Long Answer Questions [4 Marks]

Que 1. In Fig. 8.41, ABCD is a parallelogram and \angle DAB = 60°. If the bisector of angles A and B meet at M on CD, Prove that M is the mid-point of CD.

Sol. We have, $\angle DAB = 60^{\circ}$

Since, AD||BC and AB is the transversal.

 $\therefore \qquad \angle A + \angle B = 180^{\circ}$ $60^{\circ} + \angle B = 180^{\circ}$ $\Rightarrow \qquad \angle B = 120^{\circ}$

Also, AM and BM are angle bisectors of $\angle A$ and $\angle B$ respectively.

 \therefore $\angle DAM = \angle MAB = 30^{\circ}$ and $\angle CBM = \angle MBA = 60^{\circ}$

Now, AB||DC and transversal AM cuts them.

 \therefore \angle MAB = \angle DMA (Alternate interior angles)

 \Rightarrow $\angle DMA = 30^{\circ}$

Thus, in ΔAMD , we have

∠MAD = ∠AMD	(Each equals to 30°)
-------------	----------------------

 \Rightarrow MD = AD (Sides opposite to equal angles) ...(i)

Again, AB||DC and transversal BM cuts them.

 \therefore $\angle CMB = \angle MBA$ (alternate interior angles)

 \Rightarrow $\angle CMB = 60^{\circ}$

Thus, in Δ CMB, we have

	∠CBM = ∠CMB	(Each equals to 60°)
⇒	CM = BC	(Sides opposite to equals angles)
⇒	CM = AD	(∵BC = AD)

From (i) and (ii), we get

 \Rightarrow M is the mid-point of CD.

Que 2. ABC is a triangle right-angled at C. A line through the mid-point of hypotenuse AB and parallel to BC intersects AC at D. Show that

(i) MD \perp AC

(ii) D is the mid-point of AC

(iii) MC = MA = $\frac{1}{2}$ AB.

Sol. Given : A triangle ABC right-angled at C. M is the mid-point of AB and MD||BC.

To Prove: (i) MD \perp AC

(ii) D is the mid-point of AC. (iii) MC = MA = $\frac{1}{2}$ AB. Proof: (i) Since MD||BC. Therefore, $\angle ADM = \angle ACB$ (Corresponding angles) But $\angle ACB = 90^{\circ}$ $\therefore \qquad \angle ADM = 90^{\circ}$ $\Rightarrow \qquad 90^{\circ} + \angle CDM = 180^{\circ}$ (Linear pair) or $\angle CDM = 90^{\circ}$ Hence, MD $\perp AC$ (ii) In \triangle ABC, M is the mid-point of AB and MD||BC.

Therefore, D is the mid-point of AC,

i.e., AD = CD (By the converse of mid-point Theorem)

(iii) In triangle AMD and CMD, we have

AD = CD(Proved above) (Each 90°) ∠ADM = ∠CDm MD = MD (Common) And :. $\Delta AMD \cong \Delta CMD$ (By SAS congruence criterion) MA = MC⇒ (CPCT) $M4 = \frac{1}{2}AB$ Also Hence, MC = MA = $\frac{1}{2}$ AB

Sol. Given: A parallelogram ABCD.

To Prove: $\triangle ABC \cong \triangle CDA$

Construction: Join AC.

Proof: Since ABCD is a parallelogram.

Therefore, AB||DC and AD||BC

Now, in AB||DC and transversal AC cuts them at A and C respectively.

 \therefore $\angle DCA = \angle BAC$ (Alternate interior angles)

Now, in $\triangle ABC$ and $\triangle CDA$; we have

$$\angle BAC = \angle DCA$$

$$AC = AC \quad (Common)$$

$$\angle DAC = \angle ACB$$

$$\therefore \quad \Delta ABC \cong \Delta CDA \quad (By ASA Congruence criterion)$$

Que 4. Prove that the figure formed by joining the mid-point of the adjacent sides of a quadrilateral is a parallelogram.

Sol. Let ABCD be a quadrilateral which P, Q, R and S are the mid-points of AB, BC, CD and DA respectively.

Join AC.

In \triangle ABC, the points P and Q are the mid-points of sides AB and BC respectively.

 \therefore PQ||AC and PQ = $\frac{1}{2}$ AC (By mid-point theorem)

Again, in ΔDAC , the points S and R are the mid-points of AD and DC respectively.

$$\therefore$$
 PQ||AC and PQ = $\frac{1}{2}$ AC (By mid-point theorem) ... (i)

Again, in ΔDAC , the points S and R are the mid-points of AD and DC respectively.

$$\therefore$$
 SR||AC and SR = $\frac{1}{2}$ AC ... (ii)

From (i) and (ii)

PQ||SR and PQ = SR

Hence, quadrilateral PQRS is a parallelogram.

Que 5. Prove that the bisector of the angles of a parallelogram enclose a rectangle.

Sol. Given: A parallelogram in which bisector of angles A, B, C, D intersect at P, Q, R, S to form a quadrilateral PQRS.

To Prove: Since ABCD is parallelogram. Therefore, AB||DC

Now, AB||DC, and transversal AD cuts them, so we have

 $\angle A + \angle D = 180^{\circ}$

 \Rightarrow

$$\frac{1}{2} \angle \mathsf{A} + \frac{1}{2} \angle \mathsf{D} = \frac{180^{\circ}}{2}$$

$$\angle DAS + \angle ADS = 90^{\circ}$$

 $\angle RSP = 90^{\circ}$

But, in ΔASD , we have

 $\angle ADS + \angle DAS + \angle ASD = 180^{\circ}$

 $\Rightarrow \qquad \angle 90^{\circ} + \angle ASD = 180^{\circ}$

 \Rightarrow $\angle ASD = 90^{\circ}$

∠RSP = ∠ASD	(Vertically opposite angles)

...

Similarly, we can prove that

$$\angle$$
SRQ = 90°, \angle RQP = 90° and \angle QPS = 90°

Thus, PQRS is a quadrilateral each of whose angle is 90°

Hence, PQRS is a rectangle.

Que 6. Two parallel lines I and m are interacted by a transversal p (see Fig. 8.46). Show that the quadrilateral formed by the bisectors of interior angles is a rectangle.

Sol. It is given that PS||QR and transversal p intersects them at points A and C respectively. The bisectors of $\angle PAC$ and $\angle ACQ$ intersect at B and bisectors of $\angle ACR$ and $\angle SAC$ intersect at D. We are to show that quadrilateral ABCD is a rectangle.

Now, $\angle PAC = \angle ACR$ (Alternate angles as I||m and p is a transversal)

So, $\frac{1}{2} \angle PAC = \frac{1}{2} \angle ACR$

i.e., $\angle BAC = \angle ACD$

These form a pair of alternate angles for lines AB and DC with AC as transversal and they are equal also.

So, AB||DC

Similarly BC||AD (Considering $\angle ACB$ and $\angle CAD$)

Therefore, quadrilateral ABCD is a parallelogram

Also, $\angle PAC + \angle CAS = 180^{\circ}$ (Linear Pair)

So, $\frac{1}{2} \angle PAC + \frac{1}{2} \angle CAS = \frac{1}{2} \times 180^{\circ} = 90^{\circ}$

Or, $\angle BAC + \angle CAD = 90^{\circ}$

Or, $\angle BAD = 90^{\circ}$

So, ABCD is parallelogram in which one angle is 90°.

Therefore, ABCD is a rectangle.

Que 7. Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.

Sol. Given: A quadrilateral ABCD in which in which diagonals AC = BD and AC \perp BD.

OA = OC and OB = OD.

To Proof: Quadrilateral ABCD is a square.

Proof: First, we shall prove that quadrilateral ABCD is parallelogram.

In triangles AOD and COB, we have

OA = OC	(Gi	iven)
∠AOD = ∠I	BOC (Ve	ertically opposite angles)
OD = OB	(Gi	iven)
$\Delta AOD \cong \Delta$	COB (By	/ SAS congruence criterion)

 \Rightarrow $\angle OAD = \angle OCB$ (CPCT)

But these are alternate interior angles

∴ AD||BC

:.

Similarly, AB||CD

Since both pair of opposite sides are parallel in quadrilateral ABCD.

Therefore, quadrilateral ABCD is a parallelogram.

Now, we shall prove that it is a square.

In triangles AOB and AOD, we have

OA = OA (Common)

	∠AOB = ∠AOD	(Each 90°)
	OB = OD	(Given)
: .	$\Delta AOB \cong \Delta AOD$	(By SAS congruence criterion)
⇒	AB = AD	(CPCT)
As opposit	e sides of a of a parall	elogram are equal,
. .	AB = CD and AD = BC	
But	AB = AD	(Proved above)
. .	AB = BC = CD = DA	(i)
Now, in t	riangles ABD and BAC	we have

	AD = BC	(Opposite sides of parallelogram)
	AB = AB	(Common)
	BD = AC	(Given)
	$\Delta ABD \cong \Delta BAC$	(By SSS congruence criterion)
	∠DAB = ∠CBA	(CPCT)
	∠A = ∠B	
But	∠DAB + ∠CBA = 180°	

(Interior angles on the same of transversal are supplementary)

⇒	2∠DAB = 180°	(∵	∠CBA = ∠DAB)

 $\Rightarrow \qquad \angle DAB = 90^{\circ} \qquad i.e., \quad \angle A = 90^{\circ}$

As opposite angles of parallelogram are equal,

	∠A = ∠C	and	$\angle B = \angle D$	
But	∠A = ∠B	and	∠A = 90°	(Proved above)
.	∠A = ∠B = ∠	∠C = ∠D =	= 90°	(ii)

From (i) and (ii), we have

:.

 \Rightarrow

Or

Quadrilateral ABCD is a square.

Que 8. ABCD is a parallelogram in which P and Q are the mid-points of opposite sides AB and CD (Fig. 8.48). If AQ intersects DP at S and BQ intersects CP at R, show that

(i) APCQ is a parallelogram(ii) DPBQ is a parallelogram(iii) PSQR is a parallelogram

Sol. (i) in quadrilateral APCQ,

AP ||QC (:: AB ||CD) ... (i) $AP = \frac{1}{2} AB, CQ = \frac{1}{2} DC (Given)$ Also, AB = CD So, AP = QC ... (ii)

From (i) and (ii), we have AP||QC and AP = QC.

Therefore, APCQ is a parallelogram.

(ii) Similarly, quadrilateral DPBQ is parallelogram, because

DQ||PB and DQ = PB

(iii) In quadrilateral PSQR,

SP||QR (SR is a part of DP and QR is part QB)

Similarly, SQ||PR

So, PSQR is a parallelogram.

Que 9. Prove that the line segment joining the mid- points of the diagonals of a trapezium is parallel to the parallel sides and equal to half of their difference.

Sol. Let ABCD be a trapezium in which AB||DC, and let P and Q be the mid-points of the diagonals AC and BD respectively.

Join CQ and produce it to meet AB at E.

In Δ CDQ and Δ EBQ, we have

:.

⇒

Γ	DQ = BQ	(∵ Q is mid-po	int of BD)
2	∠DCQ = ∠BEQ	(Alternate inte	erior angles)
2	∠CDQ = ∠EBQ	(Alternate inte	erior angles)
L	$\Delta CDQ \cong \Delta EBQ$	(AAS congruer	ce criterion)
	CQ = QE and C	D = EB	(CPCT)

Thus in ΔCAE , the points P and Q are the mid-point of AC and CE respectively.

$$PQ||AE and PQ = \frac{1}{2}AE$$

$$PQ||AB||DC$$
And
$$PQ = \frac{1}{2}AE = \frac{1}{2}(AB - ED)$$

$$= \frac{1}{2}(AB - DC) \quad (\because EB = DC)$$

Que 10. In a parallelogram ABCD, the bisector of $\angle A$ also bisects BC at X. Prove that AD = 2AB.

A	X 3 Fig. 8.50	7 ^c		
Sol. As	ABCD is a parallelogra	ım,		
	AD BC			
Also,	AX is a transversal			
	∠3 = ∠2	(Alterr	nate angles)	
	∠1 = ∠2	(∵ AX i	s bisector of ∠A	۹)
⇒	∠1 = ∠3			
	In ΔABX , we have			
	∠1 = ∠3	(Prove	d above)	
\Rightarrow	AB = BX	(Sides	opposite to equ	ual angles are equal)
⇒	$AB = \frac{1}{2}BC$	(X is the mid-point of BC)		
Also,	AD = BC	(Орро	site sides of pai	rallelogram are equal)
⇒	$AB = \frac{1}{2}AD$	\Rightarrow	2AB = AD	Hence Proved.

Que 11. AD is the median of \triangle ABC. E is mid-point of AD. BE produced to meet AC at F. Show that AF = $\frac{1}{3}$ AC.

Que 12. E and F are respectively the mid-points of the non-parallel sides AD and BC of A trapezium ABCD. Prove that EF | |AB and EF = $\frac{1}{2}$ (AB + CD).

Sol. Given: AB||Cd and E, F are the mid-point of sides AD and BC respectively.

To Prove: EF | |AB, EF = $\frac{1}{2}$ (AB + CD)

Construction: Join BE and produce it to meet CD produced at Q.

Proof: In \triangle BQC

Since E and F are the mid-point of sides BQ and BC respectively.

∴ By mid-point Theorem,

$$EF||QC and EF = \frac{1}{2}QC$$
 ... (i)

$$\Rightarrow$$
 EF||DC

 \Rightarrow CD||AB (Given)

 \Rightarrow EF||AB

Now, in $\triangle AEB$ and $\triangle DEQ$, we have

∠AEB = ∠DEQ	(vertically opposite angles)
AE = ED	(E is the mid-point of AD)
∠BAE = ∠EDQ	(Alternate interior angles)
AB = QD	(CPCT)
1 1	1

From (i)

 $EF = \frac{1}{2}QC = \frac{1}{2}(QD + DC) = \frac{1}{2}(AB + CD)$ [Using (ii)]

Hence, $EF = \frac{1}{2}(AB + CD)$