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magnetic field i11 both systems of units: in CGS we have B, = Ha and in SI we 
have B, = pa,. The susceptibility is ,.y = MIB, in CGS and ,y = MIH, = p&f lB ,  
in SI. One tesla = lo4 gauss. 
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Figure 1 Ordered arrangements of electron spins. 



CHAPTER 12: FERROMAGNETISM AND ANTIFERROMACNETISM 

FERROMAGNETIC ORDER 

A ferromagnet has a spontaneous rr~agr~etic moment-a magnetic momcnt 
even in zero applied magnetic field. The existence of a spontaneous moment 
suggests that electron spins and magnetic moments are arranged in a regular 
manner. The order need not be simple: all of the spin arrangements sketched 
in Fig. 1 except the simple antiferromagnet have a spontaneous magnetic 
moment, called the saturation moment. 

Curie Point and the Exchange lntegral 

Consider a paramagnet with a concentration of M ions of spin S. Givcn an 
internal interaction tending to line up the magnetic momcnts parallel to each 
other, we shall have a ferromagnet. Let us postuIate such an interaction and call 
it the exchange field.' The orienting effect of the exchange field is opposed by 
thermal agitation, and at elcvatcd temperatures the spin order is destroyed. 

We treat the exchange field as equivalent to a magnetic field BE. The mag- 
nitude of the exchange field may be as high as 10' gauss (lo3 tesla). \Ve assume 
that BE is proportional to the magnetization M. 

The magnetization is defined as the magnetic moment per unit volume; 
unless otherwise specified it is understood to be the value in thermal cquilih- 
riuni at the temperature T. If domains (regions magnrtizcd in different direc- 
tions) are present, the magnetization refers to the value withn a domain. 

In the mean-field approximation we assume each magnetic atom expe- 
riences a field proportional to the magnetization: 

where A is a constant, independent of temperature. According to (I), each spin 
sees the average magnetization of all the other spins. In truth, it may scc only 
near neighbors, but our sirnplification is good for a first look at the problem. 

The Curie temperature T, is the tempcraturc above which the sponta- 
neous magnetization vanishes; it separates the disordered paramagnetic phase 
at T > T, from the ordcrcd ferromagnetic phase at T < T,. \Ve can find T,. in 
terms of the constant A in (1). 

'Also called the molecular field or the Weiss field, after Pierre \'i'ciss who was the first to 
imagine such a field. The exchangc ficld B E  silnulates a real magnetic field in the expressions for 
the energy -p . RE and the torque p X BE on a rrlag~etic I I I U I D B I ~ ~  p. But BE is not really a 
magnetic field and therefore does not enter into the Maxwell eqnatinns; for example, there is no 
current density j related to BE by curl H = 4wjIc. The magnitude of H E  is typically lo4 larger than 
the average magnetic field of the magnetic dipole> of the ferro~nagnct. 



Consider the paramagnetic phase: an applied field B, will cause a finite 
magnetization and this in turn will cause a finite exchange field BE. If xP is the 
paramagnetic susceptibility, 

The magnetization is equal to a constant susceptibility times a field only if the 
fractional alignment is small: this is where the assumption enters that the spec- 
imen is in the paramagnetic phase. 

The paramagnetic susceptibility (Chapt. 11) is given by the Curie law 
xp = CIT, where C is the Curie constant. Substitute (1) in (2); we find 
MT = C(B, + AM) and 

M C 
x = B ,  = (T-CA) 

The susceptibility (3) has a singularity at T = CA. At this temperature (and 
below) there exists a spontaneous magnetization, because if x is infinite we 
can have a finite M for zero B,. From (3) we have the Curie-Weiss law 

This expression describes fairly well the observed susceptibility variation in 
the paramagnetic region above the Curie point. The reciprocal susceptibility 
of nickel is plotted in Fig. 2. 

350 400 450 500 
Temperature in O C  

Figure 2 Reciprocal of the susceptibility per gram of nickel in the neighborhood of the Curie 
temperature (358°C). The density is p. The dashed line is a linear extrapolation from high 
temperatures. (After P. Weiss and R. Forrer.) 
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From (4) and the definition (11.22) of the Curie constant C we may deter- 
mine the value of the mean field constant h in (1): 

For iron T, = 1000 K, g = 2, and S = 1; from (5) wc have h = 5000. With 
hf, = 1700 we have B E  = AM = (5000)(1700) = lo7 CJ = lo3 T. The exchange 
field in iron is very much stronger than the real magnetic field due to the other 
magnetic ions in thc crystal: a magnetic ion produces a field = ~ , / a ~  or about 
lo3 G = 0.1 T at a neighboring lattice point. 

The exchange field gives an approxirrlate representation of the quantum- 
mechanical exchange interaction. On certain assumptions it is shown in texts 
on quantum theory that the energy of interaction of atoms i, j bcaring electron 
spins Si, S, coritai~ls a term 

U = -2JS,. S1 , (6) 

where] is the exchange integral and is rclated to the overlap of the charge dis- 
tributions of the atolns i, j .  Equation (6) is called the Heisenberg model. 

The charge distribution of a system of two spins depends on whether the 
spins are parallel or antiparallel2 for the Pauli principle excludes two electrons 
of the same spin from being at the same place at the same time. It does not ex- 
clude two electrons of opposite spin. Thus the electrostatic energy of a system 
will depend on the relative orientation of the spins: the difference in energy 
defines the exchange energy. 

The exchange energy of two electrons may bc writtcn in the form -2Jsl . s, 
as in (6), just as if there were a direct coiipling hehveen the directions of the 
two spins. For many purposes in ferromagnetism it is a good approximation to 

- - 

trcat the spins as classical angular momentum vectors. 
We can establish an approximate connection between the exchange inte- 

gral J and the Curie temperature T,. Suppose that the atom under considera- 
tion has z nearest neighbors, each connected with the central atom by the 
interaction 1. For more distant neighbors we take J as zero. The mean field 
theorv result is 

Better statistical approximations give somewhat different results. For 
thc sc. hcc, and fcc structures with S = i, Rushbrooke arid Wood give 

'1itwo spins arc antiparallel, the wavefunctions of the tu-o electrons must be symmetric, as in 
the combination u(r,)o(r,j + u(r,)o(r,). If the two spills arc parallcl, the Pauli principle requires 
that the orbital part of the wavefunction be antisymmetric, as in u(r,)o(r,j - u(r,)v(r,), for here if 
we i ~ ~ t e r c h a ~ ~ g c  thc coordinales r,, r, the wavefunction changes s i p .  If we set the positions equal 
so that r, = r, then the antisymmetric fu11ctio11 vanishes: for parallel spins there is zero probability 
of finding the two electrons at the same position. 



kBT,/z. = 0.28; 0.325; and 0.346, respectively, as compared with 0.500 from (7) 
for all three structures. II iron is represcntcd by the Heisenherg model with 
S = 1, then the obsenrcd Ci~rie temperature corresponds toJ = 11.9 meV 

Temperature Dependence ofthe Saturation Magnetization 

We can also use the mean field approxirrratio~l below the Curie tempera- 
ture to find the m~agnetizatiori as a function of temperature. We proceed as 
before, but instead of the Curie law we use the complete Brillouin expression 
for the magnetization. For spin $ this is A4 = N p  tanh(pB/kBT). 

If we omit thc applied magnetic field and replace B by the molecular field 
BE = AM, then 

M = Np.  tanh(pAA4/kBT) . (8) 

We shall see that solutions of this equation with nonzero M exist in the tem- 
perature range between 0 and T.. 

To solve (8) we write it in terms of the reduced magnetization m = M/Np 
and the reduced temperature t = k B ~ / ~ p 2 A ,  whence 

We then plot the right and left sides of this equation separately as functions of 
m, as in Fig. 3. The intercept of the two curves gives the value of 7 r ~  at the tem- 
perature of interest. The critical temperature is t = 1, or 2:: = ~'p.~Alk,. 

tanhidt)  
fort = 0.5 

furt = 1 

fort = 2 

0 0.2 0.4 0.6 0.8 1.0 1.2 

Figure 3 Graphical solution of Eq. (9) for the reduced magnetization m as a function of tempera- 
ture. The rednced magnetization is defined as m = MlA'p. Thc Icft-hand side of Eq. (9) is plotted 
as a straight line m with unit slope. The right-hand side i s  tanh(m/t) and is plotted vs, rn for three 
dffercnt values of the reduced temperature t = k,T/Np2h= 1771. The three curves correspond to 
the temperatnres 2T,, T,, and 0.5T,. The curve for t = 2 i~~tersccts thc straight line m only at 
m = 0,  as appropriate for the paramagnetic region (there i s  no external applied magnetic field). 
The curve fo r t  = 1 (or T = T,) is tangent to the straight line m at the origin; this temperature 
marks the onset of ferromagnetism. The curve for t  = 0.5 is in the ferromagnetic region and inter- 
sects the straight line m at about m = 0.94%. As t + 0 the intercept moves I I ~  to m = 1, so that 
all magnetic rnolnerrts arc lincd up at absolute zero. 



12 Fewornagnetism and Antiferrornagnetism 

Figure 4 Saturation magnetization of nickel a7 a function of temperature, together with the 
theoretical curvc for S = on the mean field theory Experimental values hy P. Weiss and R. Forrer. 

The curves of 1M versus T obtained in this way reproduce roughly the fea- 
tures of the experimental results, as shown in Fig. 4 for nickel. As T increases, 
the magnetization decreases smoothly to zero at T = T,.  This behavior 
classifies the usual ferromagneti~/~aramagnetic transition as a second-order 
transition. 

The mean-field theory does not give a good description of the variation of 
M at low temperatures. For T + T ,  the argument of tanh in (9) is large, and 

tanh 5 - 1 - %-g. 

To lowest order the magnetization deviation AM = M(0)  - M(T)  is 

The argument of the exponential is equal to -2TJT. For T = 0.1TC we have 
AMINp 4 x 

The experimental results show a much more rapid dependence of AM on 
temperature at low temperatures. At T = 0.1TC we have AM/A4 2 X loF3 
from the data of Fig. 5. The leading term in AM is observed from experiment 
to have the form 

where the constant A has the experimental value (7.5 t 0 .2 )  X deg3I2 for 
Ni and (3.4 ? 0 .2 )  X 10-%eg-"~ for Fe. The result ( 1 1 )  finds a natural expla- 
nation in terms of spin wave theory. 
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Figure 5 Decrease in magnetization of nickel with trmperatnre. after Arple,  Charap. 
In the plot AM = 0 at 4.2 K .  

Saturation Magnetization at Absolute Zero 

Table 1 gives representative vali~es of the saturation magnetization M,,  the 
ferromagnetic Curie temperature, and the effective magneton number de- 
fined by M,(O) = n,Np,, where N is the number of formula units per unit 
volume. Do not confuse n, with the paramagnetic effective magneton r~urrlber 
p defined by (11.23). 

Tahle 1 Ferromagnetic cryslals 

Magnetization M,, in gauss 
Curie 

Room temperatllre, 

Fe 1707 1740 2.22 1043 
Co 1400 1446 1.72 1388 
Ni 385 510 0.606 627 
Gd - 2060 7.fi3 292 
Dy - 2920 10.2 88 
MnAs 670 870 3.4 318 
MnBi 620 680 3.52 630 
MnSh 710 - 3.5 587 
CrO, 515 - 2.03 386 
MnOFe,O, 410 - 5.0 573 
FeOFe,O,, 480 - 4.1 858 
NiOFe,O, 270 - 2.4 (858) 
CuOFc,O, 135 - 1.3 728 
MgOFr,O, 1 1 0  - 1.1 713 
EuO - 1920 6.8 69 
Y:3FesOls 130 200 5.0 560 
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Observed values of n, are often nonintegral. There are several possible 
causes. One is the spin-orbit interaction which adds or subtracts some orbital 
magnetic moment. Another cause in ferromagnetic metals is the conduction 
electron magnetization induced locally about a paramagnetic ion core. A third 
cause is suggested by the drawing in Fig. 1 of the spin arrangement in a ferri- 
magnet: if there is one atom of spin projection -S for every two atoms +S, the 
average spin is $9. 

Are there in fact any simple ferromagnetic insulators, with all ionic spins 
parallel in the ground state? The few simple ferromagnets known at present 
include CrBr,, EuO, and EuS. 

A band or itinerant electron model accounts for the ferromagnetism of 
the transition metals Fe, Co, Ni. The approach is indicated in Figs. 6 and 7. 
The relationship of 4s and 3d bands is shown in Fig. 6 for copper, which is 
not ferromagnetic. If we remove one electron from copper, we obtain nickel 
which has the possibility of a hole in the 3d band. In the band structure 
of nickel shown in Fig. 7a for T > T,  we have taken 2 X 0.27 = 0.54 of an 
electron away from the 3d band and 0.46 away from the 4s band, as compared 
with copper. 

The band structure of nickel at absolute zero is shown in Fig. 7b. Nickel is 
ferromagnetic, and at absolute zero nB = 0.60 Bohr magnetons per atom. After 
allowance for the magnetic moment contribution of orbital electronic motion, 

D 

nickel has an excess of 0.54 electron per atom having spin preferentially ori- 
ented in one direction. The exchange enhancement of the susceptibility of 
metals was the subject of Problem 11.6. 

4s 3d 
Filled-10 electrons 

(4 

3dt 3d.1 
5 electrons 5 electrons 

(b)  

Figure 6a Schematic relationship of 4s and 3d hands in metallic copper. The 3d band holds 10 
electrons per atom and is filled. The 4s hand can hold two electrons per atom; it is shown half- 
filled, as copper has one valence electron outside the filled 3d shell. 

Figure 6b The filled 3d band of copper shown as two separate sub-hands of opposite electron 
spin orientation, each band holding five electrons. With both sub-hands filled as shown, the net 
spin (and hence the net magnetization) of the d hand is zero. 



Fermi Fermi - - 
surface surface 
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Figure 7a Band relationships in nickel above the Curie temperature. The net magnetic moment 
is zero, as there are equal numbers of holes in the 3d and 3d f bands. 

Figure 7b Schematic relationship of bands in nickel at absolute zero. The energies of the 3d f 
and 3d L sub-bands are separated by an exchange interaction. The 3d T band is filled; the 3d .1 
band contains 4.46 electrons and 0.54 hole. The 4s band is usually thought to contain approxi- 
mately equal numbers of electrons in both spin directions, and so we have not troubled to divide it 
into sub-bands. The net magnetic moment of 0.54 pB per atom arises from the excess population 
of the 3d f band over the 3d .1 band. It is often convenient to speak of the magnetization as arising 
from the 0.54 hole in the 3d .1 band. 

MAGNONS 

A magnon is a quantized spin wave. We use a classical argument, just as we 
did for phonons, to find the magnon dispersion relation for w versus k. We 
then quantize the magnon energy and interpret the quantization in terms of 
spin reversal. 

The ground state of a simple ferromagnet has all spins parallel, as in Fig. 8a. 
Consider N spins each of magnitude S on a line or a ring, with nearest-neighbor 
spins coupled by the Heisenberg interaction: 

t t t t t t  t t l t t t  88V88V 
+ o r  + a t +  + a r  

Figure 8 (a) Classical picture of the ground state of a simple ferromagnet: all spins are parallel. 
(b) A possible excitation: one spin is reversed. (c) The low-lying elementary excitations are spin 
waves. The ends of the spin vectors precess on the surfaces of cones, with successive spins ad- 
vanced in phase by a constant angle. 



12 Ferromagnetism and Antijerromagnetism 

Figurc 9 A spin wave on a line of spins. (a) The spins viewed in perspective. (b) Spins viewed 
from ahow, showing U I I ~  wavclcngth. The wave is drawn through the ends of the spin vectors. 

Here J is the exchange integral and hSp is the angular ~no~nentum of the 
spin at sitc p .  If we treat the spins Sp as classical vectors, then in the ground 
statc Sp . Spt = SP and the exchange energy of the system is Uo = -2NJS2. 

What is the energy of the first excited state? Consider an excited state with 
one particular spin reversed, as in Fig. 8b. We see from ( 1 2 )  that this increases 
the energy by ~JS', so that U 1  = Uo + 8]s2. Rut we can form an excitation of 
mudl lower energy- i1 we let all the spins share the reversal, as in Fig. 8c. The 
elementary excitations of a spin system have a wavelike form and are called 
maglions (Fig. 9). These are analogous to lattice vibrations or phonons. Spin 
waves are oscillations in the relative orientations of spins on a lattice; lattice vi- 
brations are oscillations in the relative positions of atoms on a lattice. 

We now give a classical derivation of the magnon dispersion relation. The 
terms in ( 1 2 )  which involve the pth spin are 

117e write magnetic mornent at site p as /+ = -gpBSp Then (13) becomes 

which is of the form -pp . Bp, where the effective magnetic field or exchange 
field that acts on the pth spin is 

Fro111 ~llechanics the rate of change of the angular momerltu~n fiSp is equal 
to the torquc pp X Bp which acts on the spin: fi dS,ldt = ~ c ,  X B,,, or 

In Cartesian components 

arid si~~lilarly for dSzMt and dS;ldt. These equations involve products of spin 
components and are nonlinear. 



If the amplitude of the cxcitation is small (if S;, S; S), we may obtain an 
approximate set of linear equations by taking all S; = S and by neglecting 
terms in the product of ST and SY which appear in the equation for dSz/dt. The 
linearized equatio~is are 

By analogy with pho~ion yroble~~is  we look for traveling wave solutions of 
(18) of the form 

where u,  a are constants, p is an integer, and a is the lattice constant. On sub- 
stitution into (18) we have 

-iwu = (2JS/fi)(2 - e-lk" - e"") z. = (4]S/fi)(l - cos kak  ; 

-im = -(2]SIfi)(2 - e-ik" - eika)u = -(4JS/&)(l - cos ka)u . 

These equations have a solution for 11 and u if the determinant of the corf- 
ficients is equal to zero: 

(ajs/fi)(l- cos ku) 
~ s f i ) ( l -  cos ,a) io = 0 ,  (21) 

whence 

fro = 4jS(1 - cos ka) . (22) 

This result is plotted in Fig. 10. With this solution we find that o = -iu, corre- 
sponding to circular precession of each spin about the z axis. \Ve see this on 
taking real parts of (20), with v set equal to -iu. Then 

S; = u cos(pka - wt) ; S: = u sin(pka - ot) . 

Equation (22) is the dispersion relation for spin waves in one dimension 
with nearest-neighbor i~iteractions. Precisely the sarrle result is obtained froni 
the quantum-mechanical solution; see QTS, Clrapter 4. At long wavelengtlis 
ka < 1, so that (1 - cos ka) = : ( k ~ ) ~  and 

The frequency is proportional to k2; in the same limit the frequency of a 
phonon is dlrectly proportional to k. 
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Figure 10 Dispersion relation for magnons in 
0- a ferromagnet in one dimension with nearest- 
0 '77 - neighbor interactions. 

k- 

The dispersion relation for a ferromagnetic cubic lattice with nearest- 
neighbor interactions 

where the summation is over the z vectors denoted by 8 which join the central 
atom to its nearest neighbors. For ka < 1, 

for all three cubic lattices, where u is the lattice constant. 
The coefficient of k2 often may be determined accurately by neutron scat- 

tering or by spin wave resonance in thin films, Chapter 13. By neutron scatter- 
ing G. Shirane and coworkers find, in the equation ?io = Dk2, the values 281, 
500, and 364 meV AVor D at 295 K in Fe, Co, and Ni, respectively. 

Quantization of Spin Waues. The quantization of spin waves proceeds as for 
photons and phonons. The energy of a mode of frequency wk with nk magnons 
is given by 

The excitation of a magrlon corresponds to the reversal of one spin i. 



Thermal Excitation of Magnons 

In thermal equilibrium the werage value of the number of magnons ex- 
cited in the niode k is giver1 by the Planck distribution" 

The total nnmhrr of magnons cxcitcd at a tcmpcraturr T is 

where D(w) is the number of magnon modes per unit frequency range. The 
integral is taken over the allowed range of k, which is the first Brillouin zone. 
At sufficiently low temperatures we niay evaluate the integral between 0 arld 

because (n (w) )  + 0 exponentially as w + cc. 

Magnons havc a singlc polarization for each value of k. In three dimen- 
sions the niimher of modes of wavevector less than !i is ( 1 / 2 ~ ) ~ ( 4 ? r k ~ / 3 )  per 
unit volume, whence the nunlber of magnons D(w)dw with frequency in dw at 
w is (1/25~)~(4?rk~)(dk/clw) dw. In the approximation (25) ,  

Thus the density of modes for magnons is 

so that the total number of magnons is, from (28) ,  

The definite integral is found in tables and has the value (0.0587)(44) .  
The ~lurnber N of atorrls per unit volume is Q/u" where Q = 1, 2 , 4  for sc, 

bcc, fcc lattices, respectively. Now (C.nk)/hTS is equal to the fractional change 
of magnctixation AiM/A4(0), whrnce 

3The argument is exactly as lor phonons or photons. The Planck dislribution lollows for any 
problem where the enerby levels are identical mith those of a harmonic oscillator or collection of 
harmonic oscillators. 
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This result is the Bloch T3/' law and has been confirmed experimentally. In 
neutron scattering experiments spin waves have been observed up to tempera- 
tures near the Curie temperature and even above the Curie temperature. 

NEUTRON MAGNETIC SCATTERING 

An x-ray photon sees the spatial distribution of electronic charge, whether 
the charge density is magnetized or unmagnetized. A neutron sees two aspects 
of a crystal: the distribution of nuclei and the distribution of electronic magne- 
tization. The neutron diffraction pattern for iron is sliown in Fig. 11. 

The magnetic moment of the neutron interacts with the magnetic moment 
of the electron. The cross section for the neutron-electron interaction is of the 
same order of magnitude as for the neutron-nuclear interaction. Diffraction of 
neutrons by a magnetic crystal allows the determination of the distribution, 
direction, and order of thc magnetic moments. 

A neutron can he inelastically scattered by the ~nagnetic structure, with 
the creation or annihilation of a magnon (Fig. 12); such events make possible 
thc experimental determination of magnon spectra. If the incident neutron 
has wavevector k,, and is scattered to k; with the creation of a magnon of 
wavevector k, then by corlservation of crystal momentum k, = kk + k + G, 
where G is a reciprocal lattice vector. By conservation of energy 

Scdttering auglc 

Figure 11 Neutron diffraction pattern for iron. (After C. C.. Shidl, E. 0. WuUa~l, and W. C. Koehler.) 



Figure 12 Scattering of a neutron by an ordered 
magnetic structure, with creation of a magnon. 

Figure 13 Magnon energy as a function of the square of the wavevector, for the ferromagnet 
MnPt,. (After R. Antonini and V. J. Minkiewicz.) 

where huk is the energy of the magnon created in the process. The observed 
magnon spectriim for MnPt3 is shown in Fig. 13. 

FERRIMAGNETIC ORDER 

In many ferromagnetic cxystals the saturation magnetization at T = 0 K 
does not correspond to parallel alignment of the magnetic monie~lts of the 
constituent paramagnetic ions, even in crystals for which the individual para- 
magnetic ions have their normal magnetic moments. 

The most familiar example is magnetite, Fe,O, or FeO . Fe,03. From 
Table 11.2 we see that ferric (Fe3+) ions are in a state with spin S = and 
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8Fe3+ 

Figure 14 Spin arrallgc~llcnts in magnetite, FeO . Ye20,, showing how the moments uf the Fc3+ 
ions cancel out, leaving only the moments of the Fez+ ions. 

zero orbital moment. Thus each ion should contribute 5pCLB to the saturation 
moment. The ferrous (Fez+) ions have a spin of 2 and should contribute 4p,, 
apart from any residual orbital ~nornent contribution. Thus the effective num- 
ber of Bohr m a p e t o ~ ~ s  per Fe,O, fornlula unit should be about 2 x 5 + 4 = 14 
if all spins were parallel. 

The observed value (Table 1) is 4.1. The discrepancy is accounted for if 
the ~nolnents of the ~ e ~ +  ions are antiparallel to each other: then the observed 
moment arises only from the Fez+ ion, as in Fig. 14. Neutron diffraction 
results agree with this model. 

A systematic discussion of the consequences of this type of spin order was 
given by L. NBel with reference to an important class of magnetic oxides 
known as ferrites. The usual chemical formnla of a ferrite is MO . Fe,O,, 
where M is a divalent cation, often Zn, Cd, Fe, Xi, Cu, Co, or Mg. The term 
ferrimagnetic was coined originally to describe the ferrite-type ferromag- 
netic spin order sllch as Fig. 14, and by extension the term covers almost any 
compound in which some ions have a rnornent antiparallel to other ions. Many 
fcrrimagnets are poor conductors of electricity, a quality exploited in applica- 
tions such as rf transformer cores. 

The cubic ferrites have the spinel crystal structure shown in Fig. 15. 
There are eight occupied tetrahedral (or A)  sites and 16 occupied octahedral 
(or B) sites in a unit cuhc. The lattice constant is about 8 k. A remarkable fea- 
ture of the spinels is that all exchange integrals JM, J.41.4R, and JBR are negative 
and favor antiparallel alignment of the spins connected by the interaction. Rut 
the AB interaction is the strongest, so that the A spins are parallel to each 
other and the B spins are parallel to each other, just in order that the A spins 
may he antiparallel to the B spins. If] in U = -2JSi . Sj  is positive, we say that 
the exchange integral is ferromagnetic; if J is negative, the exchange integral is 
antiferromagnetic. 



Figure 15 C~ystal structure of the mineral spinel MgAlZ0,; the Mg2+ ions occupy tetrahedral 
sites, each surrounded by four oxygen ions; the A13+ occupy octahedral sites, each surrounded by 
six oxygen ions. This is a normal spinel arrangement: the divalent metal ions occupy the tetrahe- 
dral sites. In the inverse spinel arrangment the tetrahedral sites are occupied by trivalent metal 
ions, while the octahedral sites are occupied half by divalent and half by trivalent metal ions. 

We now prove that three antiferromagnetic interactions can result in ferri- 
magnetism. The mean exchange fields acting on the A and B spin lattices may 
be written 

taking all mean field constants A ,  p, v to be positive. The minus sign then cor- 
responds to an antiparallel interaction. The interaction energy density is 

this is lower when M A  is antiparallel to MB than when M A  is parallel to M B .  
The energy when antiparallel should be compared with zero, because a possi- 
ble solution is MA = MB = 0. Thus when 

the ground state will have MA directed oppositely to M,. (Under certain condi- 
tions there may be noncollinear spin arrays of still lower energy.) 

Curie Temperature and Susceptibility of Ferrimagnets 

We define separate Curie constants C A  and C B  for the ions on the A and B 
sites. For simplicity, let all interactions be zero except for an antiparallel interac- 
tion between the A and B sites: BA = - p M B ;  BB = - p M A ,  where p  is positive. 
The same constant p is involved in both expressions because of the form of (33). 
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We have in the mean field approximation 

where B,  is the applied field. These equations have a nonzero solution for MA 
and M, in zero applied field if 

so that the ferrimagnetic Curie temperature is given by T,  = ~ . ( c ~ C ~ ) ' " .  
We solve (35) for M A  and M, to obtain the susceptibility at T > T,: 

a result more complicated than (4). Experimental values for Fe,O, are plotted 
in Fig. 16. The curvature of the plot of 1/x versus T is a characteristic feature 
of a ferrimagnet. We consider below the antiferromagnetic limit CA = CB. 

Iron Garnets. The iron garnets are cubic ferrimagnetic insulators with the 
general formula MJFe,0,2, where M is a trivalent metal ion and the Fe is the 
trivalent ferric ion (S = %, L = 0). An example is yttrium iron garnet Y3Fe,01,, 
h o w n  as YIG. Here Y'+ is diamagnetic. 

The net magnetization of YIG is due to the resultant of two oppositely 
magnetized lattices of Fe3+ ions. At absolute zero each ferric ion contributes 
25pB to the magnetization, hut in each formula unit the three ~ e ~ +  ions 
on sites denoted as d sites are magnetized in one sense and the two Fe3* ions 
on a sites are magnetized in the opposite sense, giving a resultant of 5pB per 
formula unit in good agreement with the measurements of Geller et al. 

Temperature PC) 

Figure 16 Reciprocal s~isceptihility of magnetite, FeO . Fe,O, 



The mean field at an a site due to the ions on thc d sitcs is R,  = 

-(1.5 x 104)M,,. The observed Curie temperature 5.59 K of YIG is due to the 
a-d interaction. The o11ly rrlagnetic ions in YIG are the ferric ions. Because 
these are in an L = 0 state with a spherical charge distribution, their interac- 
tion with latticc deformations and phonons is weak. As a result YIG is charac- 
terized by very narrow linewidths in fcrromapetic resonance experinlents. 

ANTIFERROMAGNETIC ORDER 

A classical example of magnetic structure deter~nination by rleutroris is 
shown in Fig. 17 for MnO, which has the NaCl structure. At SO K there are 
extra neutron reflections not present at 293 K. Thc rcflcctions at 80 K may be 
classified in terms of a cubic unit cell of lattice constant 8.85 A .  4 t  293 K thc 
reflections correspond to an fcc unit cell of lattice constant 4.43 A. 

But the lattice cor~stant determined by x-ray reflection is 4.43 A at both 
temperatures, 80 K and 293 K. We conclude t2vat the chemical unit cell has the 
4.43 latticc parameter, but that at 80 K the electronic magnetic r~~o~rlerits of 

Figure 17 Neutron diffraction patterns for MnO below, and above the spin-ordering temperature 
of 120 K, after C. 6. Shnll, \\'. A. Strauser. and E. 0. U'ollan. Thc rcflcctio~r indicas arc based on 
an 8.85 A cell at 80 K and on a 4.43 A cell at 293 K. .kt the higher t ~ m p e r a t ~ ~ r e  the bIn2' ions are 
still magnetic, but they are no longer ordered. 
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Figure 18 
determined 

Ordered arrangements of splns of the MnZ+ Ions m manganese 
by neutron d~ffraction The 02+ Ions are not shown 

oxide. MnO, as 

Figure 19 Spin ordering in ferromagnets (J > 0) and antiferromagnets ( J  < 0). 

the ~ n ' +  ions are ordered in some nonferromagnetic arrangement. If the 
ordering were ferromagnetic, the chemical and magnetic cells would give the 
same reflections. 

The spin arrangement shown in Fig. 18 is consistent with the neutron dif- 
fraction results and with magnetic measurements. The spins in a single [ I l l ]  
plane are parallel, but spins in adjacent [ I l l ]  planes are antiparallel. Thus 
MnO is an antiferromagnet, as in Fig. 19. 

In an antiferromagnet the spins are ordered in an antiparallel 
arrangement with zero net moment at temperatures below the ordering or 
NBel temperature (Table 2). The susceptibility of an antiferromagnet is not 
infinite at T = T,, but has a weak cusp, as in Fig. 20. 

An antiferromagnet is a special case of a ferrimagnet for which both sub- 
lattices A and B have equal saturation magnetizations. Thus CA = CB in (37), 
and the NBel temperature in the mean field approximation is given by 



Table 2 Antiferromagnetic crystals 

Transition 
Paramagnetic temperature, Curie-Weiss - e ~ ( 0 )  

Substance ion lattice T,, in K 0, in K TN x(TN) 

MnO 
MnS 
MnTe 
MnF, 
FeF, 
FeC1, 
FeO 
CoC1, 
c o o  
NiC1, 
NiO 
Cr 

fcc 
fcc 
hex. layer 
bc tetr. 
bc tetr. 
hex. layer 
fcc 
hex. layer 
fcc 
hex. layer 
fcc 
bcc 

Paramagnetism Ferromagnetism Antiferrornagnetism 

x =  C x =  - C 
T T-T, 

Curie law Curie-Weiss law 
(T > T,) 

Figure 20 Temperature dependence of the magnetic susceptibility in paramagnets, ferromag- 
nets, and antiferromagnets. Below the NBel temperature of an autiferromagnet the spins have an- 
tiparallel orientations; the susceptibility attains its maximum value at T, where there is a weU- 
defined kink in the curve of x versus T. The transition is also marked by peaks in the heat capacity 
and the thermal expansion coefficient. 

where C refers to a single sublattice. The susceptibility in the paramagnetic 
region T > T,  is obtained from (37): 

The experimental results at T > T,  are of the form 
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Experimental values of BIT, listed in Tablc 2 often differ substantially from 
the value unity expected from (39). Values of BIT,,, of the observed magnitude 
may be obtained when next-nearest-neighbor interactions are provided for, 
and when possible sublatticc arrangements are considered. If a mean field 
constant - E  is i~ltroduccd to describe interactions within a sublattice, the11 
BIT, = ( p  + €) / (p  - 6). 

Susceptibility Below the Nhel Temperature 

Thcre are two situations: with the applied magnetic field perpendicular to 
thc axis of the spins; and with the field parallel to the axis of the spins. At and 
ahove the N6el temperature the s~isceptibility is nearly independent of the di- 
rection of the field relativr to the spin axis. 

For B, perpendicular to the axis of the spins we can calculate the suscepti- 
bility by elementaly considerations. The energy density in the presence of the 
field is, with A4 = = (&I, 

where 2rp is thc angle the spins make with each other (Fig. 21a). The energyis 
a minimum when 

so that 

(CGS) 

In thc parallel orientation (Fig. 21b) the magnetic energy is not changed if 
the spin systenls A and B make equal angles with the field. Thus the suscepti- 
bility at T = 0 K is zero: 

(b)  

Figure 21 Calcl~lation of (a) peycndicular and (b) parallel snsceptibilities at  0 K, in the mean 
field approximation. 



XI 

T, in K 

Figure 22 Magnetic susceptibility of manganese flnoride. MnF,, parallel and perpendicular to 
the tetragonal axis. (After S. Foner.) 

The parallel susceptibility increases smoothly with temperature up to T N .  
Measurements on MnF, are shown in Fig. 22. In very strong fields the spin 
systems will turn discontinuously f r o ~ r ~  the parallel orientation to the perpen- 
dicular orientation where the energy is lower. 

Antiferromagnetic Magnons 

We obtain the dispersion relation of magnons in a one-dimensional anti- 
ferromagnet by making the appropriate substitutions in the treatment 
(16)-(22) of the ferromagnetic line. Let spins with even indices 2p composc 
sublattice A, that with spins up (Sz  = S ) ;  and let spins with odd indices 21, + 1 
compose sublattice B, that with spins down (Sz  = -S) .  

We consider only nearest-neighbor interactions, with ] negative. Then 
(18) written for A becomes, with a careful look at (I:), 

The corresponding equations for a spin on B are 

We form S+ = S' + iSY: then 

clSlj/clt = (2i]S/fi)(ZS& + S&, + Sip+,)  ; 

dS~p+,/dt = -(2iJS/6)(2Sip+1 + S?, + S?,+9) 
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Figure 23 Magnon dispersion relatlon in the simple cubic antiferromagnet RhMnF, as deter- 
mined at 4.2 K by inelastic neutron scattering. (After C. G. Windsor and R. W7. H. Stevenson.) 

We look for solutions of the form 

S2:, = u exp[i2pka - iwt] ; Sl,+l = u exp[i(2p + 1) ka - iurt] , (49)  

so that (47) and (48) become, with we, - - 4JSIfi = 411 IS/fi, 

Equations (50) have a solution if 

w, cos ka = o  ; 
we, cos ka w, + w 

thus w ~ = w ~ ~ ( ~ - c o s ~ ~ )  ; w=w,,lsinkaI. (52)  

The dispersion relation for magnons in an antiferromagnet is quite differ- 
ent from (22) for magnons in a ferromagnet. For ka < 1 we see that (52) is lin- 
ear in k: w w,,lkal. The magnon spectrum of RhMnF, is shown in Fig. 23, as 
determined by inelastic neutron scattering experiments. There is a large re- 
gion in which the magnou frequency is linear in the wavevector. 

Well-resolved magnons have been observed in MnF, at specimen temper- 
atures up to 0.93 of the NBel temperature. Thus even at high temperatures the 
magnon approximation is useful. 



FERROMAGNETIC DOMAINS 

At temperatures well below the Curie point the electronic magnetic mo- 
ments of a ferromagnet are essentially parallel when regarded on a micro- 
scopic scale. Yet, loolang at a specimen as a whole, the magnetic moment may 
be very much less than the saturation moment, and the application of an exter- 
nal magnetic field may be required to saturate the specimen. The behavior ob- 
served in polycrystalline specimens is similar to that in single crystals. 

Actual specimens are composed of small regions called domains, within 
each of which the local magnetization is saturated. The directions of magneti- 
zation of different domains need not be parallel. An arrangement of domains 
with approximately zero resultant magnetic moment is shown in Fig. 24. Do- 
mains form also in antiferromagnetics, ferroelectrics, antiferroelectrics, ferro- 
elastics, superconductors, and sometimes in metals under conditions of a 
strong de Haas-van Alphen effect. The increase in the gross magnetic moment 
of a ferromagnetic specimen in an applied magnetic field takes place by two 
independent processes: 

In weak applied fields the volume of domains (Fig. 25) favorably oriented 
with respect to the field increases at the expense of unfavorably oriented 
domains; 

Figure 24 Ferromagnetic dolna~n pattern on a single crystal platelet of nickel. The domain 
boundaries are made visible by the Bitter magnetic powder pattern technique. The direction of 
magnetization within a domain is determined by observing growth or contraction of the domain in 
a magnetic field. (After R. W. D e  Blois.) 
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Applied ficld - 
Figure 25 Representative r~~ag~~etization cunre, showing the dominant magnetization processes 
in the different regions of the curve. 

Magnetic induction (CGS) 
B = H + 4 v B f  

Figure 26 The technical magnetization curve (or hysteresis loop). The coercivity H, is the re- 
verse field that reduces B  to zero; a related coercivity HCj reduces M or B - H to zero. The 
remanence B,  is the value of B  at H = 0. The saturation induction B ,  is the limit of B - H at large 
H, and tllr saturation magnetization M, = Bi4~471. In SI the vertical axis is B  = p,(H + iM). 

In strong applied fields the domain magnetization rotates toward the 
direction of thc field. 

Technical terms defined by the hysteresis loop are shown in Fig. 26. The 
cocrcivity is usually defined as the reverse field H ,  that reduces the induction 
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Figure 27 Magnetization curves for single crystals of iron, nickel, and cobalt From the curves 
for iron we see that the [loo] directions are easy directions of magnetization and the [Ill] direc- 
tions are hard directions. The applied field is B,. (After Honda and Kaya.) 

(b)  

Figure 28 Asymmetry of the overlap of electron distributions on neighboring ions provides one 
mechanism of magnetocrystalline anisotropy. Because of spin-orbit interaction the charge distrib- 
ution is spheroidal and not spherical. The asymmetly is tied to the direction of the spin, so that a 
rotation of the spin directions relative to the crystal axes changes the exchange energy and also 
changes the electrostatic interaction energy of the charge distributions on pairs of atoms. Both ef- 
fects give rise to an anisotropy energy. The energy of (a) is not the same as the energy of (b). 

B to zero, starting from saturation. In high coercivity materials the coercivity 
H,, is defined as the reverse field that reduces the magnetization M to zero. 

Anisotropy Energy 

There is an energy in a ferromagnetic crystal which directs the magnetization 
along certain crystallographic axes called directions of easy magnetization. This 
energy is called the magnetocrystalline or anisotropy energy. It does not 
come about from the pure isotropic exchange interaction considered thus far. 

Cobalt is a hexagonal crystal. The hexagonal axis is the direction of easy 
magnetization at room temperature, as shown in Fig. 27. One origin of the 
anisotropy energy is illustrated by Fig. 28. The magnetization of the crystal sees 
the crystal lattice through orbital overlap of the electrons: the spin interacts 
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with the orbital motion by means of thc spin-orbit coupling. In cobalt the 
anisotropy energy density is givcn by 

where 6 is the anglc the magnetization makes with the hexagonal axis. At room 
temperature K; = 4.1 X 10%rg/cm3; = 1.0 X 10%rg/cm3. 

Iron is a cubic crystal, and the cube edges are thc directions of easy mag- 
nctization. To represent the anisotropy energy of iron magnetized in an arbi- 
t r a v  direction with direction cosines a,,  a*, ar3 referred to the cube edges, we 
are guided by cubic symmetry. Thc expression for the anisotropy energy must 
be an even power of each mi, provided opposite ends of a crystal axis are equiv- 
alent ~nagnetically, and it must be invariant under interchanges of the ai 
arrlong themselvcs. The lowest order combination satisfying the symmetry re- 
quirements is a: + ar: + ar:, but this is identically equal to unity and does not 
describc anisotropy effects. The next conlhination is of the fourth degree: 
ar:cri + aryai + a&;, and then of the sixth degrce: a:a&$. Thus 

At room temperature in iron K ,  = 4.2 X lo5 crg/cm3 and K, = 1.5 x 10" erg/cm3. 

Transition Region Between Domains 

A Bloch wall in a crystal is the transition layer that separates adjacent 
regions (dorriai~~s) magnetized in different directions. The entire change in 
spin direction between domains does not occur in unc discontinuous jump 
across a single atomic plane, hut takes place in a gradual way over many atomic 
planes (Fig. 29). The exchange energy is lower when the change is distributed 
over many spins. This behavior may be understood by interpreting the Heisen- 
berg eq~lation (6) classically. We replace cos by 1 - i(p2; then w, = J S ~ ~ '  is 
the exchange energy between two spins making a small angle with each 
other. Here J is the exchange intcgral and S is the spin quantum number; we, is 
referred to the energy for parallel spins. 

If a total change of .n occurs in N equal steps, the angle between ncighhor- 
ing spins is .n/AT1 and the exchange energy per pair of neighboring atoms is 
we, = ~ ~ ~ ( ? r / h ' ) ~ .  The total exchange energy of a line of N + 1 atoms is 

The wall would thicken without limit were it not for the anisotropy energy, 
which acts to limit the width of the transition layer. The spins contained within 
the wall are largely directed away from the axes of easy rnagnetization. so thcrc 
is an anisotropy cncrgy associated with the wall, roughly proportional to the 
wall thickness. 



Figure 29 The structure of the Bloch wall separating domains. In iron the thickness of the transi- 
tion region is about 300 lattice constants. 

Consider a wall parallel to the cube face of a simple cubic lattice and sepa- 
rating domains magnetized in opposite directions. We wish to determine the 
number N of atomic planes contained within the wall. The energy per unit area 
of wall is the sum of contributions from exchange and anisotropy energies: 

o w  = u e a  + canis .  

The exchange energy is given approximately by (55)  for each line of atoms 
normal to the plane of the wall. There are l / a2  such lines per unit area, where 
a  is the lattice constant. Thus a,, = d ] s 2 / N a 2  per unit area of wall. 

The anisotropy energy is of the order of the anisotropy constant times the 
thickness Nu, or o,, - KNa; therefore 

ow - ( d ] ~ ~ / N a ~ )  + KNa . (56)  

This is a minimum with respect to N when 

For order of magnitude, N .= 300 in iron. 
The total wall energy per unit area on our model is 

ow = z ~ ( K ] s ~ / a ) ~  ; (59) 
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(a) (b)  (c)  (dl (4 
Figure 30 The origin of domains. 

in iron u,,, = 1 erg/cm2. Accurate calculation for a 180" wall in a (100) plane 
gives a, = ~(2K,]S~la)~ '~ .  

Origin of Domains 

Landau and Lifshitz showed that domain structure is a natural conse- 
quence of the various contributions to the energy-exchange, anisotropy, and 
magnetic-of a ferromagnetic body. 

Direct evidence of domain structure is furnished by photomicrographs of 
domain boundaries obtained by the technique of magnetic powder patterns 
and by optical studies using Faraday rotation. The powder pattern method 
developed by F. Bitter consists in placing a drop of a colloidal suspension of 
finely divided ferromagnetic material, such as magnetite, on the surface of the 
ferromagnetic crystal. The colloid particles in the suspension concentrate 
strongly about the boundaries between domains where strong local magnetic 
fields exist which attract the magnetic particles. The discovery of transparent 
ferromagnetic compounds has encouraged the use also of optical rotation for 
domain studies. 

We may understand the origin of domains by considering the structures 
shown in Fig. 30, each representing a cross section through a ferromagnetic 
single crystal. In (a) we have a single domain; as a consequence of the mag- 
netic "poles" formed on the surfaces of the crystal this configuration will have 
a high value of the magnetic energy (lI8~r) J B2 dV. The magnetic energy den- 
sity for the configuration shown will be of the order of M: = lo6 erg/cm3; here 
M, denotes the saturation magnetization, and the units are CGS. 

In (b) the magnetic energy is reduced by roughly one-half by dividing the 
crystal into two domains magnetized in opposite directions. In (c) with N do- 
mains the magnetic energy is reduced to approximately 1IN of the magnetic 
energy of (a), because of the reduced spatial extension of the field. 



Figure 31 Domain of closure at the end of a single crystal iron whisker. The face is a (100) plane; 
the whisker axis is [0011. (Courtesy of R. V. Coleman, C. G. Scott, and A. Isin.) 

In domain arrangements such as (d) and (e) the magnetic energy is zero. 
Here the boundaries of the triangular prism domains near the end faces of the 
crystal make equal angles (45") with the magnetization in the rectangular do- 
mains and with the magnetization in the domains of closure. The component 
of magnetization normal to the boundary is continuous across the boundary 
and there is no magnetic field associated with the magnetization. The flux cir- 
cuit is completed within the crystal-thus giving rise to the term domains of 
closure for surface domains that complete the flux circuit, as in Fig. 31. 

Domain structures are often more complicated than our simple examples, 
but domain structure always has its origin in the possibility of lowering the 
energy of a system by going from a saturated configuration with high magnetic 
energy to a domain configuration with a lower energy. 

Coercivity and Hysteresis 

The coercivity is the magnetic field H, required to reduce the magnetiza- 
tion or the induction B to zero (Fig. 26). The value of the coercivity ranges 
over seven orders of magnitude; it is the most sensitive property of ferromag- 
netic materials which is subject to control. The coercivity may vary from 600 G 
in a loudspeaker permanent magnet (Alnico V) and 10,000 G in a special high 
stability magnet (SmCo,) to 0.5 G in a commercial power transformer (Fe-Si 
4 wt. pet.) and 0.002 Gin  a pulse transformer (Supermalloy). Low coercivity is 
desired in a transformer, for this means low hysteresis loss per cycle of opera- 
tion. Materials with low coercivity are called soft; those with high coercivity 
are called hard, although there is not necessarily a 1 : 1 relationship of mag- 
netic hardness with mechanical hardness. 

The coercivity decreases as the impurity content decreases and also as in- 
ternal strains are removed by annealing (slow cooling). Amorphous ferromag- 
netic alloys may have low coercivity, low hysteresis losses, and high permeabil- 
ity. Alloys that contain a precipitated phase may have a high coercivity, as in 
Alnico V (Fig. 32). 
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Figure 32 Microstructure of Alnico \' in its optimum state as a permanent magnet. The composi- 
tion of Alnico \'is, by weight percent, 8 Al, 14 Ni, 24 Co, 3 Cu, 51 Fe. As aperinanent magnet it is 
a twn-phase system, with fine particles of one phase embedded in the other phase. The precipita- 
tion is carried out in a magnetic field, and the particles are oriented with their long axis parallel to 
the field direction. The width shown is 1.1 pm. (Courtesy of F. E. Luborsky.) 

Soft magnetic materials are used to concentrate and shape magnetic flux, 
as in motors, generators, transformers, and sensors. Useful soft materials in- 
clude electrical steels (usually alloyed with several percent of silicon to in- 
crease electrical resistivity and to decrease anisotropy); various alloys of 
Fe-Co-Mn, starting with permalloys of composition near NiT8Fezz, which have 
near-zero anisotropy energy and near-zero magnetostriction; NiZn and MnZn 
ferrites; and metallic glasses produced by rapid solidification. A commercial 
metallic glass (METGLAS 2605s-2) with composition Fe,,B1,Si9 has a hys- 
teresis loss per cycle much lower than the best grain-oriented silicon steel. 

The high coercivity of materials composed of very small grains or fine 
powders is well understood. A sufficiently small particle, with diameter less 
than 1 0 F  or cm, is always magnetized to saturation as a single domain be- 
cause the formation of a flux-closure configuration is energetically unfavorable. 
In a single domain particle it is not possible for magnetization reversal to take 
place by means of the process of boundary displacement, which usually re- 
quires relatively weak fields. Instead the magnetization of the particle must 
rotate as a whole, a process that may require large fields depending on 
the anisotropy energy of the material and the anisotropy of the shape of the 
particle. 

The coercivity of fine iron particles is expected theoretically to be about 
500 gauss on the basis of rotation opposed by the crystalline anisotropy energy, 
and this is of the order of the observed value. Higher coercivities have been 



reported for elongated iron particles, the rotation here being opposed by the 
shape anisotropy of the demagnetization energy. 

Rare earth metals in alloys with Mn, Fe, Co, and Ni have very large crystal 
anisotropies K and correspondingly large coercivitics, of the order of 2 W M .  
These alloys are exceptionally good permanent magnets. For example, the 
hexagonal co~npourid SmCoS has an anisotropy energy 1.1 x 10serg ~ r n - ~ ,  
equivalent to a coercivity 2WM of 290 kG (29  T). Magnets of Nd,Fel,B have 
energy products as high as 50 MGOe, exceeding all other commercially avail- 
able magnets. 

SINGLE-DOMAIN PARTICLES 

The dominant industrial and commercial applications of ferromagrietism 
are in magnetic recording devices, where the magnetic material is in the form 
of single-domain particles or regons. The total value of the production of 
magnetic devices for recording may be comparable with the total valuc of 
semiconductor device production and greatly exceeds the value of supercon- 
ducting device production, the latter being held back by low critical tempera- 
tures, as compared with magnetic Curie temperatures. The magnetic record- 
ing devices or memories typically are in the form of hard disks in coulputers 
and tape in video and audio recorders. 

An ideal single-domain particle is a fine particlc, usually elongated, that 
has its magnetic moment directed toward one end or the other of thc particle. 
The alternative orientations may be labeled as N or S; + or -; in digital 
recording, as 0 or 1. To have digital properties a ferromagnetic particle should 
be fine enough, typically 10-100 nm, so that only one domain is within the 
particlc. If the fine particle is elongated (acicular) or has uniaxial crystal sym- 
metry, only two valucs of the magnetic moment of the single domain are per- 
mitted, which is what one wants for digital properties. The first successful 
recording material was acicular T-Fe,O, with length-to-width ratio of about 
5 : 1, coercivity near 200 Oe and a length <I  pm; chrominm dioxide CrOz is 
the basis of a better material, in a form highly acicular (20 : 1) with coercivity 
near 500 Oe. 

Effective elongation can be attained with spheres by making a chain, 
like a string of beads. An ensemble of such chains or of elongated single do- 
main particles is said to exhibit superparamagnetism if the magnetic mo- 
ment of a unit is constant. If p is the magnetic moment in a magnetic field B,  
then the net magnetization of the ensemble will follow the Curie-Rrillouin- 
Langevin law of Chapter 11 if the  articles are embedded in a liquid so that 
they are each free to rotate as a whole. If the particles are frozen in a solid, 
thcre will be a remanent magnetization (Fig. 2 6 )  after removal of an applied 
field. 
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Geomagnetism and Biomagnetism 

Singlc domain ferromagnetic properties are of special geological interest 
in scdimentary rocks because the rocks through their remanent magnetizatiori 
carry a memory of the direction of the earth's magnetic field at the time that 
they were laid down, and thus of the geographical location of the rocks at that 
epoch. The rr~agnetic record is perhaps the most important basis of the theory 
of the drift of continents. Annually, layers of sedin~e~lt  are deposited in stream 
beds, layers that may hear some magnetic particles in single domain form. This 
record persists over at least 500 millior~ years of geological time and can tell us 
wherc on the surface of the earth the deposit was laid down at a given time. 
Lava flows also record rriagrletic field directions. 

The change in ~nagnetization from layer to layer gives a superb historical 
record of the drift of the continental plates on the earth's surface. The paleo- 
magnetic record is one basis of the branch of geology called plate tectonics. 
The original interpretation of the record was made Inore difficult, or more ex- 
citing, by the associated discovery (Brunhes, 1906) that the magnetic field of 
the earth itsclf can show reversals in direction, an effect contained within the 
standard dynamo theory of the earth's magnetism. Reversals have taken place 
once every 1 X lo4 to 25 X 10"ears. When a reversal occurs, it is relatively 
sudden. 

Fine single Jolnain particles, oftcn of magnetite Fe304, are even of impor- 
tance in biology. A direction-sceking effect known as magnetotaxis often con- 
trols, possibly sometimcs along with an astronomical guide system, the motion 
of bacteria, the migration of birds, and the ~novements of homing pigeons and 
bees. The cff'ect is due to the interaction of a single domain particle (or cluster 
of such particles, Fig. 33) in the orga~lism with the external magnetic field of 
the earth. 

Magnetic Force Mi~roscopy 

The success of the scanning tulineling microscope (STM) stimulated the 
development of related sca~lning probe dcvices, of which the scanning mag- 
netic force microscope is one of the most effective. A sharp tip of a magnetic 
material, such as nickel, is mounted on a cantilever lever (Fig. 34). Ideally, hut 
not yet, the tip is a singlc domain particle. Forces from the magnetic sample 
act on the tip and cailse a change, such as a deflection, in the cantilever status, 
and an image is formed by scanning the sample relative to the tip. The mag- 
netic force microscope (MFM) is the only magnetic imaging technique that 
can provide high resolution (10-100 nm) with little surface preparation. One 
can, for example, observe and image the magnetic flux that exits from the 
surface at the intersection of a Rloch wall with the surface (Fig. 29). An impor- 
tant application is to thc study of magnetic recording media-Figure 35 shows 
the magnetic signal from a test pattern of 2 p1n bits magnetized in the plane of 



Figure 33 Thin section of a cell of a magnetotactic bac- 
terium showing a chain of 50 nm particles of Fe,O,. Draw- 
ing by Marta Puebla from a photograph by R. B. Frankel 
and others. 
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Figure 35 Test strip magnetization in the plane of a Co-alloy disk in 2 pm hits, as detected by 
MFM close above the plane of the disk. (After Rugar et al.) 
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Sample - 
Figure 34 Basic concept of magnetic force microscopy. A magnetic tip attached to a flexible can- 
tilever is used to detect the magnetic field produced by the regions of alternating magnetization in 
the plane of the sample. (After Gmetter, Mamin, and Rugar, 1992.) 
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a Co-alloy disk; the parallel co~nporlent of the ficld seen by the sensor tip is 
what the photo shows. 

SUMMARY 
(In CGS Units) 

The susceptihility of a ferromagnet above the Curie temperature has the 
form x = C/(T - T,) in the mean field approximation. 

In thc mean field approximation the effective magnetic field seen by a mag- 
netic moment in a ferrornagnet is B, + AM, when A = T,/C and B, is the 
applied magnetic field. 

The elementary excitations in a ferromagnet are magnons. Their dispersion 
relation for ku < 1 has the form ho =Jk2az in zero external magnetic field. 
The thermal excitation of magnons leads at low temperatures to a heat ca- 
pacity and to a fractional magnetization change both proportional to T3". 

In an antiferrornagnet two spin lattices are equal, but antiparallel. In a ferri- 
rnagnet two lattices are antiparallel, but the magnetic moment of one is 
larger than the magnetic moment of the other. 

In an antifemornagnet the susceptibility above the Nee1 temperature has the 
form ,y = 2C/(T + 8 ) .  

The magnon dispersion relation in an antiferrornagnet has the form 
hw = jkn. The thermal excitation of rnagnons leads at low temperatures to a 
term in T 3  in the heat capacity, in addition to the phonon term in T3. 

A Rloch wall separates domains magnetized in different directions. The 
thickness of a wall is =(J/&?)'/' lattice constants, and the energy per unit 
area is =(KJ/u)~/' ,  where K is the anisotropy energy density. 

Problems 

1 .  Magnon dispersion rebtion. Derive the magnon dispersion relation (24) for a 
spin S on a simple cubic lattice, z = 6. Hint: Show first that (18a) is replaced by 

where the central atom is at p and the six nearest neighhors arc connected to it by 
six vectors 8.  Look for solutions of the equations for r1S;ldt and dSEldt of the form 
exp(ik . p - iwt) .  

2. Heat capacity of magnons. Use the approximate lnagnon dispersion relation 
w = Akqo find the leading term in the heat capacity of a three-dimensional ferro- 
rrlagnet at low temperatures k,T 4 J. The result is 0.113 kB(kBTlh~)3/2, per unit 



volume. The zeta function that enters thc rcsuli may he rsti~nated numerically; it is 
tabulated in Jahnke-Emde. 

3. Ne'el temperature. Taklng the effective ficld? on t l ~ r  two-subldthce model ot an 
ant~ferromagnebc as 

show that 

4 .  Magnetoelastic coupling. ITI a cubic crystal the elastic energy density in terms of 
the usual strain componer~ts uU is (Chapter 3 )  

and the leading term in the magnetic anlsotropy e n e r a  density is, frnm (54), 

Coupling hetweer~ elastic strain and magnetization direction may bc takcn formally 
into accnnnt by including in the total energy density a term 

arising from the strain dependence of L7,; here B, and B 2  arc called magrretoelastic 
coupling constants. Show that the total energy is a minimum bvhe~r 

This explains the ongin of magnr~ostrirtin~i, t l ~ r  cl~ange of length on magnet~zatlon. 

5 .  Coercive force of a small particle. (a) Consider a small spherical single-domain 
particle of a uniaxial lcrrornagnrt. Sliow that the reverse field along the axis re- 
quired to reversc thc magnetization is B,  = 2WM,, in CGS units. The coercive force 
of single-domain particles is observed to be of this magnitude. Take U ,  = K sin" as 
the anisotropy cnergy density and UM = B , M  cos 0 as the interaction energy den- 
sity with the external field; here 6 is the angle between B, and M. IIint: Expand the 
energics for small angles about 0 = n ,  and find the value of B, for which UK + L7>, 
does not have a minirnunr r~ear  0 = n. (b) Show that the magnetic energy of a satu- 
rated sphere of diameter d is =M:d3. An arrangement with appreciably less mag- 
nctic energy has a single wall in an equatorial plane. The domain wall energy will bc 
nuud2/4, where cw is the wall energy per unit area. Estimate for cobalt the critical 
radius below wl~ich the particles are stable as single domains, taking thc valuc ol 
]S2/n as for iron. 

6. Saturation magnetization near T,. Show that in the mean field approximation 
the saturation rnagnetization just below the Curie temperature has thc dominant 
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temperature dependence (T ,  - T)". A S S U ~ C  the spin is :. The result is the sarrrr as 
that for a second-order trarisitior~ in a rcrroclectric crystal, as discussed in Clia~pter 
16. The experimental data for ferromagncts (Table 1) suggest that the exporlrrtt is 
closer to 0.33. 

7 .  Nkel wall. The direction of n~agnetizatinn change in a domain wall goes fro111 that 
of the Bloch wall to that of a YGel wall (Fig. 36) in thin films of material of negligi- 
blc crystalline anisotropy energy, suclr as Permallo)~ The intercept of the Bloch wall 
with the surface of the film creates a surface rcgion of high demagnetization energy. 
The Nee1 wall avoids this intercept contrih~~lion, but at the expense of'a demagneti- 
zation contribution throughout the volulrre nT thc wall. The NBel wall becomes en- 
ergctically favorable when the film lrecurrres s~lficicntly thin. Consider, however, 
the cncrgetics of the NBel wall in bulk rr~aterial or negligible crystalline anisotropy 
energy. There is now a demagnetization corrtrih~~tion to the wall energy density By 
a rl~~alitative argument similar to (56) ,  show that ,~,=(dJ~'lRia') + (2~iZrlPh'a). Find 
A: fnr which uw is a minimum. Estimate the order of magnitude of u*, for typical val- 
ues of J ,  Ms. and a.  

8.  G b n t  magnetoresistance. In a ferromagnetic metal, the conductivitj- up for elec- 
trons whose rnagnctic moments are oriented parallel to the magnetization is typi- 
cally larger than ua for those antiparallel to the magnetizatinn. Consider a ferromag- 
netic conductor consisting of two separate regions of ider~tical climcnsions in series 
\\,hose rriagnetinations can be independently controlleci. Elet:trons ol a given spin 
flow first tllrorlglr one rcgion and then through the other. It is observed that the re- 
sistance wlvllen hoth rnagnctizations point upwards, RTT,  is lower than the resistance 

when they poirtt opposite, KT&. This resistance change can be large for mp/cr, > 1, 
and the phenomenon is callcd giant magnetoresistance (GMR). A srrlall external 
magnetic field car) switch thc rcsistance from Rri to RrT by reorienting t l ~ e  magneti- 
zation of the second layer. This cffcct is increasingly used in magnetic storagr appli- 
cations such as the ~rragnetic bit readout in hard drives. The giant rrtagnetnresis- 
tance ratio is defined as: 

Uloch wall NCel d l  
Figure 36 A Bloch wall and a Nee1 wall in a thin fi1111. The n~aglietization in the Uloch wall is nor- 
mal to the plane of thc Glnl and adds to the wall energy n demagnetizatio~~ energy -M%d per unit 
length of wall, where S is the \vdl tl~ickl~css and d the film thickness In the NPeI wall the magneti- 
zation is parallel to the surface: the addition to the wall encrgy is negligible \%.hen d < 8 .  The addi- 
tion to the Ntel wall cnerg). when d % S is the subject of Prohlclr~ 7. (After S .  Middelhock.! 



(a) If there is no spin-flip scattering for the conduction electrons, show that 

GMRR = (u/ua + ua/up - 2)/4 

(Hint: Treat the spin-up and spin-down conduction electrons as independent con- 
ducting channels in parallel.) (b) I f  ua + 0, explain physically wlry the resistance in 
the 7.1 magnetization configuration is infinite. 


