4.1 Introduction

Many engineering problems may be treated and solved by methods involving complex numbers and
complex functions. There are two kinds of such problems. The first of them consists of “elementary problems” for
which some acquaintance with complex numbers is sufficient. This includes many applications to electric circuits
or mechanical vibrating systems.

The second kind consists of more advanced problems for which we must be familiar with the theory of
complex analytic functions— “complex function theory” or “complex analysis,” for short— and with its powerful
and elegant methods. Interesting problems in heat conduction, fluid flow, and electrostatics belong to this category.

We shall see that the importance of complex analytic functions in engineering mathematics has the following
two main roots.

1. Thereal andimaginary parts of an analytic function are solutions of Laplace’s equation in two independent
variables. Consequently, two-dimensional potential problems can be treated by methods developed
for analytic functions.

2. Mosthigher functions is engineering mathematics are analytic functions, and their study for complex
values of the independent variable leads to a much deeper understanding of their properties. Furthermore,
complex integration can help evaluating complicated complex and real integrals of practical interest.

4.2 Complex Functions

If for each value of the complex variable z(= x + xy) in a given region R, we have one or more values of
w(= U+ iv), then wis said to be a complex function of zand we write w = u(x, y) + i(x, y) = {z) where u, vare real
functions of x and y.

If to each value of z, there corresponds one and only one value of w, then wis said to be a single-valued

function of z otherwise a multi-valued function. For example w = 1/zis a single-valued function and w= /7 isa

multi-valued function of z. The former is defined at all points of the z-plane except at z= 0 and the latter assumes
two values for each value of zexcept at z = 0.

4.2.1 Exponential Function of a Complex Variable
When x isreal, we are already familiar with the exponential function

2 n
= 1+T'+~»é!—+.. +77T+ oo
Similarly, we define the exponential function of the complex variable z = x + iy, as
2 n
gforexp(2) = 1+£+—Z—-+...+~£—+..,m ()
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Putting x = 0in (i), we get, z= iy and
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Thus e = € .e¥=e"(Cosy+isiny)
Also x + iy = r(cos 0 + isin @) =reb

. Exponential form of z (= x + iy) = re®.
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4.2.2 Circular Function of a Complex Variable

Since, e¥ = cosy+isiny
and eV = cosy-isiny
.. The circular functions of real angles can be written as
| & eV & + eV
siny = - , COS ¥ = ~~le and SO ON.
2i 2
Itis, therefore, natural to define the circular functions of the complex variable z by the equations:
, g% -g¥ g%+ sinz
SiNZ = ————,C08 Z = — Jtan z =
2i 2 Cos Z

with cosec z, sec zand cot z as their respective reciprocals.

Cor. 1. Euler’s Theorem, By definition
¢z _ gtz gZ_ gz
’ cos z+isinz = 5 +1 5 = g7 where z=x + iy
Also we have shown that e = cos y + i sin y, where yis real.
Thus €° = cos 6 + i sin ©, where 0 is real or complex. This is called the Euler's theorem.*

Cor. 2. De Moivre's theorem for complex numbers.
Whether 0 is real or complex, we have

(cos B + i sin B)" = (69" = &M = cos NB + i sin N
Thus De Moivre's theorem is true for all 8 (real or complex).

4.2.3 Hyperbolic Functions
1. Def. If x be real or complex,

¥ _ .\ .
(a) €-€ is defined as hyperbolic sine of x and is written as sinh x.
e +e” . . . . . .
(b) ———— is defined as hyperbolic cosine of x and is written as cosh x.
. - e +e"
Thus, sinhx = %—e—— and coshx= & +8
e . sinh e - 1 g +e”
Also we define, tanhx = g ; Coth x = = €
coshx eg“ +e™ tanhx g -g™>
1 2 1 2
sechx = = ;cosechx = — =
Coshx ¢ +e™* sinhx e" -e™*

Cor. sinh0 =0, cosh0=1andtanh0 = 0.
2. Relations between hyperbolic and Qircular functions.
&0 _ g g0 L o ®

Since for all values of 8, sin @ = 5 and cos 8 = 5




- Putting 6 = ix, we have

. 26t -¢g e"~e"‘} 0 _ o ix .
sinNix = 1 0 = — gl g N g
=155 | |
p) e — e , g - e——x L
= 1 - = I = [ sinh
2i 2 L
er+e
and COoS ix = 5 = coshx
Thus, sin ix = i sinhx )
cos ix = Coshx (i)
and .. tahix = itanhx .. (i)
Cor. sinhix = i Sin x .. (iv)
coshix = COSx (V)
tanhix = itan x o (vi)

4,24 Inverse Hyperbolic Functions
Def. If sinh u = z, then uis called the hyperbolic sine inverse of zand is written as u = sinh™! z. Similarly we

define cosh! z, tanh™ z, etc.
The inverse hyperbolic functions like other inverse functions are many-valued, but we shall consider only

their principal values.

4.2.5Logarithmic Function of a Complex Variable

1.

Def. If Z{=x +'iy) and wW(= U + iv) be so related that e = z, then wis said to be a logarithm of zto the
base e and is written as w = log,, z.... (i)
Also ew+anm _ gw g2t . > [ glinm 1]
o log z= w+2inn _ (i)
i.e. the logarithm of a complex number has an infinite number of values and is, therefore, a multi-valued
function. The general value of the logarithm of zis written as Log z (beginning with capital L) so as fo
distinguish it from its principal value which is written as log z. This principal value is obtained by taking
n=10inlog z
Thus from (i) and (i),  Log (x + iy) = 2inmt + log(x + iy).
Obs.
(@) If y=0,thenlLogx = 2in7 + log x.
This shows that the logarithm of a real quantity is also multi-valued. lts principal value is real while
all other values are imaginary.
(b) We know that the logarithm of a negative quantity has no real value. But we can now evaluate this.
e.g. log, (-2) = log,2(-1)
log, 2 + log, (-1)
log, 2 +in [ ~1=cosm+isinm= em]
= 0.6931 +i(3.1416)
Real and imaginary parts of Log(x + iy).
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Log(x + iy) = 2inm + log (x + iy) Put,x =rcos 8, y=rsino
= 2inm + log [r(cos 0 + i sin 8)] sothatr= J(x° + y2)
= 2inz + log (re®) and 8 = tan™' (y/x)

2inmt + log r+ i0

log(x? + ¥2) +i[2nm + tan™(y/x)]

i




3. Real and imaginary parts of (a + ip)* *¥

Puto=r cos 0, = r sin 6 so that
By + iy — wly+iy) Logla + i) ~
(a+ip) e r=y(0? +B%) ando=tan"' B/ o

. e(x +1iy) [2inm + log (o + if)]

il

= gl +iy) [2inm + log r &)

- e(x +iy) [log r+ i (2nm + 6)]

- eA+z'B

= e/cos B + i sin B)
where A =xlog r—- y(2nm + 6) and B = ylog r + x(2nm + 6)

4.3 Limit of a Complex Function

A function w = f(z) is said to tend to limit / as z approaches a point z,, iffor real €, we can find a positive
real & such that
| 42) - 1] <€ for | Z~ 2, | <3
i.e. for every z# Z, in the 3-disc (dotted) of zplane, fz) has a value lying in the e-disc of w-plane (see

figure below). In symbols, we write Lt f(z) = 1.
Z—2n

This definition of limit though similar to that in ordinary calculus, is quite different, for in real calculus x
approaches x, only along the line whereas here zapproaches z, from any direction in the z-plane.

®

Y

z-plane w-plane

Continuity of f(2). A function w = f(z) is said to be continuous at z = zy, if
Lt H(z) = f(zy)

Z—2y

Further /(2) is said to be continuous in any region R of the z-plane, if it is continuous at every point of that
region,

Also if w= (2) = u(x, y) + ivx, ) is continuous at 7 = Zy, then u(x, y) and v(x, ) are also continuous at
Z= 2z, l.e.atx=xyand y =y, Conversely if u(x, y) and Wx, y) are continuous at (xg ¥o), then A(Z) will be continuous
atz =z,

4.4 Singularity
A point at which a function f(z) is not analytic is singular point or singularity point. Example the function
1
P has a singular pointatz-2 =0 or at z= 2.
4.4.1 lsolated Singular Point

If z= ais a singularity of £z) and there is no other singularity with in a small circle surrounding the point
z= g, then z = ais said to be an isolated singularity of the function f(2); otherwise it is called non-isolated.



1
Example the function ——— h isolated si larpointsat z= 1, z= 3.
P -3 as two isolated singular p

The function

. T
- =0ie, ~=pn or z=
sinm/z z

Here z = 0 is non-isolated singularity.

4.4.2 Essential Singularity
If the function f(2) has pole z = ais poles of order m. If
b, b,
(z-a) (z —3)2
the negative power in expansion are infinite then z = a is called an essential singularity.

(2) = ay+a(z-a)+a(z-a)..+

4.4.3 Removable Singularity

I fz) = 3 alz-a)
n=0
= f2) = ay+af(z-a)..a (z-a)

Here the coefficient of negative power are zero. Then z = ais called removable singularity i.e., {z) can be

made analytic by redefining fa) suitably i.e., if IMmf(2) exists.

X—poo

sin(z-a)

Example, f(z)= z 2

has removable singularity at z = a.

4.4.4 Steps to Find Singularity

Step-1: If é]jnlf(z) exists and is finite then z = ais a removable singular point.
~—)
Step-2: If [IM£(Z) does not exist then z = ais an essential singular point.
Za

Step-3: If Limaf(Z) exists and is finite then 12) has a pole at z = a. The order of the pole is same as the
—

number of negative power terms in the series expansion of f{2).

4.5 Derivative of f(z)

Let w = f(z) be a single-valued function of the variable 7 = x + iy. Then the derivative of w = (2) is defined

to be
dw
dz




provided the limit exists and has the same value for all the different ways in which 8z approaches zero.

Suppose A(z) is fixed and Q(z + 82) is a neighbouring point (Figure above). The point @ may approach P
along any straight or curved path in the given region, i.e. 8z may tend to zero in any manner and dw/dz may not
exist. It, therefore, becomes a fundamental problem to determine the necessary and sufficient conditions for adw/
dz to exist. The fact is settled by the following theorem.

Theorem. The necessary and sufficient conditions for the derivative of the function w= t(x, ¥) + iv(x, y) = f(2)
to exist for all values of zin a region R, are

1. 13}_{ QE %, QK are continuous functions of x and yin R,
ox dy ox dy

p v u_ _av

S oy’ oy ox

The relations in (ii) are known as Cauchy-Riemann equations or briefly C-R equations.
4.6 Analytic Functions

4.6.1 Analytic Functions

A function f(z) which is single-valued and possesses a unique derivative with respect to z at all points of
region R, is called an analytic or a regular function of zin that region.

A point at which an analytic function ceases to possess a derivative is called a singular point of the
function.

Thusif uand vare real single-valued functions of x and y such that du/dx, dudy, 0viox, dv/dy are continuous
throughout aregion A, then the Cauchy-Riemann equations

T
0

W W g 3 0]
ox ay ay ox
are both necessary and sufficient conditions for the function z) = u + ivto be analytic in R. The derivative
of £z} is then, given by

ou ov) oJu oV y
f/ = L —_— f e | SR 'V L
(2) Bx—£0( ox o axj ox i ox LV (i
ou ov
or (z) = |t | 2= ;00
(@) Sy—l:O[iSy +liéiy)
1ou 9v _adv_.du

S ety ey ey -

The real and imaginary parts of an analytic function are called conjugate functions. The relation between
two conjugate functions is given by the C-R equations (i) above.

C-R equations in Polar form

v _ tav
or roe
ou ov

o e

20 00




Example 1.
Is f{z) = Z° analytic?

Solution:
Z = x+1iy
= 22 = (x+iy) (x + iy).= x2 — 2 + 2ixy
= 2B o= (-2 + 2ixy) (x + iy)
= (= 3xy?) + (Bx? y - )i
here u = x3-3x)2
v = 3%y
U = 3232, v, =3 -3y
u, = ~Bxy, v, = 6Bxy
So u = vandu, =-v,

So C-R equations are satisfied and also the partiél derivatives are continuous at all points. Hence 2 is
analytic for every z.

Example 2.
if w=log z find dw/dz and determine where wis non-analytic.
Solution:
We have w o= U+ iv=1og(x + iy
. = %!og(x2 +y?)+itan Ty
so that u = —;—log(x2 +y?), v=tanly/x
u _ _x _odvou__y _ _ov
ox Pry? oy P4y ox

Since the Cauchy-Riemann equations are satisfied and the partial derivatives are continuous except at
(0, 0). Hence wis analytic everywhere except at z= 0.

dw ou . dv
—_— = —
dz dox  Ox
R S A a4
oyt X ay? (x+iy)(x—iy)
= - 1' = l(z;éO).
xX+iy Z

Obs. The definition of the derivative of a function of complex variable is identical in form to that of the
rivative of a function of real variable. Hence the rules of differentiation for complex functions are the same as
)se of real caiculus. Thus if, a complex function is once known to be analytic, it can be differentiated just
the ordinary way.

- 3.2 Harmonic Functions

Any function which satisfies Laplace equation is known as harmonic function.
If {z) = u+ivis analytic, then uand v are both harmonic functions.

ou _ av au _ av

o oy dy  ox




Differentiating w.r.t. x Differentiating w.r.t. y

%u v U 0%y

Px  oxdy dy  oxay
adding these, we get

%u %

5 4 Wl =0

ox= oy
Similarly,
v 0%
et T
ox<  ay
Therefore both uvand vare harmonic functions.

0

4.6.3 Orthogonal Curves

Two curves are said to be orthogonal to each other, when they intersect at right angle at each of their point
of intersection.

At the point of intersection, tangents at both the curves are also perpendicular.

The analytic function f2) = u (x, y) + iv(x, ) consists of two families of curves, u(x, y) = c;and vx, y) = c,
which form an orthogonal pair.

U(x, y) = C1
au ou
) — aX+—-ady -
ox KTy Y =0
dy ou /ou
ax = Tax/ay” (say) |
‘V(-"'v y) - C2 .
v te1%
2de+ 2 gy
o Ty Y =0
dy _ v [ov _
ar - ax/ay =M (say)
for orthogonality m,m, = _9du jou x _ov jov
1 ox/ oy ax/ ay

we know that, for an analytic function

u v au_ o
ox ay' oy ox

weget, mym, = -1
= Thecurvesu(x, ¥) = ¢c;and v(x, y) = c,, are orthogonal.

4.7 Complex Integration

4.7.1 Lineintegralin the complex plane

As in calculus we distinguish between definite integrals and indefinite integrals or antiderivatives. An
indefinite integral is a function whose derivative equals a given analytic function in a region. By known differentiation
formulas we may find many types of indefinite integrals.




Complex definite integrals are called (complex) line integrals. They are written as

jcf(z)dz

Here the integrand (2) is integrated over a given curve Cin the complex plane, called the path of integration,
We may represent such a curve C by a parametric representation.

(1) | x(t) = x(t) + iy (0 (ast<p)
The sense of increasing fis called the positive sense on C, and we say that in this way, (1) orients C

We assume C'to be a smooth curve, thatis, C has a continuous and nonzero derivative Z = dz / dt at each
point. Geometrically this means that C has a unique and continuously turning tangent.

4.7.2 Definition of the Complex Line Integral
This is similar to the method in calculus. Let Cbe a smooth curve in the complex plane given by (1), and Jet
f(z) be a continuous function given (at least) at each point of C. We now subdivide (we “partition”) the interva|
ast<bin(1) by points
t(=a), t, .., b, t (=b)
where {, < t, - - - < t.. To this subdivision there corresponds a subdivision of C by points
Zoy Zysoos Zpqy 2, (= 2)
where Z;= Z(t ) On each portion of subd;wsmn of Cwe choose an arbitrary point, say, a point €, between z,
and z, (that is, §1 z(z‘)) where t satisfies {; < t< t,), a point {, between z, and z,, etc. Then we form the sum

n
) - S, = n521f(gm)AZm where Az, =z -z

We do this foreach n=2, 3, - - - in a completely independent manner, but so that the greatest| Atnj =] b=t ]
approaches zero as n—» oo, This amphes that the greatest| Asz also approaches zero because it cannot exceed
the length of the arc of Cfrom z 110 Z_ and the latter goes to zero since the arc !ength of the smooth curve Cig
a continuous function of t. The limit of the sequence of complex numbers S,, S, - - - thus obtained is called the line
integral (or simply the integral) of z) over the oriented curve C. This ‘

Complex line integral

curve C is called path of integration. The line integral is denoted by

@ [ @0z orby §,f(2)dz

it Cis a closed path (one whose terminal point .Z coincides with its initial point Z,, as for a circle or an
8-shaped curve).

General Assumption. All paths of integration for complex line integrals are assumed to be piecewise
smooth, that is, they consist of finitely many smooth curves joined end to end.

4.7.3 First Method: Indefinite Integration and Substitution of Limits

This method is simpler than the next one, but is less general. It is restricted to analytic functions. Its formulg
is the analog of the familiar formula from calculus



[ = Fib)-Fla) [F(x) = fx)].

Theorem 1: (Indefinite integration of analytic functions)

Let f{z) be analytic in a simply connected domain D. A domain D is called simply connected if every
simple closed curve (closed curve without self-intersections in D encloses only points of D). Then there exists an
indefinite integral of {z) in the domain D, that is, an analytic function Az) such that F(2)=1fz)in D, and for all paths
in D joining two points z, and z,in Dwe have

4
@ J f2)dz = F(z))~ Flz,) [F(2) = (2)]
20

(Note that we can write z; and z, instead of C, since we get the same value for all those C from zyto z,).

This theorem will be proved in the next section.

Simple connectedness is quite essential in Theorem 1, as we shall see in Example 5. Since analytic
functions are our main concern, and since differentiation formulas will often help in finding A(z) for a given
2) = F(2), the present method is of great practical interest.

It f2) is entire, we can take for D the complex plane (which is certainly simply connected).

T+ 1+i

1
Example 1. f 2°dz = -7 = l(1+i)3 :§+§i
5 3 b 3 3 3

143 )

Example 2. f Coszaz = sinz}f’m =2 sinmi = 2i sinhn = 23.097i
e i e

8~3mi 8-3mi

Example 3. J‘ eZ/ZdZ — pgil? = 2(eA-3mil2 _ e4+m‘/2) -0
+7
B+mi

Since €7 is periodic with period 2.

4.7.4 Second Method: Use of a Representation of the Path
This method is not restricted to analytic functions but applies to any continuous complex function.
Theorem 2: (Integration by the use of the path)

Let Cbe a piecewise smooth path, representad by z = z(1), where a< t< b. Let {z) be a continuous function
on C. Then

o . az
(5) | M2z = [fz0] At (z = -d?)
a
Proof: The left side of (5) is given in terms of real line integrals as fc(u dx-=v dy)+ ifc(u dy +v dx). We
now show that the right side of (5) also equals the same.
We have z = x + iy, hence 2z = % +iy . We simply write u for ulx(t), (] and vfor vix(t), y(H)]. We also have
dx =xdt and dy = ydt.

Consequently, in (5)
b

[flz() 2010t

a

(U+iv)x +iy)dt = fc[u dx—vdy+i(udy +v dx)]

it
— Q) S

i

(Udx—v ‘y)+z.‘ch(u dy +v dx)

B

C

2




steps in applying Theorem 2

1. Represent the path Cin the form z(t) (a< t< b).

2. Calculate the derivative 2(t) = dz/d .

3. Substitute (1) for every zin f(z) (hence x(#) for x and () for y).
4. Integrate f{z(t)]2(t) over tfrom ato b.

Example 1: A basic result: Integral of 1/z around the unit circle

We show that by integrating 1/z counterclockwise around the unit circle (the circle of radius 1and center 0),
¢ obtain

(6) c% = Omi (Cthe unit circle, counterclockwise).
z

This is @ very important result that we shall need quite often.
Solution: We may represent the unit circle Cin the form

Z(f) = cost+isint= et (0<t<2m),
so that the counterclockwise integration corresponds to an increase of t from 0 to 2n. By differentiation,

"t) = ie" (chain rule) and with fz(1) = 1/2(f) = et we get from (10) the result

dz 2n o 2n
zo- j e ligldt = f ot = Oni
¢z 0 0

Check this result by'using z(#) = cos ¢ + i sin ¢.

Simple connectedness is essential in Theorem 1. Equation (4) in Theorem 1 gives O for any closed path
ecause then z, = z,, so that H{z,) ~ Hz,) = 0. Now 1/zis not analytic at z = 0. But any simply connected domain
ontaining the unit circle must contain z = 0, so that Theorem 1 does not apply—itis not enough that 1/zis analytic

1 3 . .
ran annulus, say > < [z[ < > because an annulus is not simply connected!

Example 2: Integral of integer powers

Let f(2) = (2~ z,)™ where m is an integer and Zy a constant. Integrate counterclockwise around the circle C
fradius p with center at z, (Fig. below)

Solution: We may represent C in the form

Z(l) = zy+p(cos t+isin f) = z, + pet (0<ig2n).
Then we have 4
(2=2z)" = pregm dz = ipett dt

and obtain

an ) ) 2
Polz-20)0"dz = [p"eMipeat = jp™1 [ g gy
0 0

By the Euler formula, the right side edua!s

2n 2n
ip™ f cos(m+ Nt dt +z‘f sin(m+ 1)t dt |. Path in Example 2
0 0

It m=-1, we have p™" =1, cos 0 = 1, sin 0 = 0. We thus obtain 2ni. For integer m # 1 each of the two
tegrals is zero because we integrate over an interval of length 27, equal to a period of sine cosine. Hence the
isult is




m o |2mi (m=-1),
(7) g‘jc(z %) dz= {o (m # -1andinteger)

Dependence on path. Now comes a very important fact. If we integrate a given function f(z) from a point
Z, to a point z, along different paths, the integrals will in general have different values. In other words, a complex
line integral depends not only on the endpoints of the path but in general also on the path itself. See the
next example.

Example 3: Integral of a non-analytic function. Dependence on pafh
Integrate (z) = Re z=xfromO0to 1 + 2

(a) along C*inFig. below,

(b) along C consisting of C, and C,.

Solution:

(a) C*canbe represented by z(t) =t + 2it (0<t<1). Hence Z(t)=1+2i and ()] = x(1) = ton C*. We now

calculate
fRezdz =J1t(1+2i)dt = l(1+2i) = l+1’
o 0 2 2
{b) We now have
Cyzty =1, 2 =1, AAH)=x(h=t (0<ts)
Cy: ;(t)=1 + it, 2D =i, fA))=x(D)=t (0<t<2)

We calculate by partitioning the path C into two paths C, and C, as shown below

1 2
[Rezdz = [ Rezdz+{_ Rezdz = [tat+[1idt = L
c - “”3 0 0 2

Note that this result differs from the result in (a).

Paths in Example 3

4.8 Cauchy’s Theorem ,
If fz) is an analytic function and f(z) is continuous at each point within and on a closed curve
jcf(z)dz = 0. '
Writing £2) = u(x, y) + iv(x, y) and noting that dz = ax + idy

‘ fc f(z2)dz = Ic(udx —vdy) + ifc(vdx + udy)

Since f(z) is continuous, therefore, éﬂ ou _a_z_a_z are also continuous in the region )

ax’ oy’ ox 9y

Py

Hence the Green's theorem can be applied to (i), giving



fcf(z)dz = ~ffc[%+g§}dx dy + ijji%—?-%]dx dy )

Now f(2) being analytic, uand vnecessarily satisfy the Cauchy-Riemann equations and thus the integrands
of the two double integrals in (i) vanish identically.

Hence, f f o f(z)dz = O.

Obs. 1 The Cauchy-Riemann equations are precisely the conditions for the two real integralsin (1) to be
. independent of the path. Hence the line integral of a function f(z) which is analytic in the region D, is independent
~ of the path joining any two points of D.

Obs. 2 Extension of Cauchy's theorem. If f(2) is analytic in the region D between two simple closed

curves Cand C,, then fcf(z)dz = fq f(z)dz .

To prove this, we need to introduce the cross-cut AB. Then ff(z)dz = 0 where the path is as indicated by

arrows in Figure below i.e. along AB—along C, in clockwise sense and along BA—along C in anti-clockwise sense
e [ f(2)dz+ | o2z + [ A2z + [f(2)dz = 0.
But, since the integral along AB and along BA cancel, it follows that

f(2)cx+ | o f@)z = o

GRS
| N
Reversing the direction of the integral around C, and transposing, we get R

[ flalaz = [ )z

GERARAAX KR,
e

XXX
0’0‘0’0‘0’0’0’0’0’0’0‘0’0’0’0‘0‘@:0.

each integration being taken in the anti-clockwise sense.
It C,, C,, Cs,..., be any number of closed curves within C (Figure below), then

jc f(z)dz = f c f(2)dz + f 5 f(z)dz + j o f2)dz+...

S
XX ( KXAXXNX
(XXX 000000,
0‘0.0‘@"‘ AR

e x X XXX NG
R KR
$
R Ca B
DT e 2K
A
RSA | TR0
XXX MR
RO YOS
R
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4.9 Cauchy’s Integral Formula

If £2) is analytic within and on a closed curve and if a is any point within C, then

1 ¢ H2)az
2midc z-a

fa) =

Consider the function f2)/(z~ a) which is analytic at all points within Cexcept at z = a. With the point a as
centre and radius r, draw a small circle C, lying entirely within C.

Now f2)/(z - a) being analytic in the region enclosed by C and C,, we have by Cauchy'’s theorem,

J f(2) dr = f f(2) a For any point on C,,

Cz~a Ciz-a z—a=re® and dz = ire®do
_ flavre®) o = . " .
- fcx_r_;é.w-zre do = if , fla+re®)oh 0




In the limiting form, as the circle C, shrinks to the pointa, i.e. as r— 0, the integral (i) will approach to

2n
. : , r f(z) .
if of@ce = ifia) { b = 2mif(a). Thus Jc}—j;dz = 2nif{a)
. 1 f(z) : ;
ie. a = — dz o
' @) 2ni'Cz~a (i
which is the desired Cauchy’s integral formula.
Cor. Differentiating both sides of (2) w.r.t. a,
’ 1 o[ f(z) 1 f(z2)
fla) = —| — Gz = — dz. .. (i
2niJCaa[z~a} 27tl'fc(z~a)2 (i)
- ” 21 f(z) ‘
Similarly, fla) = —— - (iv
y (a) Zrd Eyme (iv)
[
and in general, f"a) = A —I(“Z-)—wdz (V)
Omi C(Z _ a)/‘l+1
Thus it folliows from the results (2) to (5) that if a function £z) is known 1o be anaiytic on the simpie closed
curve Cthen the values of the function and all its derivatives can be found at any point of C. Incidently, we have
established a remarkable fact that an analytic function possesses derivatives of all orders and these are
themselves all analytic.
4.10 Series of Complex Terms
1. Taylor's series: If {z) is analytic inside a circle C with centre at a, then for zinside C,

7 n
12) = fla)+ F(a)z~ a>+f§2(z~ a2 + ...+%?l(z- a+.. )
2. Laurent'sseries: If f{2) is analytic in the ring-shaped region R bounded by two concentric circles Cand

C, of radii rand r, (r > r,) and with centre at a, then for all zin R
fz)=ay+a(z-a)+az~af +..+al(z-a)" +a,(z-a) +a,(z-a) 2+ ..

1 ft
““7.[1“ :

1] 271:. (f“a)n-ﬂ

I"being any curve in A, encircling C,.

(a)
nl

)

a)

Obs. 1. As f(2) is analytic inside, G, then a, = ‘2“1’”4% i f — at#
Ui -

n
However, if f(z) is analytic inside G, then a_, = 0; a, = —21—35r i f(t;m at = f,g,a>
Ti - a !

and Laurent’s series reduces to Taylor's series.
Cbs. 2. To obtain Taylor’s or Laurent's series, simply expand fz) by binomial theorem, instead of finding &, .
by complex integration which is quite complicated. ‘



Obs. 3. Laurent series of a given analytic function f(z) in its annulus of convergence is unique. There may be
litferent Laurent series of {z) in two annuli with the same centre.

}.11 Zeros and Singularities or Poles of an Analytic Function

111.1 Zeros of an Analytic Function
Definition: A zero of an analytic function f(z) is that value of zfor which z)=0
If (z) is analytic in the neighbourhood of a point z = a, then by Taylor's theorem

Rz)=a,+a (z-a)+a(z-a)+... +a,(z~a)"+ .. where a, = %@
fay=a,=a,=..=2a,,=0buta, =0, then f(2) is said to have a zero of order mat 7 = a.
When m = 1, the zero is said to be simple. In the neighbourhood of zero (z = a) of order m.
R2) = a,(z-a)"+a,, (z-a)™ +. e
= (z-a)7¢(2)
where, o2 = a,+a,, (z-a)+ ..

Then ¢(2) is analytic and non-zero in the neighbourhood of z = a.

Example 1.

Poles and Essential singularities
The function

L3

3
2Az-2)° (z-2)7

f2) =

has a simple pole at z = 0 and a pole of fifth order at z = 2. Examples of functions having an isolated essential
singularity at z = 0 are

e'r = i LI 1+—1~+—~1-«+
asontz” z 2Iz
| = ~1I7
and sinl = ”‘"‘*(—)“m
z aso@n+ iz
11 + 1—~~+
Tz 318 B

Note: The classification of singularities into poles and essential singularities is not merely a formal matter,
because the behaviour of an analytic function in a neighborhood of an essential singularity is entirely from that

in the neighborhood of a pole.

Example 2.

Find the nature of singularities of following functions

1 3
@ f2) = Az-20 (z-27

Example 3.

(c) sinl

(b) ez
7

Find the nature and location of singularities of the following functions:

Z-sinz

(a) >

Z

(b) (z+1) sin»l——

1
72 (©) Cos 2z -sinz




Solution:
(a) Here z=0is a singularity.

z-sinz 1 B 5 S
Also — = 2| 2t
z< z° 3t 507
z_ 2 2
BT
Since there are no negative powers of z in the expansion, z = 0 is a removable singularity.
- 1
Z+ 1) sin—— = (t+2+1) sin- =7
(b) (z+7) - (t+ )smt,vvheret z-2

[

11 1)
t+3){=~——=+ ——=— ...
( ){r 3 st

i
-

|

|

|

|
+

1

1}

+ - - +...
z-2 6(z-2° 2z-2)P

Since there are infinite number of terms in the negative powers of (z - 2), z = 2 is an essential ;
singularity.

(c) Poles of f(z) = are given by equating the denominator to zero, i.e. by

Ccos z-sinz
cos z-sinz=0ortan z=1or z=n/4. Clearly z = n/4 is a simple pole of ).

4.12 Residues

The coefficient of (z— a)™ in the expansion of fz) around an isolated singuilarity is called the residue of {7)
at that point. Thus is the Laurent’s series expansion of f(z) around z = a i.e. f(z) = a, + a
(z-a)+az-a)f+..+a,(z-a) " +a,(z-a)2+..., the residue of fz) at z= ais a .
1 f(z)

Since, an = “2—7{; mdz

Q
i

1
. = Resfla) = -é—;t?fcf(z)dz

2ni Res f(a) ()

Sy
O
=2
N
3
N
1

4.12.1 Residue Theorem
If Az) is analytic in a closed curve C except at a finite number of singular points within C, then

fcf(z)dz = 2ni x (sum of the residues at the singular points within C)

Let us surround each of the singular points a,, a,,..., a, by a small circle such that it encloses no oth
singular point. Then these circles C,, C,......,C, together with C, form a muitiply connected region in which £2)
analytic.



- Applying Cauchy's theorem, we have

| o/ f(2)0z+ [ CQ f(2)cz +... . fl2)oz loy (i)]

| f(2)dz

i

2ni [Res fa,) + Res fa,)+...+Res fla,)]
which is the desired result.

4,12.2 Calculation of Residues
1. If {z) has a simple pole at z = a, then

Resfla) = Lt [(z-a)f(2)] )

Z->a

Laurent’s series in this case is

2) = cy+ c(z—a) + c(z-a)? ... + c_4(z~ a)!

Multiplying thrbughout by z - a, we have
(z—a) (z) = c)(z-a) + cy(z—af + .. +C

Taking limits as z— a, we get

ZLta[(z~a)f(z)] = ¢, = Res f(a)

2. Another formula for Res f{a):

Let 2) = $(Dhw(2), where y(2) = (z—- a) Hz), Ra) # 0.
_ (z-a)o(a)+(z-aw(a)+.....]
Then zli}a((z -8)(2) [ w(2)] = zl:;[a w@+(z-ay'@+....
al@y+(z-ap@-+.... ‘ _
= @ ai@s .., Sreena =0
Thus, Res fla) = 0(a)
y'(a)
3. If z) has a pole of order nat z = a, then
B 1 j dn~1 p
Res f(a) = -7 [FKZ“@ f(Z)]}Z:a

Obs. In many cases, the residue of a pole (z = a) can be found , by putting z = a+tin f(2) and expanding
it in powers of t where | t| is quite small.




Q.1 Consider likely applicability of Cauchy’s Integral
Theorem to evaluate the following integral counter
clockwise around the unit circle c.

= gf)sec zdz,
C

Zbeing a complex variable. The value of 7 will be
(@) 1=0:singularities set = ¢

2n + 1

(b) I=0: singularities set= {i mn=0,1 2}

(¢) I=m/2: singularities set = {+ nm; n= 0,1 2.}

(d) None of above
[CE, GATE-2005, 2 marks]

J2
D
0

(b) —jm
(d) =
[EC, GATE-2007, 2 marks]

Q.6 Theintegral gﬁf(z)dz evaluated around the unit
Q.2 Using Cauchy’s integral theorem, the value of the
integral  (integration being taken in circle on the complex plane for f(z) = cos 2 is
3 , N z
counterclockwise direction) (ﬁ z E.Sdz is (a) 2m (D) 4mi
82 —i (c) —2ni (d) 0
() %__4751. (b) g—an’ [ME, GATE-2008, 2 marks]
() %—Bm (d) 1 Q.7 The residue of the function#(z) = 21 ;
SE (2+2)(z~2)
[CE, GATE-2006, 2 marks] :
atz=21is
, 1 1
Q.3 The value of the contour integral gg >z (@) 35 (b) 5
: =2 2 T4
in positive sense is 1 1
(a) @/2 (b) ~m/2 (c) I (d) )
(c) —inf2 (d) /2 [EC, GATE-2008, 2 marks]
[EC, GATE-20086, 2 marks]
Q.8 An analytic function of a complex variable
: Z=x+liyisexpressed as 2) = u(x, W,
Q.4 The value of (f)———d{—- where C is the contour ' ,ly P 12) (X y)flvh )
C<1+22) where i = /7. If u = xy, the expression for v
lz-i2] = 1is should be
(a) 27"[:1_1 (b) TC. y (\ + y)Z X2 —)/2
(c) tan™'z (d) mitan~'z (a) A7)k (b) = +k
[EE, GATE-2007, 2 marks] 2 2
» 2 2
Q.5 If the semi-circular contour D of radius 2 is as ) y —x k (d) (x—)/)2 Tk

shown in the figure, then the value of the integral

1 .
98(32 - 1)a’s is

D

2 -
[ME, GATE-2009, 2 marks] :



cos(2r 2) Q.15 A point zhas been plotted in the complex plane,

2z-WYz- 3)dz as shown in figure below.

(where Cis a closed curve glven bylzl=1)is M nit circle
a) —mi o)
(@ (0 2 | d L<

1.9 The value of the integral f

{c) 2mi (d) m \J -+ Re
5
[CE, GATE-2009, 2 marks]
o1
.10 The analytic function  f(z) = 2_11 has The plot for point 5
75+
singularities at 1 Im
(@ 1and -1 (b) 1andi U ircte ‘ il iree
(c) 1and —i (d) i and - i /'\<
[CE, GATE-2009, 1 mark] \J Re
Y,
1+ f(z
11 f2) = Cy+ Cyz then ¢ I~
given by unit circle Im Unit circle tm Unit circle
(a) 2nC, (b) 2n(1+ C,)
(c) 2nfC, (d) 2mj(1+ C,) - Re _
[EC, GATE-2009, 1 mark] . .
12 The modulus of the complex number (?+ 41] is [EE, GATE-2011, 1 marks]
— 1
(a) 5 (b) /5 Q.16 The value of the integral Sﬁ—é—ii{%j dz where
(22 +4z+
(© 1/5 (d) 1/5
' ’ (2) 0 (b) 1/10
13 The residues of a complex function (c) 4/5 (d) 1
. [EC GATE-2011, 1 mark]
X(z) = m at its poles are |
Q17 If x=~/=1, then the value of x* is
11 11 (@) e (b) e
(a) > "% and 1 (b) 55 and -1 (©) x (d) 1
[EC, EE, IN, GATE-2012, 1 mark]
(c) 21 1 and -«g— (d) ;— -1 and —23- 1 5
Q.18 Given f(2)=——-—"—|f Cis a counter
[EC, GATE-2010, 2 marks] Z+1 7+3
lockwi thinthe z-pl hthat|z+1] = 1,
14 For an analytic function, fx + iy)=uli, Y)+ivii, y), clockwise palhinthe z-plane such thatz+1]
o R Ao - :
uis gllver? Dy U= 3x% - 3. The gxpressmn for v, the value of “‘“fﬁ 2dz is
considering K to be a constant is c
~ 32 -~
a) 3P -3+ K (b) Bx —~ 6y + K (@) - 2 (b) - 1
(c) By ~6x + K (d) Bxy + K © 1 (d) 2
[CE, GATE-2011, 2 mark] [EC, EE, IN, GATE-2012, 1 mark]




Q.19 Square roots of —i, where i =+/-1, are
(a) i, ~i

(b) COS(—«%J + isin(-ﬁ—) , COS(%E) + isin(%}
(©) COS(%) +isin(6%t), cos(%ﬁj +z’sin(§-) '
(d) COS(%]HSiﬂ(—%),COS(—%}+isin(%—3

[EE, GATE-2013, 1 Mark]

Q.20 The complex function tan h(s) is analytic over a
region of the imaginary axis of the complex s-plane
if the following is TRUE everywhere in the region
for all integers n

2.2

(8) xy + ¢ (b) ‘—‘—;y—+ c
Y

(c) 2xy + ¢ (d) .(i‘méy_)«. e

[ME, GATE-2014 : 2 Marks]

Q.25 The argument of the complex number %ﬂ:,where
—1
i= J/-1,is

(a) -

o
(c) 5
[ME, GATE-2014 : 1 Mark]

Q.26 Let S be the set of points in the complex plane
corresponding to the unit circle. (That is,
S={z:|z| = 1}. Consider the function f2) = zz
where z+ denotes the complex conjugate of z.
I'he (z) maps S to which one of the following in
the complex plane
(a) unitcircle
(b) horizontal axis line segment from origin to (1, 0)
(c) the point (1, 0)

(d) the entire horizontal axis
[EE, GATE-2014 : 1 Mark]

(a) Re(s)=0 (b) Im(s) # nm
(c) Im(s) = m (d) Im(s) # Q—’%—M
[IN, GATE-2013 : 1 mark]
2
raYNs X /‘:Z .—4,J— o~ PO S Ui (U VGY I Uy (SN TR v Vi UG DN [
Wi \j) 5 Uz gvdilddicU allliUIOUKRWISEe alOuniu thic
z5+4
circle lz—il = 2, where i = -1, is
(a) —4n (b) O
c)2+m (d) 2 +2i
[EE, GATE-2013, 2 Marks]
Q.22 z=2- l can be expressed as
=B+
(@) -0.5-0.5i (b) -0.5+0.5i
(c) 0.5-05i (d) 0.5 + 0.5

[CE, GATE-2014 : 1 Mark]

Q.23 An analytic function of a complex variable
z=x +iyisexpressed as {z) = u(x, y) + i Vx, V),

where i = \[-1. If u(x, y) = 2xy, then Wx, y) must

be
(a) x° + y? + constant
(b) x% - 2 + constant
(c) —x° + 2 + constant
(d) — x% — 2 + constant
[ME, GATE-2014 : 2 Marks]

Q.24 An analytic function of a complex variable
Z=x+iyisexpressed as f{2) = ulx, ¥) + iv(x, y),

where i =~/-1. If u(x, y) = x°— 2, then expression
for v(x, y) interms of x, y and a general constant
cwould be

Q.27 Altthe values of the multi-valued complex function

1, where i = /-1, are
(&) purely imaginary
(b) real and non-negative
(c) onthe unit circle
(d) equal inreal and imaginary parts
[EE, GATE-2014 : 1 Mark

Q.28 The real part of an analytic function f(z) where
Z=x+ jy is given by eV cos(x). The imaginary
part of £2) is
(a) e¥cos(x)
(c) —&¥sin(x)

(b) eVsin(x)
(d) —e¥sin(x)
[EC, GATE-2014 : 2 Marks]

3i
Q.29 If z is a complex variable, the value of fgf is-
5

(@) - 0.511 - 157
(c) 0.511—1.57i

(b) ~0.511 + 1.57i
() 0.511 + 1.57 1
IME, GATE-2014 : 2 Marks]



Z2

72 -1’

.30 Integration of the complex function f(z) =

in the counterclockwise direction, around

lz—-1 =1,is
(a) —~mi (b) O
(c) mi (d) 2mi

[EE, GATE-2014 : 2 Marks]

Q31 The Taylor series expansion of 3 sink + 2cosxis ___

3
(@) 2+3x-x2~—%+~--

(o) 2—3x+x2—%+-~~

(c) 2+8x+x2+£2—+~-~

(d) 2—3x—x2+%+---

[EC, GATE-2014 : 2 Marks]

Q.32 The series Y 1 converges to
J=on!

(b) V2
(d) e
[EC, GATE-2014 : 1 Mark]

(@) 2in2
(c) 2

Q.33 Given two complex numbers z, =5+(5J§)z‘

2
and Z = %+2i the argument of 2L in degree

) Zs
iS .

(a) O (b) 30

(c) 60 (d) 90

[ME, GATE-2015 : 1 Mark]

Q.34 Given {2) = g(2) + h(2), where f, g, hare complex
valued functions of a complex variable z. Which
one of the following statements is TRUE?

(a) It £z)is differentiable at z,, then g(2) and h(z)
are also differentiable at z,.

(b) If g(2) and h(2) are differentiable at z,, then
f(z) is also differentiable at z,

(c) If f(z) is continuous at z, then it is
differentiable at z,.

(d) ¥ () is differentiable at z,, then so are its
real and imaginary parts.

[EE, GATE-2015 : 1 Mark]

Q.35 Let z = x + iy be a complex variable. Consider
that contour integration is performed along the
unit circle in anticlockwise direction. Which one
of the following statements is NOT TRUE?

. z .
a) The residue of atz=1is 1/2
(@) Z
b) Sﬁ 7%dz =0
1
dz =1
© onj
{d) Z(Complex conjugate of z) is analytical
function
[EC, GATE-2015 : 1 Mark]
az+b
Q.36 Let f(z) = pepp If Rz,) = f(z,) for all z, # z,,
a=2,b=4andc=25,then dshould be equal
to

[EC, GATE-2015 : 1 Mark]

Q.37 The value of ggjz—dz, where the contour is the
z

unit circle traversed clockwise, is
(a) ~2mi )0
(c) 2mi (d) 4mi
[IN, GATE-2015 : 1 Mark]

Q.38 If C denotes the counterclockwise unit circle, the

value of the contour integral —é———c_fDF{e zZldzis____

[EC, GATE- 2015 2 Marks]

Q.39 If Cis a circle of radius r with centre z,, in the
complex z-plane and if nis a non-zero integer,

dz
then 9S“f“")n“ﬁ equals

zZ-2Z
(a) 2nry (b) 0
{c) % (d) 2nn

[EC, GATE-2015 : 1 Mark]

Q.40 Consider the following complex function

9
{0
(2): (z-Wz+2)°

Which of the following is one of the residues of
the above function?



9
(@) -1 ©) 75
(d) 9
[CE, GATE-2015 : 2 Marks]
Q.41 In the neighborhood of z = 1, the function f(2)
has a power series expansion of the form

() =1+1-2)+(1-272+
Then f(2) is

1 -
@z b =

[IN, GATE-2016 : 1 Mark]

Q.42 Consider the complex valued function
f(2) = 22+ bl z|3 where zis a complex variable.
The value of bforwhich the function f(z) is analytic
is ,

[EC, GATE-2016 : 1 Mark]

Q.43 2) = u(x, y) + ivx, ¥) is an analytic function or
complex variable 7z = x + iy where i = J-1
u(x, y) 2 xy, then v(x, y) may be expressed as
(a) —x° + V2 + constant -
(b) x° — y? + constant
() x? + y? + constant
(d) —(x® + y?) + constant

@) ~T sein(1) () -1 oeosﬁ)
@ S0 @ 20

[ME, GATE-2016 : 2 Marks]

Q.47 The value of the integral
2z+5

$
(Z~i)(z2 —4z+5)
2

overthe contour |zl = 1, taken in the anti-clockwise
direction, would be

dz

24mi 487i
a b
@) 13 ®) 13
24 12
— d —
(© 3 (@) P
[EE, GATE-2016 : 1 Mark]
Q.48 The value of the inteqral —fz +1 7 where 7
27tjcz -1

is a complex number and Cis a unit circle with
center at 1+ 0/ in the complex plane is
[IN, GATE-2016 : 2 Marks]

Q.49 In the following integral, the contour C encloses

P

[ME, GATE-2016 : 1 Mark]

Q.44 Afunction fof the complex variable z = x + iy, is
given as flx, y) = ulx, y) + iv(x, y), where
Ux, y) = 2 keyand V(x, y) = x° - 2. The value of
k, for which the function is analytic, is
[ME, GATE-2016 : 1 Mark]

Q.45 Consider the function (z) = z + z* where zis a
complex variable and z+ denotes its complex
conjugate. Which one of the following is TRUE?
(a) f{z)is both continuous and analytic

(b) f(2) is continuous but not analytic

(c) f(z) is not continuous but.is analytic

(d) #z) is neither continuous nor analytic

[EE, GATE-2016 : 1 Mark]

Q.46 The value of the integral

sinx

o5t
X+ 2x 42

evaluated using contour integration and the
residue theoremis

the points 2njand —2mj - —

—_— Th
anD(Z 2nj)3 az. e

value of the integral is
[EC, GATE- 2016 2 Marks]

Z
Q.50 The values of the integrall -Lﬁ © gz alonga
enj oz -

closed contour cin anti-clockwise direction for
(i) the point z, = 2 inside the contour ¢, and
(i) the point z, = 2 outside the contour ¢,
respectively, are
{a) (i)2.72, (i) O
(cy ()0, (272

(b) (i) 7.39, (i) O

{d) (i) 0, (ii) 7.39
[EC, GATE-2016 : 2 Marks]
sin(z)

z

Q.51 Forf(z) = , the residuc of the pole at z= 0

[EC, GATE-2016 : 1 Mark] -

37-5

Q.52 The value of Efj md7 along a closed

path I'is is equal to (4mi), where z = x + iy and
i = J-1.The correct pathT'is



/’\i«v
@
y
N
AN
y
N
Yy
r
OO

[ME, GATE-2016 : 2 Marks]
Q.53 If f(z) = (x? + ay?) + ibxy is a complex analytic
‘ function of z = x + iy, where i = ./Z7, then
@a=-1,b=-1 (b)a=-1b=2
(c)a=1,b=2 da=2b=2
[ME, GATE-2017 : 2 Marks]
Q.54 Let z = x + jywhere j = /27 Then Ggsz =
(b) cosz
(d) sinz
[IN, GATE-2017 : 1 Mark]

(a) cos z

(c) sin z

Q.55 The value of the contour integral in the complex-

plane
4523 ;222 +3.,
along the contour |z|= 3, taken counter-clockwise
is
(@) —18mi by o
() 14mi (d) 48 mi

[EE, GATE-2017 : 2 Marks]

) 22 41
Q.56 For a complex number z, lim
P 775 4 27 ~ i(Z°+ 2)

s
(a) ~2i (b) ~i
(c) i (d) 2i
[EE, GATE-2017 : 1 Mark]

Q.57 Consider the line integral 1:=fc(x2 +iy?)dz,

where z=x + iy. The line cis shown in the figure
below.

H
]
3
1
i
i
1
1
i
i
1
|
I
1
—
—_
~.

PR U VO,

(0,0)

The value of I is

(b) gi

(o 3

[EE, GATE-2017 : 2 Marks]

Q.58 The residues of a function

f(z)=
@) (z=4)(z+1)°
are
o= -1 1 -1
@) 57 and 355 (B) 5p and o
-1 1 1 -1
(c) 57 and 5 (d) I and 5

[EC, GATE-2017 : 1 Mark]

Q.59 Anintegral I over a counter-clockwise circle Cis
given by
2

z2°=1,
= gﬁczzﬂe az .

If Cis defined as |zl = 3, then the value of I is
(@) =ni sin(1) (b) —2misin(1)
(c) ~3misin(1) (d) —4nisin(1)

[EC, GATE-2017 : 2 Marks]




Q.60 If W= ¢ + iy represents the complex potential
for an electric field.

. 22 WM}C
Giveny = x° —y° +—

—, then the function ¢
x° 4y

is
@ —2xy+—L—4C

X%+ y?

(b) 2xy + 2)/ 2+C

Xty
x
—2xy + +C
(c) y 24y
(d) 2xy + 2x 2+C
X +y

[ESE Prelims-2017]

3
(z-Yz-2)(z-3)

Q.61 Theresidue of f(z) = atz=3

is
C 101
@ -8 6 15
27
(© 0 O

[ESE Prelims-2017]

Q.65 Let z be a complex variable. For a counter-
clockwise integration around a unit circle ¢,
centered at origin.

arz = Ami
bgr g% = Am
the value of Ais
2 1
(a) 5 (b) >
4
(c) 2 @ ¢

[ME, GATE-2018 : 2 Marks]
Q.66 The contour C given below is on the complex

plane z = x + jy, where j=/-1.

Y
C
(/"\ /“\\

1 az
The value of the integral —
g 7 Cﬁzz

c“ 7

[

] .

Q.62 Evaluate: f—g‘z—— where cisx? + )2 = 1.
" Zsinz

(@) 1 {(b) 2
)0 (d) -1
[EE, ESE-2017]
Q.63 The sum of residues of f(z) = —————%—Z—-- at
‘ (z—-D(z-2)
its singular point is
(a) -8 {(b) 4
)0 (d) 4

[EE, ESE-2017]

Q.64 F(z) is a function of the complex variable
Z=x + iy given by
FZz) =iz + k Re(2) + i Im(z)
For what value of k will F(z) satisfy the Cauchy-
riemann equations?
(@ 0
(c) -1

(o) 1
(d) y
[ME, GATE-2018 : 1 Mark]

[EC, GATE-2018 : 2 Marks]

Z+1 .
dz in counter

Q.67 The value of the integral g} ;
zc-4

clockwise direction around a circle Cof radius 1

with center atthe point z = -2 is

~Tc_i

(a) 5

(b) 2mi

© -2

5 (d) —2mi

[EE, GATE-2018 : 1 Mark]

Q.68 If Cisacircle |2 =4 and f(2)= WMZ“.Z.MZ
(% -3z+2)

then gfjf(z) az is
C
(b) O

(d) -2
[EE, GATE-2018 : 2 Marks]




Q69 Let fi(z) = 2% and £(2) = Z be two complex Q.72 If Z = e * % Fax — by): the value of

variable function. Here 7 is the complex conjugate 57 87

of z. Choose the correct answer. b- FN +a 5}7 1S

(a) Both f,(2) and f,(2) are analytic

(b) Only ,(2) is analytic (a) 22 (b) 2a

(c) Only £,(2) is analytic (c) 2b (d) 2abz

(d) Both £,(2) and f,(z) are not analytic [EE, ESE-2018]

[IN, GATE-2018 : 1 Mark]

Q.73 Evaluate 45~—~3~1~——-dz where ¢ is the
Q.70 In the Laurent expansion of f(z) = S f2 =)z 3)
e (z-N(z-2) rectangular region defined by x =0, x = 4, y = —1
valid in the region 1<|z| <2, the coefficient of and y =1
1 (a) 1 (b) O
—5 s
’ ©) 5i (c) (3 + 2i)
1 C) =i TS + 20
(@) 0 () 5 2
() 1 (d) -1 [EE, ESE-2018]
[ESE Prelims-2018]
. . _1-e® EEEE
Q.71 What is the residue of the function—,— at its
z
pole? .
4 4
@ 3 (b) 3
2 2
© -5 @ 3

[ESE Prelims-2018]




) )

) ) )
() 29. (b) 30. () 31. (& 32. (d)
(b) 38. (0) 39. (b) 40. (a) 41. (9
(a) 47. (b) 48. (1) 49. (-134)50. (b)
(c) 56. (d) 57. (b 58. (b) 59. (d)
(b) 65. (@ 66. (2 67. (a) 68. (b)
(0)

(
33. (@ 34. (o) 35 (d 36. (10
42. (0) 43. (@ 44. (-1) 45. (v)
51. (1) 52. (b) 53. (b) 54. (b)
60. (@ 61. (d) 62. (c) 63. (o
69. () 70. (d) 71. (b) 72. (d)

Cauchy's integral theorem s

L N SR C I
- e

i.e. @g(:z-);dz = 2ni fa)

1p2°-6
Now §.750 595‘(”_—)
3

Applying Cauchy’s integral theorem, using
fz) = 2% - 6,

|
/——\
N
g
P

i
| —
N\

g
TN
N |~
\xi @
|
[ep)
N
s
’r\a
“h

|
RN
2

i
|
I

1. (a) (d)
[seczdz = | dz LI !
; l cosz P +4  (z+2i)(z-2i0)
hfiIOO 913/;”9 ?t 32 /2. 72, + 3/2 Pole (0, 2) lies inside the circle | z—i| =2
Zy = (+ 2”” O e, e, WL, T ITE while pole (0, -2) is outside the circle | z—i| =2
None of thése poles lie inside the unit circle . .
2] =1 as can be seen from figure below:
Hence, sum of residues at poles = 0 ©.3)
- Singularities set = ¢ and /4‘:(;\
[ =2mi [sumofresidues of f(z) at the poles] 5
E
=2mix0=0 \ 0200;
2. (a)

0,-1)
@ (0,-2)

jcf(z) dz =2ni [Residue at those poles which
are inside C]

1 T
= 27i Res f(2i) = -
ni Res f(2i) 2m<21+21> 5
(b)
L 1
2241 (z-i)(z+1)

Poles at i and —i, i.e. (0, 1) and (0, -1)

2]
2

T, -1/2)




LA
2

Fromfigure of |z— /2] = 1 below we see that pole

(0, 1) ie.iisinside C, while pole (0, -1) i.e. —iis .

outside C.

So, = 2ni Res (i) = 27’ti-~———1—~—— = 9T
(i-0)(@+1)

(a)

1 1
e R (o i
= 21j x (Sum of residues)
pole s =~1is not inside the contour D, but s = 1
is inside D
residuc atpole s = 11is
o (s-19 1
)2

§

o1
&9 ds = 2n/><—2—=/7c

(a)

has simple pole at z= 0 and z = 0 is inside unit
circle on complex plane
~~Residue of z)at z=0

Lt f(Z)-Z- = |t cosz =1
z-0

2-0
|20z = omi (Residue at 7= 0)

= 21i.1 = 2mi
(a)

Since Lt 2{(Z~.’2)2 f(2)] is finite and non-zero,
Z —

fz)has a pole of order twoat z= 2,
Theresidue at z= ais givenforapole of order nas

1 n
Res fa) = o {W [(z-a)'f (Zﬂ}

Here n= 2 (pole of order 2)and a= 2

Res #(2) = % {-C% [(z-27 f(Zﬂ}

d 2 1
=1—|(z-2)
{dz { T i ﬂz

2

]

=2

] el

.2 1
(+2°® 32

(c)

fz) = u+ ivis analytic (given)
-~ it must satisfy the Cauchy-Reimann equations

u=v, L D)
and v, =~U, .. i)
Here since, u = xy(given)
= u = yand u,=x
Now substituting u, and uy(i) and (ii) we get

v, =Y ... (iid)
and V= e . iv)

Integrating (iif) and (iv) we can now get v as
follows:

= [ov = [yoy

y2
= V= ——2—+f(x) .. (v)
from (v) we have,
v, = f(x) o (Vi)
Since from (iv) we have,
vV, = =X
Substituting this is (vi) we get,
f(x) = —x
df
= —— =)
dx

= fdf = fmxdx

2

= f= :*g—”‘!*k
Now substitute this is (v) we get,
2 2 2 .2

D A AP e

Vo= 5 2+k, v 5 +k
(c)

cos(2nz)

H = | e
ere, I f0(22~1)(z~8) adz



[oos_(_z_gz_)] Residue at z =0
1 J“ (z-3) 1-27
=5 i residue = value of —————— atz =
SANERE] Z-0z-2)
Since, z=1/2is a point within | z| =1 (the closed 1-2%0 1
curve C) we can use Cauchy's integral theorem - 0-9(0-2) )
and say that )
Residue at z = 1
-3
2 \2 residue = value of 2% atz =1
cos(2nz) Az-2
where  f(z) = ==
(z-3) _ I=exd]
[Notice that f(2) is analytic on all pts inside o 1(1-2) -
|z = 1] Residue at z = 2
1
] cos(Zn % 5) _omi residue = value of 2% atz=2
= > /1 N s z-1)
57
_1-2x2 3 §
(2 = z-1_z-1 _ z-1
2241 -2 (z-i)z+i) «. The residues at its poles are —;-,1 and L
. The singularities arc at z = i and —i
1. (d) 4. (d)
1 f: u+iv
f2) = cy+c = . .
U= 3x- =3y
(ﬁ“r 12) 4, - for f to be analysis, we have Cauchy-Riemann
z conditions,
It has one pole at origin, which is inside unit circle du v 0
A
ox oy
So, @Mdz = 2nj[Residue of f(2) at z = 0] * Y
z ou  -dv il
= 2nj[1 + 40)] oy -
Since, f2)=C,+ CZ = f(0)=C, From (i) we have
Answer = 2nj(1 + )
6x = 9—\1
12. (b) 3y
7 3+4i (3+4i)(1+2i)
1-2i  (1-2i)(1+2i) = fov = [6wy
~5 +10i _
5 —1+2i V= Bay+f(x)
| 7] = rm‘““m 5 ie. v = Bxy + f(x) .. i)
, = Now applying equation (ii) we get
13. (c) u v
2 1-22 55; T
Az-N(z-2) { df'|
mevleso Aara B o W R s | = ~-6 -—~RY+_-—
PUICS ale Z =, £ = | dll L= & d‘(




16.

df

Ex+— =6

= Bx+—- %
df

— = 0by—-06x
dx Y

By integrating,
flx) = Byx — 3x2 + K
Substitute in equation (iii)
V=3x% 4+ Byx - 3x2 + K

= V=0 + K
(d)
Let Z=a+ bi

Since z is shown inside the unit circle in I
quadrant, a and b are both +ve and

0<+a®+b° <1

1 1

N — =
ow z a+ bi
a=bi __a b .
a+b?  at+b® af+b?
Since g, b> 0, .
.__L>O
Va® + b?
-b
<0
a +b°

So 1 is in IV gquadrant.
z

- \/(a2f 7+ =)

ER v
0< ya+b°P<1

1

> 1
Va? + b?

So i is outside the unit circle is IV quadrant.
z

1

Z

Since

(a)
~3z+4
I= Sﬁ(Z2 +4z+5)

C

dz

= 27 (sum of residues)

3z+4 .
are given by
+47+5) .

Poles of ;
(z

17.

18.

24 d4z4+5=0

_ =4+£J16-20 -4+ 2

- 2 -2

= 2%

Since the poles lie outside the circle |z] = 1.
So () is analytic inside the circle |z] = 1.

V4

Hence (f)f(z) dz =2ni(0)=0
c

(a)

x = i, then in polar coordinates,

Y 14 —i
X = COS—+1isin—=g?
2 2
Now, W= = (emlz)f — o2 gmi2
(c)
Given, f2z) = T2 _(z+3)-2z+)
z+1 z+3  (z+N(z+3)
o Tz
" (z+ ) (z+3)

Poles are at -1 and -3 i.e. (-1, 0) and (-3, 0).
From figure below of |z + 1] = 1,

we see that (-1, 0) is inside the circle and (-3, 0)
is outside the circle.
Residue theorem says,

iﬁﬁf(z) 0z = Residue of those poles which are

2nf %,

inside C.

So the required integral Ja,cﬁf(z)a’z is given by
anf v,

the residue of function at pole (-1, 0) (which is
inside the circle).

This residue is = :g:ﬂ



19. (b) 22. (b) '
—i= cos(—g)ﬂsin(—-) (2-3) _ (2-3i) y (~5-i)
(=5+i)  (=5+i) (-5-1i)
3]l 3) '
= COS| — | +isin| —
2 2 _ -10-2i+156i-3  -13+13i
o . o172 - 25+1 © 26
(=) = [Cos(——z—)-n son(—-—én - 05+ 05
= cos(~£)+sin(——£) 23. (o) , ,
4 4 As per Cauchy-Riemann equation
= cos(gzt—)ﬂsin(?ﬁ) oy o —6_\1
4 4 dox 9y
20: (d) | and au _ov
e’ -e 9y ox
tanh s =
: e’ +e7° au
it is analytic if 5+ 20 P 2y
e % gs
28 -+ N aU -
e F i and *a—‘ = Z2X
i(2n+1) y
# s
% 2 ?.Z _ 2y
Im(s) (2/7+1)7t ay
2 = v= )R+ f(x)
21. @ ) W 04 px) = -2
z -4 _ zc -4 ox
2ia (z+20)(z-2i) fx) = — x? + constant
v = y?—x2 + constant
- Imaginary‘
3 24. (c)
As per Cauchy-Riemann equations:
QU_V g du_3v
S ox oy oy ox
- Real .
v‘/ us= x2 - _)/2
=i au ou
2 So=2n —o=-2y
, . ox ay
Poles at 2/ and -2i i.e. (0, 2i) and (0, -2i)
From figure of | Z-i| = 2, we see that pole, is v
incide C, ox
While pole, —2i is outside C. = v=2xy+ f(x)
22'—40’2—2 % Res. F( av
S5 02 emixRes F(2) =2y )
L (z-2) (2P -4)
= om. o2 T ,
(z+2)(z=2) |, > oy
) 4
_ol@P-4] = =0 iefx)=C
(2 +2i) : v=2xy+ C




25. (c¢)

Let Z = 141
i
o Lo Q4 14Pap
(1= 0)(1+1) 1= 42
2i
e ]
2
Z=xX 410y =1
S0, x =0
y=1
Arg(2) = tan”(x) = tan"*(——j =tan oo
X
7
2
26. (c)
zz"
= Z=x+xy
rf(z)
Jzl =+ )2 =1

f(z)= |z|

Z¥=x-iy
zZ" = (x +iy)x ~iy) = x2 + 2
which is equal to (1) always as given
[zl = 1
27" = x2 4 P

(1,0

7. (b)

i(4n+ L

Let z=1=1 *net
Z=1which is purely real and non negative.
8. (b)
Z=x+iy

(2) = u+iv
u= evcos(x)

30.

31.

au

— = e Y o

w €™ sin(x)
For analytical function

v

Jy

ov

e Y O
= 3y e sin(x)
Integrating w.rt, y

v = g¥sin(x)

(c)

Given circle
Iz~ 1 l =1

= l(x+iy)—1f =1

(x=12+2 =1
x=1,y=0,r=1
Poles of f(2) '
Z-1=0

[z = +1,1]
So, -1 - Qutside circle
+1- Inside circle

2 s o1
Jm = 2§ [Z+1J2=+1 —~27’Cl[‘*2"]-nl,

2

2
For pole (z = 1) = e ——
pole { ) f(z-«1)(z+)
as it lies outside from counter.
(a)
The Taylor’s series expansion for
sinx = x~ 3+£-£+- « oo x< oo
S TR TR *
4 6

X X X
and cosx = 1—~-é—!~+z!_- &

o —00 & X < 0o




23

- Ringso . 3“2x2_§ffi+_2_)fﬂ+§£_,. az1+b:azz+b
S OSINX+ZC0S8Sx = 2+ 0x "éT 3 7 5l CZ1+d sz+d
3 acz,z,+ bcz, + adz, + bd= acz,z,+ bcz, + adz, + by
= 2+3x~x2~—§+'-~ be(z, - z) = adz, - z,)
Z, # 2,
32. (d) = bc = ad
Given
= %9 _4 Z b_ 10
o 1
Let X =Y —
n=0'l" 37. (b)
L L R : i | L
RTRETRETRETRIPY Given, 56; dz where C is the unit circle. By
= 1+1+1+1+i+... Cauchy’s residue theorem
6 24
Also we know that expression of e* (ﬁz2 dz = 2ni [sum of residues]
1 1 1
= 1+x+2x +6x +—2—5x +- ;
© — is NOT analytical at z= 0
Put x = 1in above expression z°
1+1+1+ L So, z = Ois the pole of order 2.
2 6 24 1 J ’
* 4 So, residueatz=0= —.——-»{——22 —} =0
€= 2 nl @-ntLd 2 z=0
n=0""
1 .
33. (a) So, $—5dz =2ni[0]=0
z
g /L’: Q\ 2 e 2 e X
4.1-— STINV I ,1.2—- Ry~
) V3 38. Sol.
—_ -1 5v3 o + 7
arg(z,) = By =tan (——5——} ; 8, =60 Rel{z)} = 222
arg(z,) = 6, = tan”[ Z‘J .8, =60° Singe there is no pole inside unit circle, so
243 Residue at poles is zero
/7
argL ] = arg(z) -arg(z,) = 607607 =" = -LSBRe{Z}dkO
22 2mi 7
35. (d)
(z)=Z =x-iy 39. (b)
U= x v=-y By Cauchy integral formula
= u =1 v.=0 f(2) 2ni £*(z,)
=0 v=-1 (ﬁ(z—z)””dZ= N :
y y o '
u#v, i.e. C- Rnol satisfied 95 dz _ omi 0-0
= Z is not analytic function. (z-z, )" T T
36. Sol. 40. (a)
fz) = 24t b f(z)has polesat z=1, -2
v czi+d Residue of fz) at (z = 1)
az, +b N 9
fz,) = ==2 = i ) {2 = M e
22) cz, +d im(z=M12) Z'Lni(z+2)2




Residue of f(z) at (z = -2)

I
N
J,_
Y
Sl
TN
i

1| ©
Nl

= i _92 =1
29*2(2_1)
41. (a)
f2)=14(1=2) + (1= 2)2 4 — — —
_ L B |
1-(1-2) 1-1+z »
42. Sol.

fz) = 22° + b, |2[3
Given that f(2) is analytic.
which is possible only when b =0

since fz3l is differentiable at the origin but not
analytic.
2z%is analytic everywhere

f2) = 22° « blz%] is anaiytic
onlywhen b =0

43. (a)
U= 2xy
u =2y u,= 2x
In option (a)
V. o= -2x u,= -~V
Vy =2y
(~F equation are satisfied only in option a)
44. Sol.
Given that f(z) = u + ivis analytic
Ux, y) = 2kxy V= x? - R
u = 2ky v, = -2y
U =v,
k= -1
u, = 2kx v, o= 2x
Uy ==V
2Kx = ~2x
K= 1
45. (b)
(2)=z+ 2

f(2) = 2xis continuous (polynomial)
U=2x v=0

=2 u,= 0

= v, = 0

C.R. equiation not satisfied.

- No where analytic.

ux
V.
x

46. (a)

]Tsmx dx
X°+2x+2

o0

T sinz
= [z g,
Z5+ 2742
sinz = imaginary part of ¢

00

_ ]f LP of &7
12242742
Polesare 22 + 22+ 2 =0
. -2+ /4 -8 _ =2+
2 2
Z=-1—1

d

Outside upper half
\?

Residue is ©

-1+
\’
inside upperhalf
Res ¢(2)
Z=-1+

iZ

= U z—(=1+1) ©
Z > ~14i (2= (=1+ D) z-(-1~4))

Ql=1+1) i1 ot

(~1+i)=(=1=1)  —T+i+1+i o2

—i-1

[=1P of 27[1'(6 ) = L.P of “(evi'eu1)

—7sint
e

= 1.P of ne”(cos1—isinT) =

47. (b)

Singularities, z = _;. 24

only, Z = -;— lies inside C

By residue theorem,

12

[’ 1\‘ 2745 }J:_Q_{
P13

ZMW) ~ 2J (ZM%J(22+42+5)3

i
..)

SPY




48.

Sol. 51. Sol.

_1__; 2241 MLJ“ 2% +1 dz Residue of 3'%2- - Cosfficient of — in
onjy (2 - 1) emj L (z - Nz +7 z ‘
3 5
Polesareatz= 1, -1 z——3—'+~5—'~————-—
Given circleis |7 1] =1 72
pole 7 = 1 lies inside C = Coefficient of 1 in 1 “Ey Ei ———t =1
pole z = —1 lies outside C z z 31 5l
Res f(z)atz=11is
2 ) 52. (b)
z°+
= (7= 1) = o = 3z-5 .
z——>1( ) (z-Nz+N) 2 Imdz = 4mi
Res iz)atz=-1is =0 r 375
By Cauchy’s residue theorem f——»—-:——-——dz = 2mi (2)
z-z-2) |
2 .
—ZLJP 22 + 1dz N _2_:_; w 2mj(1+0) = 1 Sum of residues must be equal to 2.
7T — - —
/o / Resf(z) = U (2_1)__§z___§___=_?__=2
e
49. Sol. - -
i : Resf(z) = u (z-2) 32-5 =6 5—1
]2 - _.EIP__Z_.é.dZ z7=2 zZ-—2 (2“1)(2“'2) 21
21 (z - 2mj) Therefore z = 1 must lies inside C
_ 1 y 2njf"(2m)) z= 2 lies outside C
T op 2l then only we will get the given integral values is
f(2) = sinz equal to 4mi.
i . 0
- Given that the analytic function
I _lxgﬁ/_Sin(an) fz) = (x® + @) + i bxy
2rn 2 u+ivs(x®+ap)+i(bxy)
u=x2 + ay?
- ~Lsinhon = -133.87 v = bxy
2 u, = 2x u, = 2ay
50. (b) Vo= by v, = b
(i) Z, = 2-lies inside C, U=V, Uy=-Y
2x = bx; 2ay = — by
, e” b=2
so Resfz) = L'.T}(Z‘Z)‘zmz 2a=-b sinceb=2
- 62 =7.39 28:‘*1?
1 ( e’ 1
— dz = 2mi-—{7.39)=7.39 54, (b
omid 7 -2 %) ©
cosz = CO8(x+iy)
(i1) Z, = -2 lies out side Cthen — G0SxC0Siy — SiNxSiNiY
Resf(z) = 0 : -
o? = COSxCO8MY —isinxsinfy
SQI wzdz = zm'-l—.(m = o{ } = COSx coshy + i sinx sinhy
c < 2mi = COSx COSiy + SiNxsiniy

cos(x - iy) = cosz

it




55.

506.

57.

58.

§9.

(c)
Pole, z = 2 lies inside |z| =3
72 -27+3
Res f(2) hm Z = 2) s
zZ = 2, =8-~4+3=7
By Cauche residue theorem
I=2mi(7) = 14mi
(d)
lim 22 +1
f B 07 (2 +2)
im 22
4ol 37242 -4(22)
_ o 2 2
32 +2-i(2i) ~3+2+2 -~3+4
(b)
From the diagram Cis y = x
;o J&E iy az
T cC
J‘ *2 +iy?)(dx +idy)
c
f %2 + ix? )(dx + idx)
c
= f x2alx + ix?alx + ix2dlx —
1 , 2 1
= 2 d :2. — =
zgx X l( 3 J
0
(b)
Residue at z = 4 is
1 1
B zL;:(4(Z_4) -

(z-4)(z+1)°  (4+1)

Residue at z = -1 is

R - R
z':»t12'dZ [( 1) (2—4)(24—1)3]

i

1 2 1 -1
2555’(@—4)3] (e 1B
(d)

Poles are
Z+1=0
Z = %I

z = ilies inside |12 = 3

(G rom)
— from
0

= 2f
60.
x2dx
?i
3
e
125
B1.

Z = ~i lies inside 12l = 3
Residue at z = i is
72 -1
=t (z~i 2=
Z——>i( Z)(Z—i)(2+i) 2i
Residue at z = —i is

= Lt (z+0)

Z-»~i

By Residues theorem
I = 2ni(ie’ — ie™)
~-2n(e — e7)
~2n (cos1 + isin1 - cos1 + isint)
-21(2i sin) = - 4mi sin(1)

i

(a)
W=¢+i¥

X
X2+ 2
(x® +y?) -

(% + y2)P

Y= x2-yfy

Y = 2x+ (Zx)

X

CReqguation,

i
|
N
k“1\3 \<1\>
o
N
| SO |

(d)

Residue at z= 3 is

T z
“Z'Lms{(z“g’) (z-1? (z~—2)(z-3)}

B-1*@3-2) 16



62. (c) _2-2 .
(1-2)%
Res f(z) = Lim (z - 2). ——27
z=2 Z2-52 ( ...‘1)" (Z — 2)
. S
(2-1°
Sum of residues
az ' =-44+4=0
The value of f — where cis x* + )2 = 1
o £8inz 64. (o)
Singular points are, R2) = iz + k Re(z) + i1 Im(2)
zsinz=20 U+iv=ilx +iy) + ke + iy
7=0 +m U+ive ki—y +ilx + )
z = Oliesinside ¢ u=hke—y, V=x+y
7 = +nm lies outside ¢ u(/: kouy, =1
Res f(z) = the coefficient of 1/zin series z= 0 = : +y
Expansion at z =0, Ve =
v, = 1
! ! U o=V
zsinz (z R J P
Zl 2- S
o 31 5l
65. (a)
~ 1 bz-4 =0
= . .
22[1 —Z-Z— + Z + z = — lies inside circle,
S L] 15
]Z[ —_ H
1 2 L .
proed PR — A
z° [H 3t 5! J '[(52—4) U
10 1 o
_ 1 ,l“fi gfﬁ;*z*dZ«—Am
Z2 3! 51 5

63.

Res f(2) = coefficient of 1/zin the above expansion
is 0.

j T gz =2mi@=0
CZS!HZ
(c)
2z
&= a2

z = 1is pole of order 2
z = 2 pole of order 1

: S N N O S - S
Resf(z) = Lim 42 ((Z ) (Z~1)2(z—2))

= Lim

Z—é‘i\

N

| —

N

Q

N

i

[\

g

.
N
[S20ES
N

1

B

g

X
N
\_l__/

I
oo

a

f 1
23] 5
5
2
A= 5 0.4
66. Sol.
y
N
1 1 X
C; Cy
1p oz
—

Y5
}Llcé - {




37.

r

1 az 1@

2m‘c1 (z+h(z-) 2l (z+

Ca

-G
-2-{2)3))

(a)
1
222 J: p az
f__zti__
(z-2)(z+2)
)
J_{idz
(z+2)
where, f(z) = %
= 2ni {-2)
_ an( -2 4 TJ
~2-2
:m{j):ﬁi
-4 2
(b)
[
(2% -3z+2)
z

P22 "

il
4\;/?/]4

az
N(z-1)

69.

71.

B Z‘——T‘I (2_2)3'
= ﬁ:4
~1
Res./(2) = lim 22| (2~ )2__.”53__*_
z=2 z»2 1 gz -(Z-1)2(Z~—2)2

(-1 22~ 222(z 1)

(z-1)

(22(24)-222}
8

o %2—4

By residue theorem,
I=2mi(4-4)=0

(b)
Only f,(z) = z2 is analytic
f,(z) = Z is not analytic

1 -1 . 1
f2) (z-Hz-2) z-1 z-2
-1 1
+

—j(‘]ul.‘;.i_i_i_‘y j_l(1£+zj+(
Tz Tz AT AT 2772

(b)

J

@z¢ (2 (21 |
2 1-11+ 27 + 5 + 3 + A o
" . B
74 Ve
.2 4 8
7% 272 317
Residue at Z = 0
_8_8_-4
T3 6 3




72. (d)

From equation (i),

f=

Substituting in (ii),
9z _
ox
9z
ay

oz
Y

f,(eax-my ) —

eax + by f(ax - by)

=Y f(ax - by) (i)

eax+by (a) e eax+by . f’(a)

(i
55%7 (or) fe® ™ = 7

(i)

az + ae®™ oy (V)

eax+by bf+ eax+byf/(b)

bz — be®+? . f’
(Using equation iii)

bz - be®*f!

bz-q
b

Substituting (v) in (iv),

bz-—q

73.

(b)

S
(Z-0(Z-3)
Where,
Y
y=1
x=0 x=4
(100 (3.0) X
y=-1

z =1 is a pole of order 3 (inside C)

Resatz=1= tamlff— (z-1%-
2121 dz?

_d ( -1 )
fim ——
2102\ (z - 3)?

1
- img{
\

2 1

21-37° 8
z = 3 is a simple pole (inside)

m)

i

Res 2) = ;i_)rg(z -3)— =

P=

aZ+a[ \
5 )

bP + aq = 2abZ

1 1
I=2m) ——+—1=0
’(. 8 8)

I=0




