we shall
see that we must alter our common-sense notion of space and time and be pre-
pared for some bizarre consequences. It may help as you read the pages ahead to
keep in mind that our common-sense ideas are based on a lifetime of everyday ex-
periences and not on observations of objects moving at hundreds of thousands of
kilometers per second.

39.4_~ CONSEQUENCES OF THE SPECIAL THEORY
OF RELATIVITY

Before we discuss the consequences of Einstein’s special theory of relativity, we
must first understand how an observer located in an inertial reference frame de-
scribes an event. As mentioned earlier, an event is an occurrence describable by
three space coordinates and one time coordinate. Different observers in different
inertial frames usually describe the same event with different coordinates.
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Figure 39.6 In studying relativity,
we use a reference frame consisting
of a coordinate grid and a set of syn-
chronized clocks.

The reference frame used to describe an event consists of a coordinate grid
and a set of synchronized clocks located at the grid intersections, as shown in Fig-
ure 39.6 in two dimensions. The clocks can be synchronized in many ways with the
help of light signals. For example, suppose an observer is located at the origin with
a master clock and sends out a pulse of light at ¢t = 0. The pulse takes a time r/¢ to
reach a clock located a distance r from the origin. Hence, this clock is synchro-
nized with the master clock if this clock reads r/c¢ at the instant the pulse reaches
it. This procedure of synchronization assumes that the speed of light has the same
value in all directions and in all inertial frames. Furthermore, the procedure con-
cerns an event recorded by an observer in a specific inertial reference frame. An
observer in some other inertial frame would assign different space—time coordi-
nates to events being observed by using another coordinate grid and another array
of clocks.

As we examine some of the consequences of relativity in the remainder of this
section, we restrict our discussion to the concepts of simultaneity, time, and
length, all three of which are quite different in relativistic mechanics from what
they are in Newtonian mechanics. For example, in relativistic mechanics the dis-
tance between two points and the time interval between two events depend on the
frame of reference in which they are measured. That is, in relativistic mechanics
there is no such thing as absolute length or absolute time. Furthermore,
events at different locations that are observed to occur simultaneously in
one frame are not observed to be simultaneous in another frame moving
uniformly past the first.

@
@
&

Simultaneity and the Relativity of Time

A basic premise of Newtonian mechanics is that a universal time scale exists that is
the same for all observers. In fact, Newton wrote that “Absolute, true, and mathe-
matical time, of itself, and from its own nature, flows equably without relation to
anything external.” Thus, Newton and his followers simply took simultaneity for
granted. In his special theory of relativity, Einstein abandoned this assumption.

Einstein devised the following thought experiment to illustrate this point. A
boxcar moves with uniform velocity, and two lightning bolts strike its ends, as illus-
trated in Figure 39.7a, leaving marks on the boxcar and on the ground. The marks
on the boxcar are labeled A" and B’, and those on the ground are labeled A and
B. An observer O’ moving with the boxcar is midway between A’ and B’, and a
ground observer O is midway between A and B. The events recorded by the ob-
servers are the striking of the boxcar by the two lightning bolts.
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Figure 39.7 (a) Two lightning bolts strike the ends of a moving boxcar. (b) The events appear
to be simultaneous to the stationary observer O, standing midway between A and B. The events
do not appear to be simultaneous to observer O’, who claims that the front of the car is struck be-
fore the rear. Note that in (b) the leftward-traveling light signal has already passed O’ but the
rightward-traveling signal has not yet reached O'.

The light signals recording the instant at which the two bolts strike reach ob-
server O at the same time, as indicated in Figure 39.7b. This observer realizes that
the signals have traveled at the same speed over equal distances, and so rightly
concludes that the events at A and B occurred simultaneously. Now consider the
same events as viewed by observer O’. By the time the signals have reached ob-
server O, observer O’ has moved as indicated in Figure 39.7b. Thus, the signal
from B’ has already swept past O’, but the signal from A’ has not yet reached O'.
In other words, O’ sees the signal from B’ before seeing the signal from A'. Ac-
cording to Einstein, the two observers must find that light travels at the same speed.
Therefore, observer O’ concludes that the lightning strikes the front of the boxcar
before it strikes the back.

This thought experiment clearly demonstrates that the two events that appear
to be simultaneous to observer O do not appear to be simultaneous to observer O'.
In other words,

two events that are simultaneous in one reference frame are in general not si-
multaneous in a second frame moving relative to the first. That is, simultaneity
is not an absolute concept but rather one that depends on the state of motion
of the observer.

Quick Quiz 39.3

Which observer in Figure 39.7 is correct?

The central point of relativity is this: Any inertial frame of reference can be
used to describe events and do physics. There is no preferred inertial frame of
reference. However, observers in different inertial frames always measure differ-
ent time intervals with their clocks and different distances with their meter sticks.
Nevertheless, all observers agree on the forms of the laws of physics in their re-
spective frames because these laws must be the same for all observers in uniform
motion. For example, the relationship F'= ma in a frame S has the same form
F' = ma’ in a frame S’ that is moving at constant velocity relative to frame S. It is
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the alteration of time and space that allows the laws of physics (including
Maxwell’s equations) to be the same for all observers in uniform motion.

Time Dilation

We can illustrate the fact that observers in different inertial frames always measure
different time intervals between a pair of events by considering a vehicle moving to
the right with a speed v, as shown in Figure 39.8a. A mirror is fixed to the ceiling
of the vehicle, and observer O’ at rest in this system holds a laser a distance d be-
low the mirror. At some instant, the laser emits a pulse of light directed toward the
mirror (event 1), and at some later time after reflecting from the mirror, the pulse
arrives back at the laser (event 2). Observer O’ carries a clock C’' and uses it to
measure the time interval Az, between these two events. (The subscript p stands
for proper, as we shall see in a moment.) Because the light pulse has a speed ¢, the
time it takes the pulse to travel from O’ to the mirror and back to O’ is
Distance traveled _ 2d

At, = 39.5
? Speed ¢ ( )

This time interval Az, measured by O’ requires only a single clock C’ located at
the same place as the laser in this frame.

Now consider the same pair of events as viewed by observer O in a second
frame, as shown in Figure 39.8b. According to this observer, the mirror and laser
are moving to the right with a speed v, and as a result the sequence of events ap-
pears entirely different. By the time the light from the laser reaches the mirror, the
mirror has moved to the right a distance v A¢/2, where Atis the time it takes the
light to travel from O’ to the mirror and back to O’ as measured by O. In other
words, O concludes that, because of the motion of the vehicle, if the light is to hit
the mirror, it must leave the laser at an angle with respect to the vertical direction.
Comparing Figure 39.8a and b, we see that the light must travel farther in (b)
than in (a). (Note that neither observer “knows” that he or she is moving. Each is
at rest in his or her own inertial frame.)

Mirror

/T / /
@’" o’ 0

_Elﬂ_tlILL\uDDDLJDI‘!DﬂEL

“ vAt J

(a) (b)

Figure 39.8 (a) A mirror is fixed to a moving vehicle, and a light pulse is sent out by observer
O’ atrest in the vehicle. (b) Relative to a stationary observer O standing alongside the vehicle,
the mirror and O" move with a speed v. Note that what observer O measures for the distance the
pulse travels is greater than 2d. (c) The right triangle for calculating the relationship between A¢
and At
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According to the second postulate of the special theory of relativity, both ob-
servers must measure ¢ for the speed of light. Because the light travels farther in
the frame of O, it follows that the time interval A¢ measured by O is longer than
the time interval Az, measured by O'. To obtain a relationship between these two
time intervals, it is convenient to use the right triangle shown in Figure 39.8c. The

Pythagorean theorem gives
2 2
(cAt) =<vAt> 2
2 2

Solving for A¢gives
d d
At = 2 = 2 (39.6)
e N
c 2
Because A = 2d/ ¢, we can express this result as
At,
At = T = yAtl, (39.7)
v
1——
2
where
y=(1—v%/c*)"V2 (39.8)

Because v is always greater than unity, this result says that the time interval At
measured by an observer moving with respect to a clock is longer than the
time interval A¢, measured by an observer at rest with respect to the clock.
(That is, At > At,,.) This effect is known as time dilation. Figure 39.9 shows that
as the velocity approaches the speed of light, y increases dra-
matically. Note that for speeds less than one tenth the speed of light, vy is very
nearly equal to unity.
The time interval At, in Equations 39.5 and 39.7 is called the proper time.
(In German, Einstein used the term Figenzeit, which means “own-time.”) In gen-
eral, proper time is the time interval between two events measured by an ob-
server who sees the events occur at the same point in space. Proper time is al-
ways the time measured with a single clock (clock C’ in our case) at rest in the
frame in which the events take place.
If a clock is moving with respect to you, it appears to fall behind (tick more slowly
than) the clocks it is passing in the grid of synchronized clocks in your reference
frame. Because the time interval y(2d/c), the interval between ticks of a moving

20

1=
I [ I \ \ \
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 v(108m/k)

Figure 39.9 Graph of y versus v. As the velocity approaches the speed of light, y increases rapidly.
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clock, is observed to be longer than 2d/ ¢, the time interval between ticks of an identi-
cal clock in your reference frame, it is often said that a moving clock runs more slowly
than a clock in your reference frame by a factor 7. This is true for mechanical clocks
as well as for the light clock just described. We can generalize this result by stating
that all physical processes, including chemical and biological ones, slow down relative
to a stationary clock when those processes occur in a moving frame. For example, the
heartbeat of an astronaut moving through space would keep time with a clock inside
the spaceship. Both the astronaut’s clock and heartbeat would be slowed down rela-
tive to a stationary clock back on the Earth (although the astronaut would have no
sensation of life slowing down in the spaceship).

A rocket has a clock built into its control panel. Use Figure 39.9 to determine approxi-
mately how fast the rocket must be moving before its clock appears to an Earth-bound ob-
server to be ticking at one fifth the rate of a clock on the wall at Mission Control. What does
an astronaut in the rocket observe?

Bizarre as it may seem, time dilation is a verifiable phenomenon. An experi-
ment reported by Hafele and Keating provided direct evidence of time dilation.*
Time intervals measured with four cesium atomic clocks in jet flight were com-
pared with time intervals measured by Earth-based reference atomic clocks. In or-
der to compare these results with theory, many factors had to be considered, in-
cluding periods of acceleration and deceleration relative to the Earth, variations in
direction of travel, and the fact that the gravitational field experienced by the fly-
ing clocks was weaker than that experienced by the Earth-based clock. The results
were in good agreement with the predictions of the special theory of relativity and
can be explained in terms of the relative motion between the Earth and the jet air-

<'a craft. In their paper, Hafele and Keating stated that “Relative to the atomic time
7 scale of the U.S. Naval Observatory, the flying clocks lost 59 * 10 ns during the

eastward trip and gained 273 * 7 ns during the westward trip . . . . These re- T l\guon’s

sults provide an unambiguous empirical resolution of the famous clock paradox 600 m ; . ia;;e#s

with macroscopic clocks.” v P
Another interesting example of time dilation involves the observation of muons, (a)

unstable elementary particles that have a charge equal to that of the electron and a Earth’s

mass 207 times that of the electron. Muons can be produced by the collision of cos- frame

mic radiation with atoms high in the atmosphere. These particles have a lifetime of . T=77,= 16 us

2.2 us when measured in a reference frame in which they are at rest or moving l

slowly. If we take 2.2 us as the average lifetime of a muon and assume that its speed
is close to the speed of light, we find that these particles travel only approximately 4800 m
600 m before they decay (Fig. 39.10a). Hence, they cannot reach the Earth from
the upper atmosphere where they are produced. However, experiments show that a
large number of muons do reach the Earth. The phenomenon of time dilation ex-
plains this effect. Relative to an observer on the Earth, the muons have a lifetime
equal to y7,, where 7, = 2.2 us is the lifetime in the frame traveling with the (b)

muons or the proper lifetime. For example, for a muon speed of v = 0.99¢, y = 7.1 Figure 39.10 (2) Muons moving
and y7, = 16 us. Hence, the average distance traveled as measured by an observer (i a speed of 0.9 travel approxi-
on the Earth is yv7, = 4 800 m, as indicated in Figure 39.10b. mately 600 m as measured in the

In 1976, at the laboratory of the European Council for Nuclear Research reference frame of the muons,
where their lifetime is about 2.2 us.
(b) The muons travel approxi-
4 J. C. Hafele and R. E. Keating, “Around the World Atomic Clocks: Relativistic Time Gains Observed,” mately 4 800 m as measured by an
Science, 177:168, 1972. observer on the Earth.
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1.0

Muon
at rest

Muon moving
at 0.9994¢

Fraction of muons remaining
S
G
:

50

L(US) i

100 150 Figure 39.11 Decay curves for

muons at rest and for muons
traveling at a speed of 0.9994c.

(CERN) in Geneva, muons injected into a large storage ring reached speeds of ap-
proximately 0.9994¢. Electrons produced by the decaying muons were detected by
counters around the ring, enabling scientists to measure the decay rate and hence
the muon lifetime. The lifetime of the moving muons was measured to be approxi-
mately 30 times as long as that of the stationary muon (Fig. 39.11), in agreement

ExAMPLE 39.1

The period of a pendulum is measured to be 3.0 s in the ref-
erence frame of the pendulum. What is the period when
measured by an observer moving at a speed of 0.95¢ relative
to the pendulum?

Solution Instead of the observer moving at 0.95¢, we can
take the equivalent point of view that the observer is at rest
and the pendulum is moving at 0.95¢ past the stationary ob-
server. Hence, the pendulum is an example of a moving
clock.

The proper time is A¢, = 3.0 s. Because a moving clock

What Is the Period of the Pendulum?

runs more slowly than a stationary clock by a factor vy, Equa-
tion 39.7 gives

1 1
A= yAly= ———— A=\
g | (0950° PN — 0002 !

02

= (3.2)(3.0s) = 965

That is, 2 moving pendulum takes longer to complete a pe-
riod than a pendulum at rest does.

EXAMPLE 39.2  How Long Was Your Trip?

Suppose you are driving your car on a business trip and are
traveling at 30 m/s. Your boss, who is waiting at your destina-
tion, expects the trip to take 5.0 h. When you arrive late, your
excuse is that your car clock registered the passage of 5.0 h
but that you were driving fast and so your clock ran more
slowly than your boss’s clock. If your car clock actually did in-
dicate a 5.0-h trip, how much time passed on your boss’s
clock, which was at rest on the Earth?

Solution We begin by calculating 7 from Equation 39.8:

1 1 1
y= - -
 B3x10'm/s)2  A1-107M

V-t
-2 ! (3 X 108 m/s)2

If you try to determine this value on your calculator, you will
probably get y = 1. However, if we perform a binomial ex-
pansion, we can more precisely determine the value as

y=(1-10""%)"12=1+11071) =1 +50x%x 10715

This result indicates that at typical automobile speeds, vy is
not much different from 1.

Applying Equation 39.7, we find A¢, the time interval mea-
sured by your boss, to be

At=yAt, = (1 +5.0 X 10719)(5.0 h)
=50h+25X10"“h= 5.0h + 0.09 ns

Your boss’s clock would be only 0.09 ns ahead of your car
clock. You might want to try another excuse!
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with the prediction of relativity to within two parts in a thousand.

The Twins Paradox

An intriguing consequence of time dilation is the so-called twins paradox (Fig.
39.12). Consider an experiment involving a set of twins named Speedo and Goslo.
When they are 20 yr old, Speedo, the more adventuresome of the two, sets out on
an epic journey to Planet X, located 20 ly from the Earth. Furthermore, his space-
ship is capable of reaching a speed of 0.95¢ relative to the inertial frame of his twin
brother back home. After reaching Planet X, Speedo becomes homesick and im-
mediately returns to the Earth at the same speed 0.95¢. Upon his return, Speedo is
shocked to discover that Goslo has aged 42 yr and is now 62 yr old. Speedo, on the
other hand, has aged only 13 yr.

At this point, it is fair to raise the following question—which twin is the trav-
eler and which is really younger as a result of this experiment? From Goslo’s frame
of reference, he was at rest while his brother traveled at a high speed. But from
Speedo’s perspective, it is he who was at rest while Goslo was on the high-speed
space journey. According to Speedo, he himself remained stationary while Goslo
and the Earth raced away from him on a 6.5-yr journey and then headed back for
another 6.5 yr. This leads to an apparent contradiction. Which twin has developed
signs of excess aging?

To resolve this apparent paradox, recall that the special theory of relativity
deals with inertial frames of reference moving relative to each other at uniform
speed. However, the trip in our current problem is not symmetrical. Speedo, the
space traveler, must experience a series of accelerations during his journey. As a re-
sult, his speed is not always uniform, and consequently he is not in an inertial
frame. He cannot be regarded as always being at rest while Goslo is in uniform mo-
tion because to do so would be an incorrect application of the special theory of
relativity. Therefore, there is no paradox. During each passing year noted by
Goslo, slightly less than 4 months elapsed for Speedo.

The conclusion that Speedo is in a noninertial frame is inescapable. Each twin
observes the other as accelerating, but it is Speedo that actually undergoes dynami-
cal acceleration due to the real forces acting on him. The time required to acceler-
ate and decelerate Speedo’s spaceship may be made very small by using large rock-
ets, so that Speedo can claim that he spends most of his time traveling to Planet X

Figure 39.12 (a) As one twin leaves his brother on the Earth, both are the same age.
(b) When Speedo returns from his journey to Planet X, he is younger than his twin Goslo.
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Figure 39.13 (a) A stick mea-
sured by an observer in a frame at-
tached to the stick (that is, both
have the same velocity) has its
proper length L,. (b) The stick
measured by an observer in a frame
in which the stick has a velocity v
relative to the frame is shorter

than its proper length L, bya
factor (1 — v2/¢2)V/2,

Length contraction
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at 0.95¢in an inertial frame. However, Speedo must slow down, reverse his motion,
and return to the Earth in an altogether different inertial frame. At the very best,
Speedo is in two different inertial frames during his journey. Only Goslo, who is
in a single inertial frame, can apply the simple time-dilation formula to Speedo’s
trip. Thus, Goslo finds that instead of aging 42 yr, Speedo ages only
(1 — v2/¢c2)V/2(42 yr) = 13 yr. Conversely, Speedo spends 6.5 yr traveling to
Planet X and 6.5 yr returning, for a total travel time of 13 yr, in agreement with
our earlier statement.

Suppose astronauts are paid according to the amount of time they spend traveling in space.
After a long voyage traveling at a speed approaching ¢, would a crew rather be paid accord-
ing to an Earth-based clock or their spaceship’s clock?

Length Contraction

The measured distance between two points also depends on the frame of refer-
ence. The proper length L, of an object is the length measured by someone
at rest relative to the object. The length of an object measured by someone in a
reference frame that is moving with respect to the object is always less than the
proper length. This effect is known as length contraction.

Consider a spaceship traveling with a speed v from one star to another. There
are two observers: one on the Earth and the other in the spaceship. The observer
at rest on the Earth (and also assumed to be at rest with respect to the two stars)
measures the distance between the stars to be the proper length L,. According to
this observer, the time it takes the spaceship to complete the voyage is At = L, /v.
Because of time dilation, the space traveler measures a smaller time of travel by
the spaceship clock: At, = At¢/y. The space traveler claims to be at rest and sees
the destination star moving toward the spaceship with speed v. Because the space
traveler reaches the star in the time Atl,, he or she concludes that the distance L be-
tween the stars is shorter than L. This distance measured by the space traveler is

At
L= vAtp =yv—
Y

Because L[) = v At, we see that

L 2\1/2
L=-—L= L,,<1 - v—2> (39.9)
Y c

If an object has a proper length L, when it is at rest, then when it moves
with speed v in a direction parallel to its length, it contracts to the length
L=L,1—v¥c)V2=1L,/7.

where (1 — v?/¢%)!/2 is a factor less than unity. This result may be interpreted as
follows:

For example, suppose that a stick moves past a stationary Earth observer with
speed v, as shown in Figure 39.13. The length of the stick as measured by an ob-
server in a frame attached to the stick is the proper length LP shown in Figure
39.13a. The length of the stick L measured by the Earth observer is shorter than
L, by the factor (1 — v?/¢%)1/2, Furthermore, length contraction is a symmetrical
effect: If the stick is at rest on the Earth, an observer in a moving frame would
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measure its length to be shorter by the same factor (1 — v?/¢?)!/2 Note that
length contraction takes place only along the direction of motion.

It is important to emphasize that proper length and proper time are measured
in different reference frames. As an example of this point, let us return to the de-
caying muons moving at speeds close to the speed of light. An observer in the
muon reference frame measures the proper lifetime (that is, the time interval 7,),
whereas an Earth-based observer measures a dilated lifetime. However, the Earth-
based observer measures the proper height (the length L,) of the mountain in
Figure 39.10b. In the muon reference frame, this height is less than L,, as the fig-
ure shows. Thus, in the muon frame, length contraction occurs but time dilation
does not. In the Earth-based reference frame, time dilation occurs but length con-
traction does not. Thus, when calculations on the muon are performed in both

1263

EXAMPLE 39.3  The Contraction of a Spaceship

A spaceship is measured to be 120.0 m long and 20.0 m in di-
ameter while at rest relative to an observer. If this spaceship
now flies by the observer with a speed of 0.99¢, what length
and diameter does the observer measure?

Solution From Equation 39.9, the length measured by the
observer is

2 0.990)2
L=1, 1*%=(120.0m)'\,1*%= 17 m
4 4

The diameter measured by the observer is still 20.0 m be-
cause the diameter is a dimension perpendicular to the mo-
tion and length contraction occurs only along the direction
of motion.

Exercise If the ship moves past the observer with a speed of
0.100 Oc, what length does the observer measure?

Answer 119.4 m.

EXAMPLE 39.4 How Long Was Your Car?

In Example 39.2, you were driving at 30 m/s and claimed
that your clock was running more slowly than your boss’s sta-
tionary clock. Although your statement was true, the time di-
lation was negligible. If your car is 4.3 m long when it is
parked, how much shorter does it appear to a stationary road-
side observer as you drive by at 30 m/s?

Solution The observer sees the horizontal length of the
car to be contracted to a length

L=l - S~ <1—lv—2>
’ 2 =L\l - 273

where we have again used the binomial expansion for the fac-

2
’ v . ,
tor \|1 — —5. The roadside observer sees the car’s length as
c

having changed by an amount L, — L:
. 7L~ﬁ<vi> _ <4.3m><3.0>< 101m/s>2
r 2 \ ¢2 2 3.0 X 108 m/s

= 22X 10 ¥m

This is much smaller than the diameter of an atom!

EXAMPLE 39.5  AVoyage to Sirius

An astronaut takes a trip to Sirius, which is located a distance
of 8 lightyears from the Earth. (Note that 1 lightyear (ly) is
the distance light travels through free space in 1 yr.) The as-
tronaut measures the time of the one-way journey to be 6 yr.
If the spaceship moves at a constant speed of 0.8¢, how can
the 8ly distance be reconciled with the 6-yr trip time mea-
sured by the astronaut?

Solution The 8 Iy represents the proper length from the
Earth to Sirius measured by an observer seeing both bodies

nearly at rest. The astronaut sees Sirius approaching her at
0.8¢ but also sees the distance contracted to

8ly v? (0.8¢)2
—— = (81 \'1_7: 81 \'1—7251
y ( y) -2 ( y) 2 y

Thus, the travel time measured on her clock is
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World-line of Speedo

World-line
of Goslo 1 i
World-ine of light beam Figure 39.14 The twins paradox on a
space—time graph. The twin who stays
on the Earth has a world-line along the ¢
axis. The path of the traveling twin
through space-time is represented by

> X a world-line that changes direction.

frames, the effect of “offsetting penalties” is seen, and the outcome of the experi-
ment in one frame is the same as the outcome in the other frame!

Space-Time Graphs

It is sometimes helpful to make a space—time graph, in which time is the ordinate
and displacement is the abscissa. The twins paradox is displayed in such a graph in
Figure 39.14. A path through space—time is called a world-line. At the origin, the
world-lines of Speedo and Goslo coincide because the twins are in the same loca-
tion at the same time. After Speedo leaves on his trip, his world-line diverges from
that of his brother. At their reunion, the two world-lines again come together.
Note that Goslo’s world-line is vertical, indicating no displacement from his origi-
nal location. Also note that it would be impossible for Speedo to have a world-line
that crossed the path of a light beam that left the Earth when he did. To do so
would require him to have a speed greater than c.

World-lines for light beams are diagonal lines on space—time graphs, typically
drawn at 45° to the right or left of vertical, depending on whether the light beam
is traveling in the direction of increasing or decreasing x. These two world-lines
means that all possible future events for Goslo and Speedo lie within two 45° lines
extending from the origin. Either twin’s presence at an event outside this “light
cone” would require that twin to move at a speed greater than ¢, which, as we shall
see in Section 39.5, is not possible. Also, the only past events that Goslo and
Speedo could have experienced occurred within two similar 45° world-lines that
approach the origin from below the x axis.

How is acceleration indicated on a space—time graph?

The Relativistic Doppler Effect

Another important consequence of time dilation is the shift in frequency found
for light emitted by atoms in motion as opposed to light emitted by atoms at
rest. This phenomenon, known as the Doppler effect, was introduced in Chap-
ter 17 as it pertains to sound waves. In the case of sound, the motion of the
source with respect to the medium of propagation can be distinguished from
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the motion of the observer with respect to the medium. Light waves must be an-
alyzed differently, however, because they require no medium of propagation,
and no method exists for distinguishing the motion of a light source from the
motion of the observer.

If a light source and an observer approach each other with a relative speed v,
the frequency f,},s measured by the observer is

oo = V1 + v/c i
obs m source

where fiurce 15 the frequency of the source measured in its rest frame. Note that
this relativistic Doppler shift formula, unlike the Doppler shift formula for sound,
depends only on the relative speed v of the source and observer and holds for rela-
tive speeds as great as ¢. As you might expect, the formula predicts that
Jfobs = fsource When the source and observer approach each other. We obtain the
expression for the case in which the source and observer recede from each other
by replacing v with —vin Equation 39.10.

The most spectacular and dramatic use of the relativistic Doppler effect is the
measurement of shifts in the frequency of light emitted by a moving astronomical
object such as a galaxy. Spectral lines normally found in the extreme violet region
for galaxies at rest with respect to the Earth are shifted by about 100 nm toward
the red end of the spectrum for distant galaxies—indicating that these galaxies
are receding from us. The American astronomer Edwin Hubble (1889-1953) per-
formed extensive measurements of this red shift to confirm that most galaxies are
moving away from us, indicating that the Universe is expanding.

(39.10)

39.5 _~ THE LORENTZ TRANSFORMATION EQUATIONS

We have seen that the Galilean transformation equations are not valid when v ap-
proaches the speed of light. In this section, we state the correct transformation
equations that apply for all speeds in the range 0 = v < ¢.

Suppose that an event that occurs at some point P is reported by two ob-
servers, one at rest in a frame S and the other in a frame S’ that is moving to the
right with speed v, as in Figure 39.15. The observer in S reports the event with
space—time coordinates (x, y, z, ), and the observer in S’ reports the same event
using the coordinates (x', y’, z’, ¢'). We would like to find a relationship between
these coordinates that is valid for all speeds.

The equations that are valid from v = 0 to v = ¢ and enable us to transform
coordinates from S to S’ are the Lorentz transformation equations:

x' = y(x — vt)
Yy =y

\/  Event

P—e—

/\

Figure 39.15 An event that occurs
at some point P is observed by two per-
o = o % sons, one at rest in the S frame and
the other in the S’ frame, which is
S frame S’ frame moving to the right with a speed v.
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! (39.11)

zZ = Z

(=)
- 75 X
Y 2

These transformation equations were developed by Hendrik A. Lorentz
(1853-1928) in 1890 in connection with electromagnetism. However, it was Ein-
stein who recognized their physical significance and took the bold step of inter-
preting them within the framework of the special theory of relativity.

Note the difference between the Galilean and Lorentz time equations. In the
Galilean case, ¢t = ¢’, but in the Lorentz case the value for ¢’ assigned to an event
by an observer O’ standing at the origin of the S’ frame in Figure 39.15 depends
both on the time ¢ and on the coordinate x as measured by an observer O standing
in the S frame. This is consistent with the notion that an event is characterized by
four space—time coordinates (x, y, z ). In other words, in relativity, space and
time are not separate concepts but rather are closely interwoven with each other.

If we wish to transform coordinates in the S’ frame to coordinates in the S
frame, we simply replace v by —v and interchange the primed and unprimed coor-
dinates in Equations 39.11:

t/

x=vy(x" + vt")

j— !

Y=y
z =z (39.12)

v
t= ’y(t, +?x'>

When v<<¢, the Lorentz transformation equations should reduce to the
Galilean equations. To verify this, note that as v approaches zero, v/¢<< 1 and
v2/¢% << 1; thus, v = 1, and Equations 39.11 reduce to the Galilean space-time
transformation equations:

x' =x— vt y =y 2 =z U =1

In many situations, we would like to know the difference in coordinates be-
tween two events or the time interval between two events as seen by observers O
and O'. We can accomplish this by writing the Lorentz equations in a form suitable
for describing pairs of events. From Equations 39.11 and 39.12, we can express the
differences between the four variables x, x’, ¢, and ¢’ in the form

Ax" = y(Ax — v At)

At = 'y<At - %Ax)
c

Ax = y(Ax" + vAt'")

At = y<At’ + C—I;Ax’>

S—§' (39.13)

§'—S (39.14)

5 Although relative motion of the two frames along the x axis does not change the y and z coordinates

of an object, it does change the y and z velocity components of an object moving in either frame, as we
shall soon see.
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EXAMPLE 39.6

Use the Lorentz transformation equations in difference form
to show that (a) simultaneity is not an absolute concept and
that (b) moving clocks run more slowly than stationary
clocks.

Solution (a) Suppose that two events are simultaneous ac-
cording to a moving observer O’, such that A¢’ = 0. From
the expression for A¢ given in Equation 39.14, we see that in
this case the time interval At measured by a stationary ob-
server Ois At = yuAx'/c¢?. That is, the time interval for the
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(b) Suppose that observer O’ finds that two events occur
at the same place (Ax’ = 0) but at different times (Az" # 0).
In this situation, the expression for A¢ given in Equation
39.14 becomes At = y At’. This is the equation for time dila-
tion found earlier (Eq. 39.7), where A¢’ = At is the proper
time measured by a clock located in the moving frame of ob-
server O'.

Exercise Use the Lorentz transformation equations in dif-
ference form to confirm that L = L,/y (Eq. 39.9).

same two events as measured by O is nonzero, and so the
events do not appear to be simultaneous to O.

where Ax’ = x§ — x] and At’ = t5 — t] are the differences measured by observer
O’ and Ax = x9 — x; and At = ¢y — ¢; are the differences measured by observer
O. (We have not included the expressions for relating the y and z coordinates be-
cause they are unaffected by motion along the x direction.®)

Derivation of the Lorentz Velocity Transformation Equation

Once again S is our stationary frame of reference, and S’ is our frame moving at a
speed v relative to S. Suppose that an object has a speed u; measured in the S’
frame, where

d ’
ul = — (39.15)
di
Using Equation 39.11, we have
dx" = y(dx — v dt)
v
dt' = y<dt -— dx)
c

Substituting these values into Equation 39.15 gives

dx

,dx' dx—wvdl  di
U ' v B v dx
dt—?dx 1—75

But dx/dt is just the velocity component u, of the object measured by an observer
in S, and so this expression becomes

W= — (39.16)

If the object has velocity components along the y and z axes, the components
as measured by an observer in 8’ are

Lorentz velocity transformation
equation for S — §'
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| SPEED
LIMIT

3x1 Osm/s.

The speed of light is the speed
limit of the Universe. It is the maxi-
mum possible speed for energy
transfer and for information trans-
fer. Any object with mass must
move at a lower speed.

Lorentz velocity transformation
equations for 8" — S

EXAMPLE 39.7
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U,
) U,
u' e — and

; 7
UL UL

1__x 1__)0

y( cQ) y( c2>

Note that u, and u; do not contain the parameter v in the numerator because the
relative velocity is along the x axis.

When u, and v are both much smaller than ¢ (the nonrelativistic case), the de-
nominator of Equation 39.16 approaches unity, and so u, = u, — v, which is the
Galilean velocity transformation equation. In the other extreme, when u, = ¢,
Equation 39.16 becomes

c(l - 1)
, c— v ¢

= — —
v v
1-— 1-—
6‘2 4

u, =

(39.17)

From this result, we see that an object moving with a speed ¢ relative to an ob-
server in S also has a speed c¢ relative to an observer in S'—independent of the rel-
ative motion of S and S'. Note that this conclusion is consistent with Einstein’s sec-
ond postulate—that the speed of light must be ¢ relative to all inertial reference
frames. Furthermore, the speed of an object can never exceed ¢. That is, the speed
of light is the ultimate speed. We return to this point later when we consider the
energy of a particle.

Relative Velocity of Spaceships

Two spaceships A and B are moving in opposite directions, as
shown in Figure 39.16. An observer on the Earth measures
the speed of ship A to be 0.750¢ and the speed of ship B to be
0.850¢. Find the velocity of ship B as observed by the crew on
ship A.

’

¥ S Y S’ (attached to A)
0.750¢ -0.850¢
—_— ~<—
A B
0 x (04 af

Figure 39.16 Two spaceships A and B move in opposite direc-
tions. The speed of B relative to A is less than ¢ and is obtained from
the relativistic velocity transformation equation.

Solution We can solve this problem by taking the S’ frame
as being attached to ship A, so that v = 0.750¢ relative to the
Earth (the S frame). We can consider ship B as moving with a
velocity u, = —0.850¢ relative to the Earth. Hence, we can
obtain the velocity of ship B relative to ship A by using Equa-
tion 39.16:

—0.850¢ — 0.750¢

— (—0.8500) (0.750¢)
2

= —0977¢

1

4

The negative sign indicates that ship B is moving in the nega-
tive x direction as observed by the crew on ship A. Note that
the speed is less than ¢. That is, a body whose speed is less
than ¢ in one frame of reference must have a speed less than
¢ in any other frame. (If the Galilean velocity transformation
equation were used in this example, we would find that
uy = u, — v = —0.850c — 0.750¢c = —1.60¢, which is impossi-
ble. The Galilean transformation equation does not work in
relativistic situations.)

EXAMPLE 39.8  The Speeding Motorcycle

Imagine a motorcycle moving with a speed 0.80¢ past a sta-
tionary observer, as shown in Figure 39.17. If the rider tosses
a ball in the forward direction with a speed of 0.70¢ relative

to himself, what is the speed of the ball relative to the station-
ary observer?
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Solution The speed of the motorcycle relative to the station-
ary observer is v = 0.80¢. The speed of the ball in the frame of
reference of the motorcyclist is uy = 0.70¢. Therefore, the
speed u, of the ball relative to the stationary observer is

uy+ v 0.70¢ + 0.80¢
Uy = = = 0.96¢
uLv (0.70¢) (0.80¢)
R B e

4 4

Exercise Suppose that the motorcyclist turns on the head-
light so that a beam of light moves away from him with a
speed cin the forward direction. What does the stationary ob-
server measure for the speed of the light?

Answer .
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Figure 39.17 A motorcyclist moves past a stationary observer with
a speed of 0.80¢ and throws a ball in the direction of motion with a
speed of 0.70¢ relative to himself.

EXAMPLE 39.9 Relativistic Leaders of the Pack

Two motorcycle pack leaders named David and Emily are rac-
ing at relativistic speeds along perpendicular paths, as shown
in Figure 39.18. How fast does Emily recede as seen by David
over his right shoulder?

Solution Figure 39.18 represents the situation as seen by a
police officer at rest in frame S, who observes the following:

David: u, = 0.75¢ u, =0

Emily: u, =0 u, = —0.90¢

To calculate Emily’s speed of recession as seen by David, we
take S’ to move along with David and then calculate u; and
uy for Emily using Equations 39.16 and 39.17:

Uy — v 0 — 0.75¢
= = =-075
a uo (0)(0.750) ¢
I I e
c

4

Police officer at
X -1
restin S

2
1 - 07597 900
Uy 2
Uy = = = —0.60¢
U (0)(0.75¢)
y(1-=3 1 -
¢ ¢

Thus, the speed of Emily as observed by David is

W = N)? + (w)? = V(=0.7502 + (—0.600% = 0.96¢

Note that this speed is less than ¢, as required by the special
theory of relativity.

Exercise Use the Galilean velocity transformation equation
to calculate the classical speed of recession for Emily as ob-
served by David.

Answer 1.2¢.

Figure 39.18 David moves to the east with

a speed 0.75¢ relative to the police officer, and
Emily travels south at a speed 0.90¢ relative to
the officer.
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To obtain u, in terms of uy, we replace v by —v in Equation 39.16 and inter-
change the roles of u, and u;:

(39.18)

39.6_—~ RELATIVISTIC LINEAR MOMENTUM AND THE

RELATIVISTIC FORM OF NEWTON’S LAWS

We have seen that in order to describe properly the motion of particles within the
framework of the special theory of relativity, we must replace the Galilean transforma-
tion equations by the Lorentz transformation equations. Because the laws of physics
must remain unchanged under the Lorentz transformation, we must generalize New-
ton’s laws and the definitions of linear momentum and energy to conform to the
Lorentz transformation equations and the principle of relativity. These generalized
definitions should reduce to the classical (nonrelativistic) definitions for v << c.

First, recall that the law of conservation of linear momentum states that when
two isolated objects collide, their combined total momentum remains constant.
Suppose that the collision is described in a reference frame S in which linear mo-
mentum is conserved. If we calculate the velocities in a second reference frame S’
using the Lorentz velocity transformation equation and the classical definition of
linear momentum, p = mu (where u is the velocity of either object), we find that
linear momentum is not conserved in S’. However, because the laws of physics are
the same in all inertial frames, linear momentum must be conserved in all frames.
In view of this condition and assuming that the Lorentz velocity transformation
equation is correct, we must modify the definition of linear momentum to satisfy
the following conditions:

* Linear momentum p must be conserved in all collisions.
* The relativistic value calculated for p must approach the classical value mu as u
approaches zero.

For any particle, the correct relativistic equation for linear momentum that
satisfies these conditions is

p=————=ymu (39.19)

where u is the velocity of the particle and m is the mass of the particle. When u is
much less than ¢, y= (1 — u2/c%)~1/2 approaches unity and p approaches mu.
Therefore, the relativistic equation for p does indeed reduce to the classical ex-
pression when u is much smaller than c.

The relativistic force F acting on a particle whose linear momentum is p is de-
fined as

F=-"P (39.20)
dt

where p is given by Equation 39.19. This expression, which is the relativistic form
of Newton’s second law, is reasonable because it preserves classical mechanics in
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EXAMPLE 39.10 Linear Momentum of an Electron

An electron, which has a mass of 9.11 X 1073 kg, moves with
a speed of 0.750¢. Find its relativistic momentum and com-
pare this value with the momentum calculated from the clas-
sical expression.

Solution Using Equation 39.19 with u = 0.750¢, we have

m,u classical result!

(911X 10731 kg) (0.750 X 3.00 X 108 m/s)

(0.7500)*

2

1

= 310 X 1072 kg-m/s

The (incorrect) classical expression gives

l)clnssical = mu= 2.05 X 10722 kgm/s
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Hence, the correct relativistic result is 50% greater than the

the limit of low velocities and requires conservation of linear momentum for an
isolated system (F = 0) both relativistically and classically.

It is left as an end-of-chapter problem (Problem 63) to show that under rela-
tivistic conditions, the acceleration a of a particle decreases under the action of a
constant force, in which case a = (1 — u2/¢?)%2. From this formula, note that as
the particle’s speed approaches ¢, the acceleration caused by any finite force ap-
proaches zero. Hence, it is impossible to accelerate a particle from rest to a speed
u=c.

39.7_~ RELATIVISTIC ENERGY

We have seen that the definition of linear momentum and the laws of motion re-
quire generalization to make them compatible with the principle of relativity. This
implies that the definition of kinetic energy must also be modified.

To derive the relativistic form of the work—kinetic energy theorem, let us first
use the definition of relativistic force, Equation 39.20, to determine the work done
on a particle by a force F:

X9 X9 d
W=szdx=f27‘i; dx (39.21)

for force and motion both directed along the x axis. In order to perform this inte-
gration and find the work done on the particle and the relativistic kinetic energy
as a function of u, we first evaluate dp/dt:

ﬁ_i mau _ m(du/dt)
dt dt 2 w2 \3/2
- ()
Cc 4

Substituting this expression for dp/dt and dx = u dt into Equation 39.21 gives

[t m(du/dt)wdt u u p
W=, <1 u2>3/2 - ", ( 2 )3/2 “

2 1=—5

2

4 c

where we use the limits 0 and u in the rightmost integral because we have assumed
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that the particle is accelerated from rest to some final speed u. Evaluating the inte-
gral, we find that

W= ——— m (39.22)

Recall from Chapter 7 that the work done by a force acting on a particle equals the
change in kinetic energy of the particle. Because of our assumption that the initial
speed of the particle is zero, we know that the initial kinetic energy is zero. We
therefore conclude that the work W is equivalent to the relativistic kinetic energy K:

K=—7——— mc?® = ymc® — mc? (39.23)

This equation is routinely confirmed by experiments using high-energy particle ac-
celerators.

At low speeds, where u/¢ << 1, Equation 39.23 should reduce to the classical
expression K = %muQ. We can check this by using the binomial expansion

1-x)"12=1+ %xQ + . . . for x<< 1, where the higher-order powers of x are
neglected in the expansion. In our case, x = u /¢, so that
1 ( u? )1/2 1 ?
—=\1-— ~1+——
u2 ? 2 2
2

Substituting this into Equation 39.23 gives

2

K= mc2<1 + iu_) — me? = lmu2
2 (2 2

which is the classical expression for kinetic energy. A graph comparing the rela-
tivistic and nonrelativistic expressions is given in Figure 39.19. In the relativistic
case, the particle speed never exceeds ¢, regardless of the kinetic energy. The two
curves are in good agreement when u << c.

The constant term mc? in Equation 39.23, which is independent of the speed
of the particle, is called the rest energy L of the particle (see Section 8.9). The
term ymc?, which does depend on the particle speed, is therefore the sum of the
kinetic and rest energies. We define ymc? to be the total energy E:

o Relativistic

& case

I

20 |- } Nonrelativistic
} case
[

1.5 I
[
[

1.0 :
[
[

05 ‘ Figure 39.19 A graph comparing rela-
I tivistic and nonrelativistic kinetic energy.

| 1‘ | | . The energies are plotted as a function of
05¢ 1.0c¢ 15c¢ 20¢ speed. In the relativistic case, u is always

less than c.
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Total energy = kinetic energy + rest ener
gy gy gy

E= yme®> = K+ mc? (39.24)
or

f=—r—=< (39.25)

This is Einstein’s famous equation about mass—energy equivalence.

The relationship £ = K + mc? shows that mass is a form of energy, where ¢
in the rest energy term is just a constant conversion factor. This expression also
shows that a small mass corresponds to an enormous amount of energy, a concept
fundamental to nuclear and elementary-particle physics.

In many situations, the linear momentum or energy of a particle is measured
rather than its speed. It is therefore useful to have an expression relating the total
energy I to the relativistic linear momentum p. This is accomplished by using the
expressions E = yme? and p = ymu. By squaring these equations and subtracting,
we can eliminate u (Problem 39). The result, after some algebra, is®

E% = p?c% + (mc?)? (39.26)

2

When the particle is at rest, p = 0 and so E = Ex = mc% For particles that have
zero mass, such as photons, we set m = 0 in Equation 39.26 and see that

E= pc (39.27)

This equation is an exact expression relating total energy and linear momentum
for photons, which always travel at the speed of light.

Finally, note that because the mass m of a particle is independent of its mo-
tion, m must have the same value in all reference frames. For this reason, m is of-
ten called the invariant mass. On the other hand, because the total energy and
linear momentum of a particle both depend on velocity, these quantities depend
on the reference frame in which they are measured.

Because m is a constant, we conclude from Equation 39.26 that the quantity
E? — p?¢? must have the same value in all reference frames. That is, E* — p?c? is
invariant under a Lorentz transformation. (Equations 39.26 and 39.27 do not
make provision for potential energy.)

When we are dealing with subatomic particles, it is convenient to express their

EXAMPLE 39.11 The Energy of a Speedy Electron

An electron in a television picture tube typically moves with a
speed u = 0.250c¢. Find its total energy and kinetic energy in

tron is 0.511 MeV together with Equation 39.25, we have

Energy—momentum

= 1.03(0.511 MeV) = 0.528 MeV

electron volts. This is 3% greater than the rest energy.
We obtain the kinetic energy by subtracting the rest en-
Solution Using the fact that the rest energy of the elec-  ergy from the total energy:

m.c2 0511 MeV K=E— m,*= 0528 MeV — 0.511 MeV =
E= = = :
- Lj 1 (0.2520c)2
4 c
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relationship

0.017 MeV

5 One way to remember this relationship is to draw a right triangle having a hypotenuse of length E
and legs of lengths pcand mc.
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Solution

Er

938 MeV

E= SmﬁCQ

Solving for u gives

myc? = (1.67 X 1077 kg) (3.00 X 108 m/s)?
(1.50 X 1071°7)(1.00 eV/1.60 X 10719])

Solution Equation 89.25 gives

CHAPTER 39  Relativity

EXAMPLE 39.12  The Energy of a Speedy Proton

(a) Find the rest energy of a proton in electron volts. \lg

u= 3 c= 283 X 108m/s

(c) Determine the kinetic energy of the proton in elec-
tron volts.

Solution From Equation 39.24,

K=FE- m{,c2 = 377ch'2 - m/,c2 = 2m1,62

(b) If the total energy of a proton is three times its rest en-
ergy, with what speed is the proton moving? Because m,,c2 = 938 MeV, K= 1880 MeV

(d) What is the proton’s momentum?

ml,c2 Solution We can use Equation 39.26 to calculate the mo-

> mentum with £ = ?)mpc2:

u
1= o2 E?2 = pzcz + (m‘,,,CQ)Z = (?>m[,c2)2
1 p202 = 9(7@,62)2 - (m,,cg)2 = 8(m,,52)2
2

2 mpc 938 MeV

e p= 8 22— g OBMEY) o 650 Mevy/e
C C

The unit of momentum is written MeV/ ¢ for convenience.

WAVAYS

(b)

Figure 39.20 (a) A box of length
Latrest. (b) When a light pulse di-
rected to the right is emitted at the
left end of the box, the box recoils

to the left until the pulse strikes the
right end.

energy in electron volts because the particles are usually given this energy by accel-
eration through a potential difference. The conversion factor, as you recall from
Equation 25.5, is

l1eV=1.602x10719]

For example, the mass of an electron is 9.109 X 1073! kg. Hence, the rest energy
of the electron is

m,c? = (9.109 X 10731 kg) (2.9979 X 103 m/s)2 = 8.187 X 10714]
= (8.187 X 10714])(1 eV/1.602 X 10719]) = 0.5110 MeV

39.8 ~ EQUIVALENCE OF MASS AND ENERGY

To understand the equivalence of mass and energy, consider the following thought
experiment proposed by Einstein in developing his famous equation E = mc?.
Imagine an isolated box of mass My, and length L initially at rest, as shown in Fig-
ure 39.20a. Suppose that a pulse of light is emitted from the left side of the box, as
depicted in Figure 39.20b. From Equation 39.27, we know that light of energy E
carries linear momentum p = E/¢. Hence, if momentum is to be conserved, the

box must recoil to the left with a speed wv. If it is assumed that the box is very mas-
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sive, the recoil speed is much less than the speed of light, and conservation of mo-
mentum gives Myv = E/c, or

E

v=—
Mboxc

The time it takes the light pulse to move the length of the box is approximately
At = L/c. In this time interval, the box moves a small distance Ax to the left,
where

EL

Ax=vAi= —
Mboxc

The light then strikes the right end of the box and transfers its momentum to the
box, causing the box to stop. With the box in its new position, its center of mass
appears to have moved to the left. However, its center of mass cannot have moved
because the box is an isolated system. Einstein resolved this perplexing situation
by assuming that in addition to energy and momentum, light also carries mass. If
M uise is the effective mass carried by the pulse of light and if the center of mass of
the system (box plus pulse of light) is to remain fixed, then

MpulseL = MboxA'x
Solving for M., and using the previous expression for Ax, we obtain

M _ MboxAx _ Mbox EL :£
pulse L L MboxcLz c2

or

= 2
E= Mpulsec

the energy of a system of particles before interaction must equal the energy of
the system after interaction, where energy of the ith particle is given by the ex-
pression

Thus, Einstein reached the profound conclusion that “if a body gives off the en-
ergy I'in the form of radiation, its mass diminishes by £/ 2 ..

Although we derived the relationship E = me? for light energy, the equiva-
lence of mass and energy is universal. Equation 39.24, £ = ymc2, which represents
the total energy of any particle, suggests that even when a particle is at rest (y = 1)
it still possesses enormous energy because it has mass. Probably the clearest experi-
mental proof of the equivalence of mass and energy occurs in nuclear and elemen-
tary particle interactions, where large amounts of energy are released and the en-
ergy release is accompanied by a decrease in mass. Because energy and mass are
related, we see that the laws of conservation of energy and conservation of mass
are one and the same. Simply put, this law states that

The release of enormous quantities of energy from subatomic particles, ac-
companied by changes in their masses, is the basis of all nuclear reactions. In a
conventional nuclear reactor, a uranium nucleus undergoes fission, a reaction that
creates several lighter fragments having considerable kinetic energy. The com-

Conversion of mass—energy
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bined mass of all the fragments is less than the mass of the parent uranium nu-
cleus by an amount Am. The corresponding energy Amc? associated with this mass
difference is exactly equal to the total kinetic energy of the fragments. This kinetic
energy raises the temperature of water in the reactor, converting it to steam for the

CONCEPTUAL EXAMPLE 39.13

Because mass is a measure of energy, can we conclude that
the mass of a compressed spring is greater than the mass of
the same spring when it is not compressed?

Solution Recall that when a spring of force constant k is
compressed (or stretched) from its equilibrium position a
distance «x, it stores elastic potential energy U= kx?/2. Ac-

cording to the special theory of relativity, any change in the
total energy of a system is equivalent to a change in the mass
of the system. Therefore, the mass of a compressed (or
stretched) spring is greater than the mass of the spring in its
equilibrium position by an amount U/ ¢?.

EXAMPLE 39.14 Binding Energy of the Deuteron

A deuteron, which is the nucleus of a deuterium atom,
contains one proton and one neutron and has a mass of
2.013 553 u. This total deuteron mass is not equal to the sum
of the masses of the proton and neutron. Calculate the mass
difference and determine its energy equivalence, which is
called the binding energy of the nucleus.
Solution Using atomic mass units (u), we have
my, = mass of proton = 1.007 276 u
m, = mass of neutron = 1.008 665 u

my + my, = 2.015941 u
The mass difference Am is therefore 0.002 388 u. By defini-

tion, 1 u =1.66 X 10727 kg, and therefore
Am = 0.002388u = 396 X% 10 kg

Using E = Amc?, we find that the binding energy is
E= Ame® = (3.96 X 10730 kg) (3.00 X 108 m/s)?

=356 X 10713] = 2.23 MeV

Therefore, the minimum energy required to separate the
proton from the neutron of the deuterium nucleus (the
binding energy) is 2.23 MeV.

generation of electric power.
In the nuclear reaction called fusion, two atomic nuclei combine to form a sin-

gle nucleus. The fusion reaction in which two deuterium nuclei fuse to form a he-
lium nucleus is of major importance in current research and the development of
controlled-fusion reactors. The decrease in mass that results from the creation of
one helium nucleus from two deuterium nuclei is Am = 4.25 X 10~2% kg. Hence,
the corresponding excess energy that results from one fusion reaction is Amc? =
3.83 X 10712 ] = 23.9 MeV. To appreciate the magnitude of this result, note that if
1 g of deuterium is converted to helium, the energy released is about 1012 J! At
the current cost of electrical energy, this quantity of energy would be worth about
$70 000.

39.9 _~ RELATIVITY AND ELECTROMAGNETISM

Consider two frames of reference S and S’ that are in relative motion, and assume
that a single charge ¢ is at rest in the S’ frame of reference. According to an ob-
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Figure 39.21 (a) In frame S, the positive charge ¢ moves to the right with a velocity v, and the
current-carrying wire is stationary. A magnetic field B surrounds the wire, and charge experi-
ences a magnetic force directed away from the wire. (b) In frame S’, the wire moves to the left
with a velocity —v, and the charge ¢ is stationary. The wire creates an electric field E, and the
charge experiences an electric force directed away from the wire.

server in this frame, an electric field surrounds the charge. However, an observer
in frame S says that the charge is in motion and therefore measures both an elec-
tric field and a magnetic field. The magnetic field measured by the observer in
frame S is created by the moving charge, which constitutes an electric current. In
other words, electric and magnetic fields are viewed differently in frames of refer-
ence that are moving relative to each other. We now describe one situation that
shows how an electric field in one frame of reference is viewed as a magnetic field
in another frame of reference.

A positive test charge ¢ is moving parallel to a current-carrying wire with veloc-
ity v relative to the wire in frame S, as shown in Figure 39.21a. We assume that the
net charge on the wire is zero and that the electrons in the wire also move with ve-
locity v in a straight line. The leftward current in the wire produces a magnetic
field that forms circles around the wire and is directed into the page at the loca-
tion of the moving test charge. Therefore, a magnetic force Fz = gv X B directed
away from the wire is exerted on the test charge. However, no electric force acts on
the test charge because the net charge on the wire is zero when viewed in this
frame.

Now consider the same situation as viewed from frame S’, where the test
charge is at rest (Figure 39.21b). In this frame, the positive charges in the wire
move to the left, the electrons in the wire are at rest, and the wire still carries a cur-
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rent. Because the test charge is not moving in this frame, Fz = gv X B = 0; there
is no magnetic force exerted on the test charge when viewed in this frame. How-
ever, if a force is exerted on the test charge in frame S’, the frame of the wire, as
described earlier, a force must be exerted on it in any other frame. What is the ori-
gin of this force in frame S, the frame of the test charge?

The answer to this question is provided by the special theory of relativity.
When the situation is viewed in frame S, as in Figure 39.21a, the positive charges
are at rest and the electrons in the wire move to the right with a velocity v. Because
of length contraction, the electrons appear to be closer together than their proper
separation. Because there is no net charge on the wire this contracted separation
must equal the separation between the stationary positive charges. The situation is
quite different when viewed in frame S’, shown in Figure 39.21b. In this frame, the
positive charges appear closer together because of length contraction, and the
electrons in the wire are at rest with a separation that is greater than that viewed in
frame S. Therefore, there is a net positive charge on the wire when viewed in
frame S'. This net positive charge produces an electric field pointing away from
the wire toward the test charge, and so the test charge experiences an electric
force directed away from the wire. Thus, what was viewed as a magnetic field (and
a corresponding magnetic force) in the frame of the wire transforms into an elec-
tric field (and a corresponding electric force) in the frame of the test charge.

Optional Section

39.10 -~ THE GENERAL THEORY OF RELATIVITY

Up to this point, we have sidestepped a curious puzzle. Mass has two seemingly dif-
ferent properties: a gravitational attraction for other masses and an inertial property
that resists acceleration. To designate these two attributes, we use the subscripts g
and ¢ and write

Gravitational property Fo=m,g
Inertial property SF=ma

The value for the gravitational constant G was chosen to make the magnitudes
of mg and m; numerically equal. Regardless of how G is chosen, however, the strict
proportionality of m, and m; has been established experimentally to an extremely
high degree: a few parts in 10'% Thus, it appears that gravitational mass and iner-
tial mass may indeed be exactly proportional.

But why? They seem to involve two entirely different concepts: a force of mu-
tual gravitational attraction between two masses, and the resistance of a single
mass to being accelerated. This question, which puzzled Newton and many other
physicists over the years, was answered when Einstein published his theory of gravi-
tation, known as his general theory of relativity, in 1916. Because it is a mathematically
complex theory, we offer merely a hint of its elegance and insight.

In Einstein’s view, the remarkable coincidence that m, and m; seemed to be
proportional to each other was evidence of an intimate and basic connection be-
tween the two concepts. He pointed out that no mechanical experiment (such as
dropping a mass) could distinguish between the two situations illustrated in Figure
39.22a and b. In each case, the dropped briefcase undergoes a downward accelera-
tion grelative to the floor.

Einstein carried this idea further and proposed that no experiment, mechan-
ical or otherwise, could distinguish between the two cases. This extension to in-
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(a) (b) (©)

Figure 39.22 (a) The observer is at rest in a uniform gravitational field g. (b) The observer is
in a region where gravity is negligible, but the frame of reference is accelerated by an external
force F that produces an acceleration g. According to Einstein, the frames of reference in parts
(a) and (b) are equivalent in every way. No local experiment can distinguish any difference be-
tween the two frames. (c) If parts (a) and (b) are truly equivalent, as Einstein proposed, then a
ray of light should bend in a gravitational field.

clude all phenomena (not just mechanical ones) has interesting consequences.
For example, suppose that a light pulse is sent horizontally across the elevator.
During the time it takes the light to make the trip, the right wall of the elevator
has accelerated upward. This causes the light to arrive at a location lower on the
wall than the spot it would have hit if the elevator were not accelerating. Thus,
in the frame of the elevator, the trajectory of the light pulse bends downward as
the elevator accelerates upward to meet it. Because the accelerating elevator
cannot be distinguished from a nonaccelerating one located in a gravitational
field, Einstein proposed that a beam of light should also be bent downward by a
gravitational field, as shown in Figure 39.22c. Experiments have verified the ef-
fect, although the bending is small. A laser aimed at the horizon falls less than
1 cm after traveling 6 000 km. (No such bending is predicted in Newton’s theory
of gravitation.)
The two postulates of Einstein’s general theory of relativity are

e All the laws of nature have the same form for observers in any frame of refer-
ence, whether accelerated or not.

This Global Positioning System (GPS) unit
incorporates relativistically corrected time
calculations in its analysis of signals it re-
ceives from orbiting satellites. These correc-
tions allow the unit to determine its posi-
tion on the Earth’s surface to within a few
meters. If the corrections were not made,
the location error would be about 1 km.
(Courtesy of Trimble Navigation Limited)
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* In the vicinity of any point, a gravitational field is equivalent to an accelerated
frame of reference in the absence of gravitational effects. (This is the principle of
equivalence.)

The second postulate implies that gravitational mass and inertial mass are com-
pletely equivalent, not just proportional. What were thought to be two different
types of mass are actually identical.

One interesting effect predicted by the general theory is that time scales are
altered by gravity. A clock in the presence of gravity runs more slowly than one lo-
cated where gravity is negligible. Consequently, the frequencies of radiation emit-
ted by atoms in the presence of a strong gravitational field are red-shifted to lower
frequencies when compared with the same emissions in the presence of a weak
field. This gravitational red shift has been detected in spectral lines emitted by
atoms in massive stars. It has also been verified on the Earth by comparison of the
frequencies of gamma rays (a high-energy form of electromagnetic radiation)
emitted from nuclei separated vertically by about 20 m.

Quick Quiz 39.7

Two identical clocks are in the same house, one upstairs in a bedroom and the other down-
stairs in the kitchen. Which clock runs more slowly?

The second postulate suggests that a gravitational field may be “transformed
away” at any point if we choose an appropriate accelerated frame of reference—a
freely falling one. Einstein developed an ingenious method of describing the ac-
celeration necessary to make the gravitational field “disappear.” He specified a
concept, the curvature of space—time, that describes the gravitational effect at every
point. In fact, the curvature of space—time completely replaces Newton’s gravita-
tional theory. According to Einstein, there is no such thing as a gravitational force.
Rather, the presence of a mass causes a curvature of space—time in the vicinity of
the mass, and this curvature dictates the space—time path that all freely moving
objects must follow. In 1979, John Wheeler summarized Einstein’s general theory
of relativity in a single sentence: “Space tells matter how to move and matter tells
space how to curve.”

Consider two travelers on the surface of the Earth walking directly toward the

Apparent
direction to star
-
Deflected path of light I ;5"
from star :

R

To star
Sun (actual direction)

N
Earth

Figure 39.23 Deflection of starlight passing near the Sun. Because of this effect, the Sun or
some other remote object can act as a gravitational lens. In his general theory of relativity, Einstein
calculated that starlight just grazing the Sun’s surface should be deflected by an angle of 1.75".
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Einstein’s cross. The four bright spots are
images of the same galaxy that have been
bent around a massive object located be-
tween the galaxy and the Earth. The mas-
sive object acts like a lens, causing the rays
of light that were diverging from the distant
galaxy to converge on the Earth. (If the in-
tervening massive object had a uniform
mass distribution, we would see a bright
ring instead of four spots.)

North Pole but from different starting locations. Even though both say they are
walking due north, and thus should be on parallel paths, they see themselves get-
ting closer and closer together, as if they were somehow attracted to each other.
The curvature of the Earth causes this effect. In a similar way, what we are used to
thinking of as the gravitational attraction between two masses is, in Einstein’s view,
two masses curving space—time and as a result moving toward each other, much
like two bowling balls on a mattress rolling together.

One prediction of the general theory of relativity is that a light ray passing
near the Sun should be deflected into the curved space—time created by the Sun’s
mass. This prediction was confirmed when astronomers detected the bending of
starlight near the Sun during a total solar eclipse that occurred shortly after World
War I (Fig. 39.23). When this discovery was announced, Einstein became an inter-
national celebrity.

If the concentration of mass becomes very great, as is believed to occur when a
large star exhausts its nuclear fuel and collapses to a very small volume, a black
hole may form. Here, the curvature of space—time is so extreme that, within a cer-
tain distance from the center of the black hole, all matter and light become
trapped.

SUMMARY
The two basic postulates of the special theory of relativity are

e The laws of physics must be the same in all inertial reference frames.

¢ The speed of light in vacuum has the same value, ¢ = 3.00 X 108 m/s, in all in-
ertial frames, regardless of the velocity of the observer or the velocity of the
source emitting the light.

Three consequences of the special theory of relativity are

¢ Events that are simultaneous for one observer are not simultaneous for another
observer who is in motion relative to the first.

¢ Clocks in motion relative to an observer appear to be slowed down by a factor
y = (1 — v?/¢?)"1/2 This phenomenon is known as time dilation.

e The length of objects in motion appears to be contracted in the direction of
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motion by a factor 1/y = (1 — v%/¢*)1/2, This phenomenon is known as length

contraction.

To satisfy the postulates of special relativity, the Galilean transformation equa-
tions must be replaced by the Lorentz transformation equations:

x' = y(x — vt)

y =y
2 =2z (39.11)
i)

Y 2 X

where y = (1 — v2/¢2) V2,
The relativistic form of the velocity transformation equation is

Uy — U
w, = —— (39.16)
|
62

where u, is the speed of an object as measured in the S frame and u} is its speed

measured in the S’ frame.

The relativistic expression for the linear momentum of a particle moving

with a velocity u is

p=———=ymu (39.19)

The relativistic expression for the kinetic energy of a particle is

QUESTIONS

1.

What two speed measurements do two observers in rela-
tive motion always agree on?

. A spaceship in the shape of a sphere moves past an ob-

server on the Earth with a speed 0.5¢. What shape does
the observer see as the spaceship moves past?

. An astronaut moves away from the Earth at a speed close

to the speed of light. If an observer on Earth measures
the astronaut’s dimensions and pulse rate, what changes
(if any) would the observer measure? Would the astro-
naut measure any changes about himself?

. Two identical clocks are synchronized. One is then put in

orbit directed eastward around the Earth while the other
remains on Earth. Which clock runs slower? When the
moving clock returns to Earth, are the two still synchro-
nized?

. Two lasers situated on a moving spacecraft are triggered

simultaneously. An observer on the spacecraft claims to
see the pulses of light simultaneously. What condition is
necessary so that a second observer agrees?

. When we say that a moving clock runs more slowly than a

stationary one, does this imply that there is something
physically unusual about the moving clock?

List some ways our day-to-day lives would change if the
speed of light were only 50 m/s.

Give a physical argument that shows that it is impossible
to accelerate an object of mass m to the speed of light,
even if it has a continuous force acting on it.

9. Itis said that Einstein, in his teenage years, asked the
question, “What would I see in a mirror if I carried it in
my hands and ran at the speed of light?” How would you
answer this question?

10. Some distant star-like objects, called quasars, are receding
from us at half the speed of light (or greater). What is the
speed of the light we receive from these quasars?

11. How is it possible that photons of light, which have zero
mass, have momentum?

12. With regard to reference frames, how does general rela-
tivity differ from special relativity?

13. Describe how the results of Example 39.7 would change
if, instead of fast spaceships, two ordinary cars were ap-
proaching each other at highway speeds.

14. Two objects are identical except that one is hotter than
the other. Compare how they respond to identical forces.
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Problems 1283

a = Interactive Physics

Section 39.1 The Principle of Galilean Relativity

1.

A 2 000-kg car moving at 20.0 m/s collides and locks to-
gether with a 1 500-kg car at rest at a stop sign. Show
that momentum is conserved in a reference frame mov-
ing at 10.0 m/s in the direction of the moving car.

. A ball is thrown at 20.0 m/s inside a boxcar moving

along the tracks at 40.0 m/s. What is the speed of the
ball relative to the ground if the ball is thrown (a) for-
ward? (b) backward? (c) out the side door?

In a laboratory frame of reference, an observer notes

that Newton’s second law is valid. Show that it is also
valid for an observer moving at a constant speed, small
compared with the speed of light, relative to the labora-
tory frame.

. Show that Newton’s second law is not valid in a refer-

ence frame moving past the laboratory frame of Prob-
lem 3 with a constant acceleration.

Section 39.2 The Michelson—Morley Experiment

Section 39.3 Einstein's Principle of Relativity

Section 39.4 Consequences of the Special
Theory of Relativity

5.

6.

7.

How fast must a meter stick be moving if its length is ob-
served to shrink to 0.500 m?

At what speed does a clock have to move if it is to be
seen to run at a rate that is one-half the rate of a clock
at rest?

An astronaut is traveling in a space vehicle that has a
speed of 0.500¢ relative to the Earth. The astronaut
measures his pulse rate at 75.0 beats per minute. Signals
generated by the astronaut’s pulse are radioed to Earth
when the vehicle is moving in a direction perpendicular
to a line that connects the vehicle with an observer on
the Earth. What pulse rate does the Earth observer mea-
sure? What would be the pulse rate if the speed of the
space vehicle were increased to 0.990¢?

. The proper length of one spaceship is three times that

of another. The two spaceships are traveling in the same
direction and, while both are passing overhead, an
Earth observer measures the two spaceships to have the
same length. If the slower spaceship is moving with a
speed of 0.350¢, determine the speed of the faster
spaceship.

An atomic clock moves at 1 000 km/h for 1 h as mea-

10.

sured by an identical clock on Earth. How many
nanoseconds slow will the moving clock be at the end of
the 1-h interval?

If astronauts could travel at v = 0.950¢, we on Earth
would say it takes (4.20/0.950) = 4.42 yr to reach Alpha

Centauri, 4.20 ly away. The astronauts disagree. (a) How
much time passes on the astronauts’ clocks? (b) What
distance to Alpha Centauri do the astronauts measure?

WeB A spaceship with a proper length of 300 m takes

12.

13.

14.

15.

16.

17.

18.

0.750 us to pass an Earth observer. Determine the speed
of this spaceship as measured by the Earth observer.

A spaceship of proper length L, takes time { to pass an
Earth observer. Determine the speed of this spaceship
as measured by the Earth observer.

A muon formed high in the Earth’s atmosphere travels
at speed v = 0.990¢ for a distance of 4.60 km before it
decays into an electron, a neutrino, and an antineutrino
(u~ —e” + v+ v). (a) Howlong does the muon live,
as measured in its reference frame? (b) How far does
the muon travel, as measured in its frame?

Review Problem. In 1962, when Mercury astronaut
Scott Carpenter orbited the Earth 22 times, the press
stated that for each orbit he aged 2 millionths of a sec-
ond less than he would have had he remained on Earth.
(a) Assuming that he was 160 km above the Earth in a
circular orbit, determine the time difference between
someone on Earth and the orbiting astronaut for the

22 orbits. You will need to use the approximation

V1 — x=1 — x/2 for small x. (b) Did the press report
accurate information? Explain.

The pion has an average lifetime of 26.0 ns when at
rest. In order for it to travel 10.0 m, how fast must it
move?

For what value of vdoes y = 1.01? Observe that for
speeds less than this value, time dilation and length
contraction are less-than-one-percent effects.

A friend passes by you in a spaceship traveling at a high
speed. He tells you that his ship is 20.0 m long and that
the identically constructed ship you are sitting in is

19.0 m long. According to your observations, (a) how
long is your ship, (b) how long is your friend’s ship, and
(c) what is the speed of your friend’s ship?

An interstellar space probe is launched from Earth. Af-
ter a brief period of acceleration it moves with a con-
stant velocity, 70.0% of the speed of light. Its nuclear-
powered batteries supply the energy to keep its data
transmitter active continuously. The batteries have a
lifetime of 15.0 yr as measured in a rest frame. (a) How
long do the batteries on the space probe last as mea-
sured by Mission Control on Earth? (b) How far is the
probe from Earth when its batteries fail, as measured by
Mission Control? (c) How far is the probe from Earth
when its batteries fail, as measured by its built-in trip
odometer? (d) For what total time after launch are data
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received from the probe by Mission Control? Note that
radio waves travel at the speed of light and fill the space
between the probe and Earth at the time of battery fail-
ure.

. Review Problem. An alien civilization occupies a
brown dwarf, nearly stationary relative to the Sun, sev-
eral lightyears away. The extraterrestrials have come to
love original broadcasts of The Ed Sullivan Show, on our
television channel 2, at carrier frequency 57.0 MHz.
Their line of sight to us is in the plane of the Earth’s or-
bit. Find the difference between the highest and lowest
frequencies they receive due to the Earth’s orbital mo-
tion around the Sun.

. Police radar detects the speed of a car (Fig. P39.20) as
follows: Microwaves of a precisely known frequency are
broadcast toward the car. The moving car reflects the
microwaves with a Doppler shift. The reflected waves
are received and combined with an attenuated version
of the transmitted wave. Beats occur between the two
microwave signals. The beat frequency is measured.

(a) For an electromagnetic wave reflected back to its
source from a mirror approaching at speed v, show that
the reflected wave has frequency

_ c+ v
f fsource c— v
where fource is the source frequency. (b) When v is
much less than ¢, the beat frequency is much less than
the transmitted frequency. In this case, use the approxi-
mation [+ fiurce = 2fsource and show that the beat fre-
quency can be written as f;, = 2v/A. (c) What beat fre-

Figure P39.20 (Trent Steffler/David R. Frazier Photolibrary)

quency is measured for a car speed of 30.0 m/s if the
microwaves have frequency 10.0 GHz? (d) If the beat
frequency measurement is accurate to *+ 5 Hz, how ac-
curate is the velocity measurement?

. The red shift. A light source recedes from an observer

with a speed voypce » Which is small compared with ¢.
(a) Show that the fractional shift in the measured wave-
length is given by the approximate expression

A)\ ~ vsource
A ¢

This phenomenon is known as the red shift because the
visible light is shifted toward the red. (b) Spectroscopic
measurements of lightat A = 397 nm coming from a
galaxy in Ursa Major reveal a red shift of 20.0 nm. What
is the recessional speed of the galaxy?

Section 39.5 The Lorentz Transformation Equations
22. A spaceship travels at 0.750¢ relative to Earth. If the

spaceship fires a small rocket in the forward direction,
how fast (relative to the ship) must it be fired for it to
travel at 0.950¢ relative to Earth?

wes Two jets of material from the center of a radio galaxy fly

away in opposite directions. Both jets move at 0.750¢ rel-
ative to the galaxy. Determine the speed of one jet rela-
tive to that of the other.

. A moving rod is observed to have a length of 2.00 m, and

to be oriented at an angle of 30.0° with respect to the di-
rection of motion (Fig. P39.24). The rod has a speed of
0.995¢. (a) What is the proper length of the rod? (b)
What is the orientation angle in the proper frame?

H\HH} Direction of motion Figure P39.24

. A Klingon space ship moves away from the Earth at a

speed of 0.800¢ (Fig. P39.25). The starship Enterprise
pursues at a speed of 0.900¢ relative to the Earth. Ob-
servers on Earth see the Enterprise overtaking the Klin-
gon ship at a relative speed of 0.100¢. With what speed
is the Enterprise overtaking the Klingon ship as seen by
the crew of the Enterprise?

S S’
v=0.800¢

Figure P39.25



26. A red light flashes at position xz = 3.00 m and time
tg = 1.00 X 1079 s, and a blue light flashes at
xg=5.00mand tz = 9.00 X 1072 s (all values are mea-
sured in the S reference frame). Reference frame S’ has
its origin at the same pointas Sat ¢ = ¢’ = 0; frame S’
moves constantly to the right. Both flashes are observed
to occur at the same place in S'. (a) Find the relative ve-
locity between S and S'. (b) Find the location of the two
flashes in frame S’. (c) At what time does the red flash
occur in the S’ frame?

Section 39.6 Relativistic Linear Momentum and the
Relativistic Form of Newton's Laws

27. Calculate the momentum of an electron moving with a
speed of (a) 0.010 Oc, (b) 0.500¢, (c) 0.900¢.

28. The nonrelativistic expression for the momentum of a
particle, p = mu, can be used if u << ¢. For what speed
does the use of this formula yield an error in the mo-
mentum of (a) 1.00 percent and (b) 10.0 percent?

29. A golf ball travels with a speed of 90.0 m/s. By what frac-
tion does its relativistic momentum p differ from its clas-
sical value mu? That is, find the ratio (p — mu)/mu.

30. Show that the speed of an object having momentum p
and mass m is

4

N1 + (me/p)?

wes An unstable particle at rest breaks into two fragments of
unequal mass. The mass of the lighter fragment is

2.50 X 10728 kg, and that of the heavier fragment is
1.67 X 10727 kg. If the lighter fragment has a speed of
0.893¢ after the breakup, what is the speed of the heav-
ier fragment?

u=

Section 39.7 Relativistic Energy

32. Determine the energy required to accelerate an elec-
tron (a) from 0.500¢ to 0.900¢ and (b) from 0.900¢ to
0.990¢.

33.] Find the momentum of a proton in MeV/¢ units if its
total energy is twice its rest energy.

34. Show that, for any object moving at less than one-tenth
the speed of light, the relativistic kinetic energy agrees
with the result of the classical equation K = mu2/2 to
within less than 1%. Thus, for most purposes, the classi-
cal equation is good enough to describe these objects,
whose motion we call nonrelativistic.

WeB A proton moves at 0.950¢. Calculate its (a) rest energy,
(b) total energy, and (c) kinetic energy.

36. An electron has a kinetic energy five times greater than
its rest energy. Find (a) its total energy and (b) its
speed.

37. A cube of steel has a volume of 1.00 cm® and a mass of
8.00 g when at rest on the Earth. If this cube is now
given a speed u = 0.900¢, what is its density as mea-
sured by a stationary observer? Note that relativistic
density is Eg/c2V.

Problems 1285

38. An unstable particle with a mass of 3.34 X 10727 kg is
initially at rest. The particle decays into two fragments
that fly off with velocities of 0.987¢ and — 0.868¢. Find
the masses of the fragments. (Hint: Conserve both
mass—energy and momentum.)

Show that the energy—momentum relationship
E? = p?c? + (mc?)? follows from the expressions
E = ymc?and p = ymu.

40. A proton in a high-energy accelerator is given a kinetic
energy of 50.0 GeV. Determine (a) its momentum and
(b) its speed.

41. In a typical color television picture tube, the electrons
are accelerated through a potential difference of
25 000 V. (a) What speed do the electrons have when
they strike the screen? (b) What is their kinetic energy
in joules?

42. Electrons are accelerated to an energy of 20.0 GeV in
the 3.00-km-long Stanford Linear Accelerator. (a) What
is the vy factor for the electrons? (b) What is their
speed? (c¢) How long does the accelerator appear to
them?

A pion at rest (m, = 270m,) decays to a muon
(m, = 206m,) and an antineutrino (my = 0). The reac-
tion is written 7w~ — u~ + v. Find the kinetic energy of
the muon and the antineutrino in electron volts. ( Hint:
Relativistic momentum is conserved.)

Section 39.8 Equivalence of Mass and Energy

44. Make an order-of-magnitude estimate of the ratio of
mass increase to the original mass of a flag as you run it
up a flagpole. In your solution explain what quantities
you take as data and the values you estimate or measure
for them.

45. When 1.00 g of hydrogen combines with 8.00 g of oxy-
gen, 9.00 g of water is formed. During this chemical re-
action, 2.86 X 10° J of energy is released. How much
mass do the constituents of this reaction lose? Is the loss
of mass likely to be detectable?

46. A spaceship of mass 1.00 X 10° kg is to be accelerated
to 0.600¢. (a) How much energy does this require?

(b) How many kilograms of matter would it take to pro-
vide this much energy?

47. In a nuclear power plant the fuel rods last 3 yr before
they are replaced. If a plant with rated thermal power
1.00 GW operates at 80.0% capacity for the 3 yr, what is
the loss of mass of the fuel?

48. A 57Fe nucleus at rest emits a 14.0-keV photon. Use the
conservation of energy and momentum to deduce the
kinetic energy of the recoiling nucleus in electron volts.
(Use Mc? = 8.60 X 107 for the final state of the "Fe
nucleus.)

The power output of the Sun is 3.77 X 1026 W. How
much mass is converted to energy in the Sun each sec-
ond?

50. A gamma ray (a high-energy photon of light) can
produce an electron (e ) and a positron (e*) when
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it enters the electric field of a heavy nucleus:

y—> e’ + e”. What minimum +y-ray energy is
required to accomplish this task? (Hint: The masses of
the electron and the positron are equal.)

Section 39.9 Relativity and Electromagnetism

51.

As measured by observers in a reference frame S, a par-
ticle having charge ¢ moves with velocity v in a magnetic
field B and an electric field E. The resulting force on
the particle is then measured to be F = ¢(E + v X B).
Another observer moves along with the charged particle
and also measures its charge to be ¢ but measures the
electric field to be E’. If both observers are to measure
the same force F, show that E' = E + v X B.

ADDITIONAL PROBLEMS

52. An electron has a speed of 0.750¢. Find the speed of a

proton that has (a) the same kinetic energy as the elec-
tron; (b) the same momentum as the electron.

wWeB The cosmic rays of highest energy are protons, which

54.

have kinetic energy on the order of 10'* MeV. (a) How
long would it take a proton of this energy to travel
across the Milky Way galaxy, having a diameter of
~10° ly, as measured in the proton’s frame? (b) From
the point of view of the proton, how many kilometers
across is the galaxy?

A spaceship moves away from the Earth at 0.500¢ and
fires a shuttle craft in the forward direction at 0.500¢
relative to the ship. The pilot of the shuttle craft
launches a probe at forward speed 0.500¢ relative to the
shuttle craft. Determine (a) the speed of the shuttle
craft relative to the Earth and (b) the speed of the
probe relative to the Earth.

55.| The net nuclear fusion reaction inside the Sun can be

56.

57.

written as 4'H — “He + AE. If the rest energy of each
hydrogen atom is 938.78 MeV and the rest energy of the
helium-4 atom is 3 728.4 MeV, what is the percentage of
the starting mass that is released as energy?

An astronaut wishes to visit the Andromeda galaxy

(2.00 million lightyears away), making a one-way trip
that will take 30.0 yr in the spaceship’s frame of refer-
ence. If his speed is constant, how fast must he travel
relative to the Earth?

An alien spaceship traveling at 0.600¢ toward the Earth
launches a landing craft with an advance guard of pur-
chasing agents. The lander travels in the same direction
with a velocity 0.800¢ relative to the spaceship. As ob-
served on the Earth, the spaceship is 0.200 ly from the
Earth when the lander is launched. (a) With what veloc-
ity is the lander observed to be approaching by ob-
servers on the Earth? (b) What is the distance to the
Earth at the time of lander launch, as observed by the
aliens? (c) How long does it take the lander to reach
the Earth as observed by the aliens on the mother ship?
(d) If the lander has a mass of 4.00 X 10° kg, what is its

58.

kinetic energy as observed in the Earth reference
frame?

A physics professor on the Earth gives an exam to her
students, who are on a rocket ship traveling at speed v
relative to the Earth. The moment the ship passes the
professor, she signals the start of the exam. She wishes
her students to have time 7 (rocket time) to complete
the exam. Show that she should wait a time (Earth

time) of
1 —_ .
T= TO'\/iv/ ‘
1+ v/

before sending a light signal telling them to stop. (Hint:
Remember that it takes some time for the second light
signal to travel from the professor to the students.)

Spaceship I, which contains students taking a physics

60.

exam, approaches the Earth with a speed of 0.600¢ (rel-
ative to the Earth), while spaceship II, which contains
professors proctoring the exam, moves at 0.280¢ (rela-
tive to the Earth) directly toward the students. If the
professors stop the exam after 50.0 min have passed on
their clock, how long does the exam last as measured by
(a) the students? (b) an observer on the Earth?

Energy reaches the upper atmosphere of the Earth
from the Sun at the rate of 1.79 X 107 W. If all of this
energy were absorbed by the Earth and not re-emitted,
how much would the mass of the Earth increase in 1 yr?

A supertrain (proper length, 100 m) travels at a speed

62.

of 0.950¢ as it passes through a tunnel (proper length,
50.0 m). As seen by a trackside observer, is the train
ever completely within the tunnel? If so, with how much
space to spare?

Imagine that the entire Sun collapses to a sphere of ra-
dius R, such that the work required to remove a small
mass m from the surface would be equal to its rest en-
ergy mc?. This radius is called the gravitational radius for
the Sun. Find R,. (Itis believed that the ultimate fate of
very massive stars is to collapse beyond their gravita-
tional radii into black holes.)

A charged particle moves along a straight line in a uni-

64.

form electric field E with a speed of . If the motion
and the electric field are both in the x direction,

(a) show that the acceleration of the charge ¢ in the x
direction is given by

d E 2\3/2
a:J:L< _L>

dt m 2

(b) Discuss the significance of the dependence of the
acceleration on the speed. (c) If the particle starts from
restat x = 0 at ¢ = 0, how would you proceed to find
the speed of the particle and its position after a time ¢
has elapsed?

(a) Show that the Doppler shift AX in the wavelength of
light is described by the expression

AX c— v
R
A c+ v




65.

66.

67.

where A is the source wavelength and v is the speed
of relative approach between source and observer.

(b) How fast would a motorist have to be going for a
red light to appear green? Take 650 nm as a typical
wavelength for red light, and one of 550 nm as typical
for green.

A rocket moves toward a mirror at 0.800¢ relative to the
reference frame S in Figure P39.65. The mirror is sta-
tionary relative to S. A light pulse emitted by the rocket
travels toward the mirror and is reflected back to the
rocket. The front of the rocket is 1.80 X 10'2 m from
the mirror (as measured by observers in S) at the mo-
ment the light pulse leaves the rocket. What is the total
travel time of the pulse as measured by observers in

(a) the S frame and (b) the front of the rocket?

Mirror

v=0.800¢

Figure P39.65 Problems 65 and 66.

An observer in a rocket moves toward a mirror at speed
vrelative to the reference frame labeled by S in Figure
P39.65. The mirror is stationary with respect to S. A
light pulse emitted by the rocket travels toward the mir-
ror and is reflected back to the rocket. The front of the
rocket is a distance d from the mirror (as measured by
observers in S) at the moment the light pulse leaves the
rocket. What is the total travel time of the pulse as mea-
sured by observers in (a) the S frame and (b) the front
of the rocket?

Ted and Mary are playing a game of catch in frame S',
which is moving at 0.600¢, while Jim in frame S watches
the action (Fig. P39.67). Ted throws the ball to Mary at
0.800¢ (according to Ted) and their separation (mea-
sured in §') is 1.80 X 10'2 m. (a) According to Mary,

7/

S’
v=10.600¢ e ,
— L e——1.80%x 10" m ——~
// //
L7 0.800¢ e
7 7
v )%
s // i Lo X
e Mary ! Ted
//
e
7
2 > X
Jim
Figure P39.67

68.

69.

70.

71.

QO 72

73.

Problems 1287

how fast is the ball moving? (b) According to Mary, how
long does it take the ball to reach her? (c) According to
Jim, how far apart are Ted and Mary, and how fast is the
ball moving? (d) According to Jim, how long does it
take the ball to reach Mary?

A rod of length L, moving with a speed v along the hori-
zontal direction makes an angle 6 with respect to the x’
axis. (a) Show that the length of the rod as measured by
a stationary observer is L = Ly[1 — (v%/¢?) cos® 6,]'/2.
(b) Show that the angle that the rod makes with the x
axis is given by tan § = vy tan 6. These results show that
the rod is both contracted and rotated. (Take the lower
end of the rod to be at the origin of the primed coordi-
nate system.)

Consider two inertial reference frames S and S’, where
S’ is moving to the right with a constant speed of 0.600¢
as measured by an observer in S. A stick of proper
length 1.00 m moves to the left toward the origins of
both S and S’, and the length of the stick is 50.0 cm as
measured by an observer in S’. (a) Determine the speed
of the stick as measured by observers in S and S'.

(b) What is the length of the stick as measured by an
observer in S?

Suppose our Sun is about to explode. In an effort to es-
cape, we depart in a spaceship at v = 0.800¢ and head
toward the star Tau Ceti, 12.0 ly away. When we reach
the midpoint of our journey from the Earth, we see our
Sun explode and, unfortunately, at the same instant we
see Tau Ceti explode as well. (a) In the spaceship’s
frame of reference, should we conclude that the two ex-
plosions occurred simultaneously? If not, which oc-
curred first? (b) In a frame of reference in which the
Sun and Tau Ceti are at rest, did they explode simulta-
neously? If not, which exploded first?

The light emitted by a galaxy shows a continuous distrib-
ution of wavelengths because the galaxy is composed of
billions of different stars and other thermal emitters.
Nevertheless, some narrow gaps occur in the continuous
spectrum where light has been absorbed by cooler gases
in the outer photospheres of normal stars. In particular,
ionized calcium atoms at rest produce strong absorption
at a wavelength of 394 nm. For a galaxy in the constella-
tion Hydra, 2 billion lightyears away, this absorption line
is shifted to 475 nm. How fast is the galaxy moving away
from the Earth? (Note: The assumption that the reces-
sion speed is small compared with ¢, as made in Problem
21, is not a good approximation here.)

Prepare a graph of the relativistic kinetic energy and the
classical kinetic energy, both as a function of speed, for
an object with a mass of your choice. At what speed does
the classical kinetic energy underestimate the relativistic
value by 1 percent? By 5 percent? By 50 percent?

The total volume of water in the oceans is approximately
1.40 X 109 km?®. The density of sea water is

1 030 kg/m?, and the specific heat of the water is
4186 ]/ (kg °C). Find the increase in mass of the oceans
produced by an increase in temperature of 10.0°C.
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CHAPTER 39 Relativity

ANSWERS TO QUICK QUIZZES

39.1

39.2

39.3

394

39.5

They both are because they can report only what they
see. They agree that the person in the truck throws the
ball up and then catches it a bit later.

It depends on the direction of the throw. Taking the di-
rection in which the train is traveling as the positive x
direction, use the values u; = +90 mi/h and v =

+ 110 mi/h, with u, in Equation 39.2 being the value
you are looking for. If the pitcher throws the ball in the
same direction as the train, a person at rest on the Earth
sees the ball moving at 110 mi/h + 90 mi/h =

200 mi/h. If the pitcher throws in the opposite direc-
tion, the person on the Earth sees the ball moving

in the same direction as the train but at only

110 mi/h — 90 mi/h = 20 mi/h.

Both are correct. Although the two observers reach dif-
ferent conclusions, each is correct in her or his own ref-
erence frame because the concept of simultaneity is not
absolute.

About 2.9 X 108 m/s, because this is the speed at which
v = 5. For every 5 s ticking by on the Mission Control
clock, the Earth-bound observer (with a powerful tele-
scope!) sees the rocket clock ticking off 1 s. The astro-
naut sees her own clock operating at a normal rate. To
her, Mission Control is moving away from her at a speed
of 2.9 X 108 m/s, and she sees the Mission Control clock
as running slow. Strange stuff, this relativity!

If their on-duty time is based on clocks that remain on
the Earth, they will have larger paychecks. Less time will
have passed for the astronauts in their frame of refer-
ence than for their employer back on the Earth.

39.6 By a curved line. This can be seen in the middle of
Speedo’s world-line in Figure 39.14, where he turns
around and begins his trip home.

39.7 The downstairs clock runs more slowly because it is
closer to the Earth and hence experiences a stronger
gravitational field than the upstairs clock does.




