Total No. of Questions - 24 Regd.
Total No. of Printed Pages - 4 No.

Part - III

MATHEMATICS, Paper - II (B)

(Co-ordinate Geometry and Calculus) (English Version)

Time: 3 hours

Max. Marks: 75

Note: This question paper consists of three sections A, B and C.

SECTION A

I. Very short answer type questions.

 $10 \times 2 = 20$

- i) Answer all questions.
- ii) Each question carries two marks.
- 1. Find the other end of the diameter of the circle $x^2 + y^2 8x 8y + 27 = 0$ if one end of it is (2, 3).
- **2.** Find the equation of the sphere whose center is (2, -3, 4) and radius is 5.
- **3.** Find the equation of the parabola whose focus is S(1, -7) and vertex is A(1, -2).
- 4. Show that the angle between the two asymptotes of a hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1 \text{ is } 2 \operatorname{Tan}^{-1} \left(\frac{b}{a} \right) \text{ or } 2 \operatorname{Sec}^{-1} (e).$
- 5. Find the n^{th} derivative of $f(x) = Log(8x^3 + 36x^2 + 54x + 27)$ for all $x > -\frac{3}{2}$.

- 6. Evaluate $\int \left(1 \frac{1}{x^2}\right) e^{\left(x + \frac{1}{x}\right)} dx$.
- 7. Evaluate: $\int \frac{1}{(x+3)\sqrt{x+2}} dx$ on $I \subset (-2, \infty)$.
- 8. Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{\sin^{2}x \cos^{2}x}{\sin^{3}x + \cos^{3}x} dx$
- 9. Find the area bounded between the curves $y^2 1 = 2x$ and x = 0.
- 10. Find the order and degree of the differential equation

$$\left[\left(\frac{dy}{dx} \right)^{\frac{1}{2}} + \left(\frac{d^2y}{dx^2} \right)^{\frac{1}{3}} \right]^{\frac{1}{4}} = 0.$$

SECTION B

II. Short answer type questions.

 $5 \times 4 = 20$

- i) Attempt any five questions.
- ii) Each question carries four marks.
- 11. Find the condition that the tangents drawn from the exterior point (g, f) to $S = x^2 + y^2 + 2gx + 2fy + c = 0$ are perpendicular to each other.
- 12. Find the equation of the parabola whose axis is parallel to Y-axis and which passes through the points (4, 5), (-2, 11) and (-4, 21).
- 13. Find the eccentricity, foci and equation of the directrices of the hyperbola $5x^2 4y^2 + 20x + 8y = 4$.
- 14. If PP' and QQ' are two perpendicular focal chords of a conic, prove that $\frac{1}{(SP)(SP')} + \frac{1}{(SQ)(SQ')}$ is constant.

- **15.** Evaluate $\int x \sqrt{1+x-x^2} dx$.
- **16.** Solve $\frac{dy}{dx} x \, Tan(y x) = 1$.
- 17. Solve $\left(x + 2y^3\right) \frac{dy}{dx} = y$.

SECTION C

III. Long answer type questions.

 $5 \times 7 = 35$

- i) Attempt any five questions.
- ii) Each question carries seven marks.
- 18. Find the equation and center of the circle passing through the points (-2, 3), (2-1) and (4, 0).
- 19. Find the equation of the circle which cuts the circles $x^2 + y^2 + 2x + 4y + 1 = 0$, $2x^2 + 2y^2 + 6x + 8y 3 = 0$ and $x^2 + y^2 2x + 6y 3 = 0$ orthogonally.
- 20. The tangent and normal to the ellipse $x^2 + 4y^2 = 4$ at a point $P(\theta)$ on it meets the major axis in Q and R respectively. If $0 < \theta < \frac{\pi}{2}$ and QR = 2, then show that $\theta = Cos^{-1} \left(\frac{2}{3}\right)$.
- 21. If $y = \frac{Sinh^{-1}x}{\sqrt{1+x^2}}$ then show that $(1+x^2)y_2 + 3xy_1 + y = 0$ and hence by using Leibnitz theorem, deduce that

$$(1+x^2)y_{n+2} + (2n+3)xy_{n+1} + (n+1)^2y_n = 0$$

22. Evaluate $\int \frac{1}{Sinx + \sqrt{3} Cosx} dx$.

- 23. Evaluate $\int_{0}^{1} \frac{Log(1+x)}{1+x^2} dx$.
- 24. The velocity of a train which starts from rest is given by the following table, the time being recorded in minutes from the start and the speed in kilometers.

Minutes	2.	4	6	8	10	12	14	16	. 18	20
Kmph	10	18	25	29	32	20	11	5	2	0

Estimate approximately the total distance run in 20 minutes by Simpson's rule and Trapezoidal rule.