
SQL 333

CHAPTER 14

SQL Commands

OBJECTIVES

 To understand SQL commands usage.

 Learning the data types, expressions, operators.

 The use of syntax and constrains for SQL.

 Commands for DDl and DML.

 Various built in functions SQL.

SQL334

14.1 Introduction:
Structured Query Language helps to make practice on SQL commands which

provides immediate results. SQL is a language of database, it includes database

creation, deletion, fetching rows and modifying rows etc.
SQL is an ANSI (American National Standards Institute) standard but there are
many different versions of the SQL language.
SQL is Structured Query Language, which is a dbase language for storing,
manipulating and retrieving data stored in relational database.
SQL is the standard language for Relation Database System. All relational
database management systems like MySQL, MS Access, Oracle, Sybase, Informix,
postgresql and SQL Server use SQL as standard database language.
Also, they are using different dialects, such as:
 MS SQL Server using T-SQL,
 Oracle using PL/SQL,
 MS Access version of SQL is called JET SQL (native format) etc.
 Allows users to access data in relational database management systems.
 Allows users to describe the data.
 Allows users to define the data in database and manipulate that data.
 Allows embedding within other languages using SQL modules, libraries &
pre-compilers.
 Allows users to create and drop databases and tables.
 Allows users to create view, stored procedure, functions in a database.
 Allows users to set permissions on tables, procedures, and views

Fig 14.1 Database to Query Fig 14.2 SQL languages classifications

SQL 335

History:
1970: Dr. E. F. “Codd” of IBM is known as the father of relational databases. He
described a relational model for databases.
1974: Structured Query Language appeared.
1978: IBM worked to develop Codd’s ideas and released a product named
System/R.
1986: IBM developed the first prototype of relational database and standardized
by ANSI. The first relational database was released by Relational Software and
its later becoming Oracle.
14.1.1 SQL ARCHITECTURE:
When you are executing an SQL command for any RDBMS, the system
determines the best way to carry out your request and SQL engine figures out
how to interpret the task.

There are various components included in the process. These components
are Query Dispatcher, Optimization Engines, Classic Query Engine and SQL
Query Engine, etc. Classic query engine handles all non-SQL queries but SQL
query engine won’t handle logical files.

Fig 14.3 SQL Architecture with different layers

SQL336

MySQLMySQL is an opensource SQL database,which is developed bySwedish companyMySQL AB. MySQL ispronounced "my ess-que-ell," in contrastwith SQL, pronounced"sequel."MySQL is supportingmany differentplatforms includingMicrosoft Windows,the major Linuxdistributions, UNIX,and Mac OS X.MySQL has free andpaid versions,depending on its usage(non-commercial/commercial) and features.MySQL comes with avery fast, multi-threaded, multi-user,and robust SQLdatabase server.

MS SQL ServerMS SQL Server is aRelationalDatabaseManagementSystem developedby Microsoft Inc.Its primary querylanguages are:T-SQL.ANSI SQL.

ORACLEIt is a very large and multi-userdatabase management system.Oracle is a relational databasemanagement system developedby 'Oracle Corporation'.Oracle works to efficientlymanage its resource, a databaseof information, among themultiple clients requesting andsending data in the network.It is an excellent database serverchoice for client/servercomputing. Oracle supports allmajor operating systems forboth clients and servers,including MSDOS, NetWare,UnixWare, OS/2 and most UNIXflavors.

MS ACCESSThis is one of the most popular Microsoftproducts. Microsoft Access is an entry-level database management software. MSAccess database is not only aninexpensive but also powerful databasefor small-scale projects.MS Access uses the Jet database engine,which utilizes a specific SQL languagedialect (sometimes referred to as Jet SQL).MS Access comes with the professionaledition of MS Office package. MS Accesshas easy-to-use intuitive graphicalinterface.

H istory:Developm ent of M ySQLby M ichael W idenius &David Axm arkbeginning in 1994.First internal releaseon 23 M ay 1995.W indow s version w asreleased on 8 January1998 for W indow s 95and NT.Version 3.23: beta fromJune 2000, productionrelease January 2001.Version 4.0: beta fromAugust 2002,production releaseM arch 2003 (unions).Version 4.01: beta fromAugust 2003, Jyotiadopts M ySQ L fordatabase tracking.Version 4.1: beta fromJune 2004, productionrelease October 2004.Version 5.0: beta fromM arch 2005,production releaseO ctober 2005.Sun M icrosystem sacquired M ySQ L AB on26 February 2008.Version 5.1: productionrelease 27 Novem ber2008.

H istory:1987 - Sybasereleases SQ LServer for UN IX.1988 - M icrosoft,Sybase, and Aston-Tate port SQ LServer to O S/2.1989 - M icrosoft,Sybase, and Aston-Tate release SQLServer 1.0 forO S/2.1990 - SQ L Server1.1 is released w ithsupport forW indow s 3.0clients.Aston-Tate dropsout of SQ L Serverdevelopm ent.2000 - M icrosoftreleases SQ LServer 2000.2001 - M icrosoftreleases XM L forSQ L Server W ebRelease 1(dow nload).2002 - M icrosoftreleases SQ LXM L2.0 (renam ed fromXM L for SQ LServer).2002 - M icrosoftreleases SQ LXM L3.0.2005 - M icrosoftreleases SQ LServer 2005 onN ovem ber 7th,2005.

H istory:O racle began in 1977 andcelebrating its 32 w onderfulyears in the industry (from 1977to 2009).1977 - Larry Ellison, Bob M inerand Ed O ates founded Softw areDevelopm ent Laboratories toundertake developm ent w ork.1979 - Version 2.0 of O racle w asreleased and it becam e firstcom m ercial relational databaseand first SQ L database. Thecom pany changed its nam e toRelational Softw are Inc. (RSI).1981 - RSI started developingtools for O racle.1982 - RSI w as renam ed toO racle Corporation.1983 - Oracle released version3.0, rew ritten in C language andran on m ultiple platform s.1984 - Oracle version 4.0 w asreleased. It contained featureslike concurrency control - m ulti-version read consistency, etc.1985 - Oracle version 4.0 w asreleased. It contained featureslike concurrency control - m ulti-version read consistency, etc.2007 - Oracle has releasedO racle11g. The new versionfocused on better partitioning,easy m igration etc.

History:1992 - Access version 1.0 w as released.1993 - Access 1.1 released to im provecom patibility w ith inclusion the AccessBasic program m ing language.The m ost significant transition w as fromAccess 97 to Access 20002010 - Access 2010, a new databaseform at w as introduced ACCDB w hichsupports com plex data types such as m ultivalued and attachm ent fields.

SQL 337

14.2 SQL Commands:
The standard SQL commands to interact with relational databases are CREATE,
SELECT, INSERT, UPDATE, DELETE and DROP. These commands can be classified
into groups based on their nature:
14.2.1 DDL - Data Definition Language:
DDL defines the conceptual schema providing a link between the logical (the
way the user views the data) and the physical (the way in which the data is
stored physically) structures of the database. The logical structure of a database
is a schema. A subschema is the way a specific application views the data form
the database.
Following are the functions of the Data Definition Language (DDL):-
1. DDL define the physical characteristics of each record, filed in the
record, field’s data type, field’s length, field’s logical name and also specify
relationships among those records.
2. DDL describes the schema and subschema.
3. DDL indicates the keys of the records.
4. DDL provides means for associating related records or fields.
5. DDL provides data security measures.
6. DDL provides for the logical and physical data independence.
Few of the basic commands for DDL are :-

Features:High Performance.High Availability.Scalability andFlexibility Runanything.Robust TransactionalSupport.Web and DataWarehouse Strengths.Strong Data Protection.ComprehensiveApplicationDevelopment.Management Ease.Open Source Freedomand 24 x 7 Support.Lowest Total Cost ofOwnership.

Features:High Performance.High Availability.Databasemirroring.Databasesnapshots.CLR integration.Service Broker.DDL triggers.Ranking functions.Row version-basedisolation levels.XML integration.TRY...CATCH.Database Mail.

Features:ConcurrencyRead ConsistencyLocking MechanismsQuiescent DatabasePortabilitySelf-managing databaseSQL*PlusASMSchedulerResource ManagerData WarehousingMaterialized viewsBitmap indexesTable compressionParallel ExecutionAnalytic SQLData miningPartitioning

Features:Users can create tables, queries, formsand reports and connect them togetherwith macros.The import and export of data to manyformats including Excel, Outlook, ASCII,dBase, Paradox, FoxPro, SQL Server,Oracle, ODBC, etc.There is also the Jet Database format(MDB or ACCDB in Access 2007), whichcan contain the application and data inone file. This makes it very convenient todistribute the entire application toanother user, who can run it indisconnected environments.Microsoft Access offers parameterizedqueries. These queries and Access tablescan be referenced from other programslike VB6 and .NET through DAO orADO.The desktop editions of MicrosoftSQL Server can be used with Access as analternative to the Jet DatabaseEngine.Microsoft Access is a file server-based database. Unlike client-serverrelational database management systems(RDBMS), Microsoft Access does notimplement database triggers, storedprocedures, or transaction logging.

SQL338

ComDescription
CR a view of a table, or other object in database
ALTER Modifie

14.2.2 DML - Data Manipulation Language:
1. DML provides the data manipulation techniques like selection, insertion,
deletion, update, modification, replacement, retrieval, sorting and display of data
or records.
2. DML facilitates use of relationship between the records.
3. DML enables the user and application program to be independent of the
physical data structures and database structures maintenance by allowing to
process data on a logical and symbolic basis rather than a physical on a physical
location basis.
4. DML provide for independence of programming languages by supporting
several high-level programming languages like COBOL,PL/1 and C++.
Few of the basic commands for DML are :-
Command Description
INSE

R Creates a record
DCL - Data Control Language:
Command Description
GRAN

TDQL - Data Query Language:
Command Description
SELECT Retrieves certain records from one or more tables

Command Description

CREATE Creates a new table, a view of a table, or other object
in database

ALTER Modifies an existing database object, such as a table.

DROP Deletes an entire table, a view of a table or other object
in the database.

Command Description

INSERT Creates a record

UPDATE Modifies records

DELETE Deletes records

Com m and Description

G RANT G ives a privilege to user

REVO KE Takes back privileges granted from user

Command Description

SELECT Retrieves certain records from one or more tables

SQL 339

14.3 Data types in SQL

SQL data type is an attribute that specifies type of data of any object. Each
column, variable and expression has related data type in SQL.

You would use these data types while creating your tables. You would choose
a particular data type for a table column based on your requirement.

SQL Server offers six categories of data types for your use:

14.3.1 Exact Numeric Data Types:

14.3.2 Floating point numeric Data Types:

 14.3.3 Date and Time Data Types:

Note: Here, datetime has 3.33 milliseconds accuracy whereas small datetime
has 1 minute accuracy.

DATA
TYPE FROM TO

Int -2,147,483,648 2,147,483,647

numeric -10^38 +1 10^38 -1

DATA TYPE FROM TO

Float -1.79E + 308 1.79E + 308

Real -3.40E + 38 3.40E + 38

DATA TYPE FROM TO

datetim e Jan 1 , 1753 D ec 31, 9999

D ate Stores a date like M ARCH 26, 2014

Tim e Stores a tim e of day like 12:30 P .M .

SQL340

14.3.4 Character, Strings Data Types:

14.4 Operator in SQL
An operator is a reserved word or a character used primarily in an SQL statement’s
WHERE clause to perform operation(s), such as comparisons and arithmetic
operations.
Operators are used to specify conditions in an SQL statement and to serve as
conjunctions for multiple conditions in a statement.
 Arithmetic operators
 Comparison operators
 Logical operators
 Operators used to negate conditions
14.4.1 SQL Arithmetic Operators:

Assume variable a holds 10 and variable b holds 20, then:

 Example

DATA
TYPE FROM TO

Char char
Maximum length of 8,000 characters.(Fixed
length non-Unicode characters)

varchar varchar
Maximum of 8,000 characters.(Variable-
length non-Unicode data).

Operator Description Example

+ Addition - Adds values on either side of the operator a + b will
give 30

- Subtraction - Subtracts right hand operand from left hand
operand

a - b will
give -10

* Multiplication - Multiplies values on either side of the
operator

a * b will
give 200

/ Division - Divides left hand operand by right hand operand b / a will
give 2

% Modulus - Divides left hand operand by right hand operand
and returns remainder

b % a
will give
0

SQL 341

14.4.2 Comparison Operators:

Assume variable a holds 10 and variable b holds 20, then:

Show Examples

14.4.3 Logical Operators:

Here is a list of all the logical operators available in SQL.

Show Examples

Operator Description Example

= Checks if the values of two operands are equal or not, if yes
then condition becomes true.

(a = b) is
not true.

!= Checks if the values of two operands are equal or not, if
values are not equal then condition becomes true.

(a != b)
is true.

<> Checks if the values of two operands are equal or not, if
values are not equal then condition becomes true.

(a <> b)
is true.

> Checks if the value of left operand is greater than the value
of right operand, if yes then condition becomes true.

(a > b) is
not true.

< Checks if the value of left operand is less than the value of
right operand, if yes then condition becomes true.

(a < b) is
true.

>=
Checks if the value of left operand is greater than or equal
to the value of right operand, if yes then condition becomes
true.

(a >= b)
is not
true.

<=
Checks if the value of left operand is less than or equal to
the value of right operand, if yes then condition becomes
true.

(a <= b)
is true.

!< Checks if the value of left operand is not less than the value
of right operand, if yes then condition becomes true.

(a !< b)
is false.

!> Checks if the value of left operand is not greater than the
value of right operand, if yes then condition becomes true.

(a !> b)
is true.

Operator Description

ALL The ALL operator is used to compare a value to all values in another
value set.

AND The AND operator allows the existence of multiple conditions in an
SQL statement's WHERE clause.

ANY The ANY operator is used to compare a value to any applicable value in
the list according to the condition.

BETWEEN The BETWEEN operator is used to search for values that are within a
set of values, given the minimum value and the maximum value.

EXISTS The EXISTS operator is used to search for the presence of a row in a
specified table that meets certain criteria.

SQL342

IN The IN operator is used to com pare a value to a list of literal values that
have been specified.

LIKE The LIKE operator is used to com pare a value to sim ilar values using
w ildcard operators.

NO T
The N O T operator reverses the m eaning of the log ical operator w ith w hich
it is used. Eg: NO T EX ISTS, NO T BE TW EE N, NO T IN , etc. This is a
negate operator.

OR The OR operator is used to com bine m ultip le conditions in an SQL
statem ent's W HERE clause.

IS NU LL The NU LL operator is used to com pare a value w ith a NU LL value.

U NIQU E The U NIQU E operator searches every row of a specified table for
un iqueness (no duplicates).

SQL EXPRESSIONs are like formulas and they are written in query language.
You can also use them to query the database for specific set of data.
An expression is a combination of one or more values, operators, and SQL
functions that evaluate to a value.
Syntax:
Consider the basic syntax of the SELECT statement as follows:

SELECT column1, column2, columnN
FROM table_name
WHERE [CONDITION|EXPRESSION];

There are different types of SQL expressions, which are mentioned below:
14.5.1 SQL - Boolean Expressions:
SQL Boolean Expressions fetch the data on the basis of matching single value.
Following is the syntax:

SELECT column1, column2, columnN
FROM table_name
WHERE SINGLE VALUE MATCHTING EXPRESSION;

Consider the EMPLOYEES table having the following records:
Here is simple example showing usage of SQL Boolean Expressions:

SQL> SELECT * FROM EMPLOYEES WHERE age =45;
+----+-------------------+-------+-----------------------+------------------+
| ID | NAME | AGE | ADDRESS| SALARY |
+----+-------------------+------+------------------------+------------------+
|3|Srinivas |45|Mangalore | 37000.00|
+----+-------------------+------+------------------------+------------------+
1 row inset(0.00 sec)

14.5 SQL expression

SQL 343

14.5.2 Numeric Expression:

This expression is used to perform any mathematical operation in any
query. Following is the syntax:

Here numerical_expression is used for mathematical expression or any
formula. Following is a simple examples showing usage of SQL Numeric
Expressions:

There are several built-in functions like avg(), sum(), count() etc., to perform
what is known as aggregate data calculations against a table or a specific table
column.

SELECT numerical_expression as OPERATION_NAME
[FROM table_name
WHERE CONDITION];

SQL> SELECT (15+6) AS ADDITION
+----------+
| ADDITION |
+----------+
|21|
+----------+
1 row inset(0.00 sec)

SQL> SELECT COUNT(*) AS "RECORDS" FROM EMPLOYEES;
+---------+
| RECORDS |
+---------+
|7|
+---------+
1 row inset(0.00 sec)

14.5.3 Date Expressions:

Date Expressions return current system date and time values:

Another date expression is as follows:

SQL> SELECT CURRENT_TIMESTAMP;
+---------------------+
|Current_Timestamp|
+---------------------+
|2014-03-21 06:40:23|
+---------------------+
1 row inset(0.00 sec)

SQL344

SQL> SELECT GETDATE();;
+-------------------------+
| GETDATE |
+-------------------------+
|2014-01-14 12:07:18.140|
+-------------------------+
1 row inset(0.00 sec)

14.6 SQL Constraints:
Constraints are the rules enforced on data columns on table. These are used to
limit the type of data that can go into a table. This ensures the accuracy and
reliability of the data in the database.
Constraints could be column level or table level. Column level constraints are
applied only to one column whereas table level constraints are applied to the
whole table.
Following are commonly used constraints available in SQL:
The constraints available in SQL are Foreign Key, Not Null, Unique, Check.
Constraints can be defined in two ways
1) The constraints can be specified immediately after the column definition.
This is called column-level definition.
2) The constraints can be specified after all the columns are defined. This is
called table-level definition.

14.6.1 SQL Primary key:
This constraint defines a column or combination of columns which uniquely
identifies each row in the table.
Syntax to define a Primary key at column level:
column name datatype [CONSTRAINT constraint_name] PRIMARY KEY
Syntax to define a Primary key at table level:
[CONSTRAINT constraint_name] PRIMARY KEY
(column_name1,column_name2,..)
column_name1, column_name2 are the names of the columns which define
the primary Key.
The syntax within the bracket i.e. [CONSTRAINT constraint_name] is optional.
For Example: To create an employee table with Primary Key constraint, the
query would be like.

SQL 345

Primary Key at column level:
CREATE TABLE employee
(id number(5) PRIMARY KEY,
name char(20),
dept char(10),
age number(2),
salary number(10),
city char(10)
);
or
CREATE TABLE employee
(id number(5) CONSTRAINT emp_id_pk PRIMARY KEY,
name char(20),
dept char(10),
age number(2),
salary number(10),
city char(10)
);
Primary Key at column level:
CREATE TABLE employee
(id number(5),
name char(20),
dept char(10),
age number(2),
salary number(10),
city char(10),
CONSTRAINT emp_id_pk PRIMARY KEY (id)
);
Primary Key at table level:
CREATE TABLE employee
(id number(5), NOT NULL,
name char(20),
dept char(10),
age number(2),
salary number(10),
city char(10),
ALTER TABLE employee ADD CONSTRAINT PK_EMPLOYEE_ID PRIMARY KEY
(id));

SQL346

14.6.2 Foreign key or Referential Integrity :
This constraint identifies any column referencing the PRIMARY KEY in another
table. It establishes a relationship between two columns in the same table or
between different tables. For a column to be defined as a Foreign
Key, it should be a defined as a Primary Key in the table which it is referring.
One or more columns can be defined as Foreign key.

Syntax to define a Foreign key at column level:

[CONSTRAINT constraint_name] REFERENCES
Referenced_Table_name(column_name)
Syntax to define a Foreign key at table level:

[CONSTRAINT constraint_name] FOREIGN KEY(column_name) REFERENCES
referenced_table_name(column_name);

For Example:
1) Lets use the “sports” table and “order_items”.

Foreign Key at column level:
CREATE TABLE product
(product_id number(5) CONSTRAINT pd_id_pk PRIMARY KEY,
product_name char(20),
supplier_name char(20),
unit_price number(10)
);

SQL 347

14.6.3 Not Null Constraint :
This constraint ensures all rows in the table contain a definite value for the
column which is specified as not null. Which means a null value is not
allowed.

Syntax to define a Not Null constraint:
[CONSTRAINT constraint name] NOT NULL

For Example: To create a employee table with Null value, the query would be
like

CREATE TABLE employee
(id number(5),
name char(20) CONSTRAINT nm_nn NOT NULL,
dept char(10),
age number(2),
salary number(10),
CITY char(10)
);

14.6.4 Unique Key:
This constraint ensures that a column or a group of columns in each row have
a distinct value. A column(s) can have a null value but the values cannot be
duplicated.

Syntax to define a Unique key at column level:
[CONSTRAINT constraint_name] UNIQUE

Syntax to define a Unique key at table level:
[CONSTRAINT constraint_name] UNIQUE(column_name)
For Example: To create an employee table with Unique key, the query would
be like,

SQL348

14.6.5 Check Constraint :
This constraint defines a business rule on a column. All the rows must satisfy
this rule. The constraint can be applied for a single column or a group of
columns.
Syntax to define a Check constraint:
[CONSTRAINT constraint_name] CHECK (condition)
For Example: In the employee table to select the gender of a person, the query
would be like
Check Constraint at column level:

14.7 Implementation of SQL commands:

In this chapter the SQL commands are explained along with the syntax
and example, which are worked out in SQL 8.1i. The example is taken as
employees table and all the syntax like create, alter, drop are illustrated with
the example and DML commands like insert,select,where,order,group etc. are
geiven.

14.7.1 CREATE TABLE statement is used to create a new table.

Basic syntax of CREATE TABLE statement is as follows:

CREATE TABLE table_name(
column1 datatype,
column2 datatype,
column3 datatype,

.....
columnN datatype,
PRIMARY KEY(one or more columns)

);

CREATE TABLE is the keyword telling the database system what you want to do.
In this case, you want to create a new table. The unique name or identifier for
the table follows the CREATE TABLE statement.

Then in brackets comes the list defining each column in the table and what sort
of data type it is. The syntax becomes clearer with an example below.

A copy of an existing table can be created using a combination of the CREATE
TABLE statement and the SELECT statement.

You can check complete details at Create Table Using another Table.

Following is an example, which creates a EMPLOYEES table with ID as primary
key and NOT NULL are the constraints showing that these fields cannot be
NULL while creating records in this table:

SQL 349

You can verify if your table has been created successfully by looking at the
message displayed by the SQL server, otherwise you can use DESC command as
follows:

Now, you have EMPLOYEES table available in your database which you can use
to store required information related to EMPLOYEES.

The SQL DROP TABLE statement is used to remove a table definition and
all data, indexes, triggers, constraints, and permission specifications for that
table.

NOTE: You have to be careful while using this command because once a table is
deleted then the table along with information available in the table would also
be lost forever.

Syntax: Basic syntax of DROP TABLE statement is as follows:

DROP TABLE table_name;

* Drop statement:

14.7.2 Alter statement The table can be modified or changed by using the
Alter Command. The command is ALTER table Table Tablename(columnname
datatype(size);

SQL350

Example: Let us first verify EMPLOYEES table and then we would delete it
from the database:

This means EMPLOYEES table is available in the database, so let us drop it as
follows:

14.7.3 Insert: The SQL INSERT INTO Statement is used to add new rows of data
to a table in the database.

Syntax:

There are two basic syntaxes of INSERT INTO statement as follows:

Here, column1, column2,...columnN are the names of the columns in the table
into which you want to insert data.

You may not need to specify the column(s) name in the SQL query if you
are adding values for all the columns of the table. But make sure the order of
the values is in the same order as the columns in the table. The SQL INSERT
INTO syntax would be as follows:

INSERT INTO TABLE_NAME (column1, column2, column3,...columnN)]
VALUES (value1, value2, value3,...valueN);

SQL 351

Populate one table using another table:

You can populate data into a table through select statement over another table
provided another table has a set of fields, which are required to populate first
table. Here is the syntax.

14.7.4 SELECT : Select statement is used to fetch the data from a database
table which returns data in the form of result table. These result tables are
called result-sets.

Syntax:

The basic syntax of SELECT statement is as follows:

Here, column1, column2, ... are the fields of a table whose values you want to
fetch. If you want to fetch all the fields available in the field, then you can use
the following syntax:

Example:

Consider the EMPLOYEES table having the following records:

INSERT INTO first_table_name [(column1, column2,... columnN)]
SELECT column1, column2,...columnN
FROM second_table_name
[WHERE condition];

SELECT * FROM table_name;

The SQL WHERE clause is used to specify a condition while fetching the data

SQL352

from single table or joining with multiple tables.

If the given condition is satisfied then only it returns specific value from the
table. You would use WHERE clause to filter the records and fetching only
necessary records.

The WHERE clause is not only used in SELECT statement, but it is also used in
UPDATE, DELETE statement etc., which we would examine in subsequent
chapters.

Syntax:

The basic syntax of SELECT statement with WHERE clause is as follows:

You can specify a condition using comparison or logical operators like >, <, =,
LIKE, NOT, etc. Below examples would make this concept clear.

Example:
Consider the EMPLOYEES table having the following records:
Following is an example which would fetch ID, Name and Salary fields from the
EMPLOYEES table where salary is greater than 35000:

SELECT column1, column2, columnN
FROM table_name
WHERE [condition]

SQL 353

Following is an example, which would fetch ID, Name and Salary fields
f r o m t h e E M P L O Y E E S t a b l e f o r a c u s t o m e r w i t h n a m e Naveen. Here, it is important
to note that all the strings should be given inside single quotes (‘’) whereas
numeric values should be given without any quote as in above example:
SQL> SELECT ID, NAME, SALARY
FROM EMPLOYEES
WHERE NAME ='Naveen';

This would produce the following result:

+----+-------------------+------------------+
| ID | NAME | SALARY |
+----+-------------------+------------------+
|2|Naveen | 35000.00|

The SQL AND and OR operators are used to combine multiple conditions to
narrow data in an SQL statement. These two operators are called conjunctive
operators.

These operators provide a means to make multiple comparisons with different
operators in the same SQL statement.

14.7.5 AND Operator:

The AND operator allows the existence of multiple conditions in an SQL
statement’s WHERE clause.

Syntax:

The basic syntax of AND operator with WHERE clause is as follows:

SELECT column1, column2, columnN
FROM table_name
WHERE [condition1] AND [condition2]...AND [conditionN];

You can combine N number of conditions using AND operator. For an
action to be taken by the SQL statement, whether it be a transaction or query,
all conditions separated by the AND must be TRUE.

SQL354

Example: Consider the EMPLOYEES table having the following records:

Following is an example, which would fetch ID, Name and Salary fields
from the EMPLOYEES table where salary is greater than 2000 AND age is less
tan 25 years:

14.7.6 OR Operator:

The OR operator is used to combine multiple conditions in an SQL
statement’s WHERE clause.

Syntax: The basic syntax of OR operator with WHERE clause is as follows:

SELECT column1, column2, columnN
FROM table_name
WHERE [condition1] OR [condition2]...OR [conditionN]

You can combine N number of conditions using OR operator. For an action
to be taken by the SQL statement, whether it be a transaction or query, only
any ONE of the conditions separated by the OR must be TRUE.

14.7.7 Update: The SQL UPDATE Query is used to modify the existing records

SQL 355

in a table.

You can use WHERE clause with UPDATE query to update selected rows otherwise
all the rows would be affected.
Syntax: The basic syntax of UPDATE query with WHERE clause is as follows:

You can combine N number of conditions using AND or OR operators.
Example:
Consider the EMPLOYEES table having the following records:

Following is an example, which would update ADDRESS for a customer
whose ID is 6:

UPDATE table_name
SET column1 = value1, column2 = value2...., columnN = valueN
WHERE [condition];

SQL> UPDATE EMPLOYEES SET ADDRESS ='Bengaluru' WHERE ID =6;

SQL356

14.7.8 DELETE Query is used to delete the existing records from a table.

You can use WHERE clause with DELETE query to delete selected rows, otherwise
all the records would be deleted.

Syntax: The basic syntax of DELETE query with WHERE clause is as follows:

DELETE FROM table_name
WHERE [condition];

You can combine N number of conditions using AND or OR operators.
Following is an example, which would DELETE a customer, whose ID is 3:

SQL> SELECT * FROM EMPLOYEES

WHERE ROWNUM <= 3;

This would produce the following result:

+----+-------------------+-------+-----------------------+------------------+
| ID | NAME | AGE | ADDRESS| SALARY |
+----+-------------------+------+------------------------+------------------+
1	Rajappa	42	Tumkur	40000.00
2	Naveen	39	Bidar	35000.00
3	Srinivas	45	Mangalore	32000.00

SQL 357

14.7.9 ORDER BY clause is used to sort the data in ascending or descending
order, based on one or more columns. Some database sorts query results in
ascending order by default.

Syntax: The basic syntax of ORDER BY clause is as follows:

SELECT column-list
FROM table_name
[WHERE condition]
[ORDER BY column1, column2,.. columnN][ASC | DESC];

You can use more than one column in the ORDER BY clause. Make sure
whatever column you are using to sort, that column should be in column-list.

Example: Consider the EMPLOYEES table having the following records:

14.7.10 GROUP BY clause is used in collaboration with the SELECT statement
to arrange identical data into groups.

The GROUP BY clause follows the WHERE clause in a SELECT statement
and precedes the ORDER BY clause.

Syntax: The basic syntax of GROUP BY clause is given below. The GROUP BY
clause must follow the conditions in the WHERE clause and must precede
the ORDER BY clause if one is used.

SELECT column1, column2
FROM table_name
WHERE [conditions]
GROUP BY column1, column2
ORDER BY column1, column2

SQL358

If you want to know the total amount of salary on each customer, then
GROUP BY query would be as follows:

Group functions are built-in SQL functions that operate on groups of
rows and return one value for the entire group. These functions
are: COUNT, MAX, MIN, AVG, SUM, DISTINCT
SQL COUNT (): This function returns the number of rows in the table that
satisfies the condition specified in the WHERE condition. If the WHERE
condition is not specified, then the query returns the total number of rows
in the table.
For Example: If you want the number of employees in a particular
department, the query would be:

SELECT COUNT (*) FROM employee

WHERE dept = ‘Computer Science’;

If you want the total number of employees in all the department, the query
would take the form:

SELECT COUNT (*) FROM employee;

SQL DISTINCT(): This function is used to select the distinct rows.
For Example: If you want to select all distinct department names from
employee table, the query would be:
Select Distinct dept FROM employee;
To get the count of employees with unique name, the query would be:

SELECT COUNT (DISTINCT name) FROM employee;

SQL MAX(): This function is used to get the maximum value from a
column.
To get the maximum salary drawn by an employee, the query would be:

SELECT MAX (salary) FROM employee;

SQL MIN(): This function is used to get the minimum value from a column.
To get the minimum salary drawn by an employee, he query would be:

SELECT MIN (salary) FROM employee;

SQL AVG(): This function is used to get the average value of a numeric
column.
To get the average salary, the query would be

SELECT AVG (salary) FROM employee;

SQL SUM(): This function is used to get the sum of a numeric column
To get the total salary given out to the employees,

SQL 359

Example: Consider the EMPLOYEES table is having the following records:

SELECT SUM (salary) FROM employee;

Now again, if you want to know the total amount of salary on each customer,
then GROUP BY query would be as follows:

1 4 . 7 . 1 1 DISTINCT keyword is used in conjunction with SELECT statement to
eliminate all the duplicate records and fetching only unique records.

There may be a situation when you have multiple duplicate records in a table.
While fetching such records, it makes more sense to fetch only unique records
instead of fetching duplicate records.

Syntax: The basic syntax of DISTINCT keyword to eliminate duplicate records is
as follows:

SQL> SELECT NAME, SUM(SALARY) FROM EMPLOYEES
GROUP BY NAME;

SQL360

First, let us see how the following SELECT query returns duplicate salary
records:

This would produce the following result where salary 45000 is coming
twice which is a duplicate record from the original table.

SELECT DISTINCT column1, column2, ,.....columnN
FROM table_name
WHERE [condition]

+----+-------------------+-------+-----------------------+------------------+
| ID | NAME | AGE | ADDRESS| SALARY |
+----+-------------------+------+------------------------+------------------+
1	Rajappa	42	Tumkur	40000.00
2	Naveen	39	Bidar	35000.00
3	Srinivas	45	Mangalore	32000.00
4	Nagamani	52	Myosre	38000.00
5	Sheron	41	Gulbarga	42000.00
6	Xavio	40	Bangalore	33000.00
7	Ravindra	44	Sagar	43000.00
+----+------------------+-------+------------------------+-----------------+

SQL> SELECT SALARY FROM EMPLOYEES
ORDER BY SALARY;

SQL 361

14.7.12 Joins clause is used to combine records from two or more tables in a
database. A JOIN is a means for combining fields from two tables by using values
common to each.

Consider the following two tables, (a) sports table is as follows:

 (b) Another table is ORDER_items as follows:

Now, let us join these two tables in our SELECT statement as follows:

This would produce the following result:

Here, it is noticeable that the join is performed in the WHERE clause. Several
operators can be used to join tables, such as =, <, >, <>, <=, >=, !=, BETWEEN,
LIKE, and NOT; they can all be used to join tables. However, the most common
operator is the equal symbol.

SQL Join Types:

There are different types of joins available in SQL:

· INNER JOIN: returns rows when there is a match in both tables.

· LEFT JOIN: returns all rows from the left table, even if there are no
matches in the right table.

· RIGHT JOIN: returns all rows from the right table, even if there are no
matches in the left table.

· FULL JOIN: returns rows when there is a match in one of the tables.

· SELF JOIN: is used to join a table to itself as if the table were two tables,
temporarily renaming at least one table in the SQL statement.

· CARTESIAN JOIN: returns the Cartesian product of the sets of records
from the two or more joined tables.

In order to experiment the join commands, we are creating two tables one
called the sports and the oder_items for the sports items. While preparing the
join operations, we can use alias so that it become easy. This is illustrated in
the given example. p is the sports table and o is the order items table.

SQL362

SQL 363

This would produce the following result:

There are two other clauses (i.e., operators), which are very similar to UNION
clause:

 SQL INTERSECT Clause: is used to combine two SELECT statements,
but returns rows only from the first SELECT statement that are identical to a
row in the second SELECT statement.
 SQL EXCEPT Clause : combines two SELECT statements and returns
rows from the first SELECT statement that are not returned by the second
SELECT statement.

14.7.13 NULL: The SQL NULL is the term used to represent a missing value. A
NULL value in a table is a value in a field that appears to be blank.

A field with a NULL value is a field with no value. It is very important to understand
that a NULL value is different than a zero value or a field that contains spaces.

Syntax:

The basic syntax of NULL while creating a table:

Here, NOT NULL signifies that column should always accept an explicit value of
the given data type. There are two columns where we did not use NOT NULL,
which means these columns could be NULL.

A field with a NULL value is one that has been left blank during record creation.

SQL364

Example:

The NULL value can cause problems when selecting data, however, because
when comparing an unknown value to any other value, the result is always
unknown and not included in the final results.

You must use the IS NULL or IS NOT NULL operators in order to check for a
NULL value.

Now, following is the usage of IS NOT NULL operator:

SQL> SELECT ID, NAME, AGE, ADDRESS, SALARY
FROM EMPLOYEES
WHERE SALARY IS NOT NULL;

This would produce the following result:

Now, following is the usage of IS NULL operator:

SQL> SELECT ID, NAME, AGE, ADDRESS, SALARY
FROM EMPLOYEES
WHERE SALARY IS NULL;

This would produce the following result:

You can rename a table or a column temporarily by giving another name known
as alias.

The use of table aliases means to rename a table in a particular SQL statement.

SQL 365

14.8 Creating Views:
Database views are created using the CREATE VIEW statement. Views can be
created from a single table, multiple tables, or another view.
To create a view, a user must have the appropriate system privilege according to
the specific implementation.
The basic CREATE VIEW syntax is as follows:

You can include multiple tables in your SELECT statement in very similar way
as you use them in normal SQL SELECT query.
Example:
Consider the EMPLOYEES table having the following records:

14.9 The COMMIT Command:
The COMMIT command is the transactional command used to save changes
invoked by a transaction to the database.
The COMMIT command saves all transactions to the database since the last
COMMIT or ROLLBACK command.
The syntax for COMMIT command is as follows:

CREATE VIEW view_name AS
SELECT column1, column2.....
FROM table_name
WHERE [condition];

SQL > CREATE VIEW EMPLOYEES_VIEW AS
SELECT name, age
FROM EMPLOYEES;

COMMIT;

SQL > SELECT * FROM EMPLOYEES_VIEW;

14.10 DCL commands are used to enforce database security in a multiple
user database environment. Two types of DCL commands are GRANT and
REVOKE. Only Database Administrator’s or owners of the database object
can provide/remove privileges on a database object.

14.10.1 GRANT Command

SQL GRANT is a command used to provide access or privileges on the database
objects to the users.

SQL366

The Syntax for the GRANT command is:
GRANT privilege_name
ON object_name
TO {user_name |PUBLIC |role_name}
[WITH GRANT OPTION];
 privilege_name is the access right or privilege granted to the user. Some
of the access rights are ALL, EXECUTE, and SELECT.
 object_name is the name of an database object like TABLE, VIEW, stored
proc and SEQUENCE.
 user_name is the name of the user to whom an access right is being
granted.
 user_name is the name of the user to whom an access right is being
granted.
 PUBLIC is used to grant access rights to all users.
 ROLES are a set of privileges grouped together.
 WITH GRANT OPTION - allows a user to grant access rights to other users.
For Example: GRANT SELECT ON employee TO user1;This command grants a
SELECT permission on employee table to user1.You should use the WITH GRANT
option carefully because for example if you GRANT SELECT privilege on employee
table to user1 using the WITH GRANT option, then user1 can GRANT SELECT
privilege on employee table to another user, such as user2 etc. Later, if you
REVOKE the SELECT privilege on employee from user1, still user2 will have
SELECT privilege on employee table.
14.10.2 REVOKE Command:
The REVOKE command removes user access rights or privileges to the database
objects.
The Syntax for the REVOKE command is:
REVOKE privilege_name
ON object_name
FROM {user_name |PUBLIC |role_name}

For Example: REVOKE SELECT ON employee FROM user1;This command
will REVOKE a SELECT privilege on employee table from user1.When you
REVOKE SELECT privilege on a table from a user, the user will not be able to
SELECT data from that table anymore. However, if the user has received
SELECT privileges on that table from more than one users, he/she can
SELECT from that table until everyone who granted the permission revokes
it. You cannot REVOKE privileges if they were not initially granted by you.

SQL 367

Privileges and Roles:

Privileges: Privileges defines the access rights provided to a user on a database
object. There are two types of privileges.

1) System privileges - This allows the user to CREATE, ALTER, or DROP
Database objects.

2) Object privileges - This allows the user to EXECUTE, SELECT, INSERT,
UPDATE, or Delete data from database objects to which the privileges
apply.

Few CREATE system privileges are listed below:

System
Privileges Description

CREATE
object

allows users to create the
specified object in their own
schema.

CREATE ANY
object

allows users to create the
specified object in any schema.

The above rules also apply for ALTER and DROP system privileges.
Few of the object privileges are listed below:

Object
Privileges Description

INSERT allows users to insert rows into a
table.

SELECT allows users to select data from a
database object.

UPDATE allows user to update data in a
table.

EXECUTE allows user to execute a stored
procedure or a function.

SQL368

System
Role Privileges Granted to the Role

CONNECT

CREATE TABLE, CREATE VIEW,
CREATE SYNONYM, CREATE
SEQUENCE, CREATE SESSION
etc.

RESOURCE

CREATE PROCEDURE, CREATE
SEQUENCE, CREATE TABLE,
CREATE TRIGGER etc. The
primary usage of the
RESOURCE role is to restrict
access to database objects.

DBA ALL SYSTEM PRIVILEGES

14.11 SQL built-in functions

There are two types of functions in Oracle sql version.

14.11.1 Single Row Functions: Single row or Scalar functions return a value
for every row that is processed in a query.

14.11.2 Group Functions: These functions group the rows of data based on
the values returned by the query. This is discussed in SQL GROUP Functions.
The group functions are used to calculate aggregate values like total or
average, which return just one total or one average value after processing a
group of rows.

There are four types of single row functions. They are:
1) Numeric Functions: These are functions that accept numeric input and
return numeric values.
2) Character or Text Functions: These are functions that accept character
input and can return both character and number values.
3) Date Functions: These are functions that take values that are of datatype
DATE as input and return values of datatype DATE, except for the
MONTHS_BETWEEN function, which returns a number.
4) Conversion Functions: These are functions that help us to convert a value in
one form to another form. For Example: a null value into an actual value, or a
value from one datatype to another datatype like NVL, TO_CHAR,
TO_NUMBER, TO_DATE etc.
You can combine more than one function together in an expression. This is
known as nesting of functions.

SQL 369

Function
Name Return Value

ABS (x) Absolute value of the number 'x'
CEIL (x) Integer value that is Greater than or equal to the number 'x'
FLOOR (x) Integer value that is Less than or equal to the number 'x'
TRUNC (x, y) Truncates value of number 'x' up to 'y' decimal places

ROUND (x, y) Rounded off value of the number 'x' up to the number 'y'
decimal places

Function
Name Examples Return

Value

ABS (x) ABS (1)
ABS (-1)

1
-1

CEIL (x)
CEIL (2.83)
CEIL (2.49)
CEIL (-1.6)

3
3
-1

FLOOR (x)
FLOOR (2.83)
FLOOR (2.49)
FLOOR (-1.6)

2
2
-2

TRUNC (x, y)
ROUND (125.456, 1)
ROUND (125.456, 0)
ROUND (124.456, -1)

125.4
125
120

ROUND (x, y)

TRUNC (140.234, 2)
TRUNC (-54, 1)
TRUNC (5.7)
TRUNC (142, -1)

140.23
54
5
140

 DUAL Table in Oracle
This is a single row and single column dummy table provided by oracle. This is
used to perform mathematical calculations without using a table.
Select * from DUAL
Output:
DUMMY
———
X
Select 777 * 888 from Dual
Output:
777 * 888
————
689976

SQL370

These functions can be used on database columns.

For Example: Let’s consider the product table used in sql joins. We can use
ROUND to round off the unit_price to the nearest integer, if any product has
prices in fraction.

SELECT ROUND (unit_price) FROM product;

2) Character or Text Functions:

Character or text functions are used to manipulate text strings. They accept
strings or characters as input and can return both character and number
values as output.

Few of the character or text functions are as given below:

Function Name Return Value
LOWER
(string_value) All the letters in 'string_value' is converted to lowercase.

UPPER
(string_value) All the letters in 'string_value' is converted to uppercase.

INITCAP
(string_value)

All the letters in 'string_value' is converted to mixed
case.

LTRIM
(string_value,
trim_text)

All occurrences of 'trim_text' is removed from the left
of 'string_value'.

RTRIM
(string_value,
trim_text)

All occurrences of 'trim_text' is removed from the right
of'string_value' .

TRIM (trim_text
FROM string_value)

All occurrences of 'trim_text' from the left and right
of 'string_value' ,'trim_text' can also be only one
character long .

SUBSTR
(string_value, m, n)

Returns 'n' number of characters
from'string_value' starting from the 'm'position.

LENGTH
(string_value) Number of characters in 'string_value'in returned.

LPAD (string_value,
n, pad_value)

Returns 'string_value' left-padded with'pad_value' . The
length of the whole string will be of 'n' characters.

RPAD (string_value,
n, pad_value)

Returns 'string_value' right-padded with 'pad_value' .
The length of the whole string will be of 'n' characters.

For Example, we can use the above UPPER() text function with the column
value as follows.

SQL 371

SELECT UPPER (product_name) FROM product;

The following examples explains the usage of the above character or text
functions
Function Name Examples Return Value
LOWER(string_value) LOWER('Good Morning') good morning

UPPER(string_value) UPPER('Good Morning') GOOD
MORNING

INITCAP(string_value) INITCAP('GOOD MORNING') Good Morning

LTRIM(string_value, trim_text) LTRIM ('Good Morning',
'Good) Morning

RTRIM (string_value, trim_text) RTRIM ('Good Morning', '
Morning') Good

TRIM (trim_text FROM
string_value)

TRIM ('o' FROM 'Good
Morning') Gd Mrning

SUBSTR (string_value, m, n) SUBSTR ('Good Morning', 6,
7) Morning

LENGTH (string_value) LENGTH ('Good Morning') 12
LPAD (string_value, n,
pad_value) LPAD ('Good', 6, '*') **Good

RPAD (string_value, n,
pad_value) RPAD ('Good', 6, '*') Good**

3) Date Functions:

These are functions that take values that are of datatype DATE as input and
return values of datatypes DATE, except for the MONTHS_BETWEEN function,
which returns a number as output.

Few date functions are as given below.

SQL372

Function Name Return Value
ADD_MONTHS (date,
n)

Returns a date value after adding 'n'months to the
date 'x'.

MONTHS_BETWEEN
(x1, x2)

Returns the number of months between dates x1 and
x2.

ROUND (x,
date_format)

Returns the date 'x' rounded off to the nearest
century, year, month, date, hour, minute, or second
as specified by the 'date_format'.

TRUNC (x,
date_format)

Returns the date 'x' lesser than or equal to the
nearest century, year, month, date, hour, minute, or
second as specified by the 'date_format'.

NEXT_DAY (x,
week_day)

Returns the next date of the 'week_day'on or after the
date 'x' occurs.

LAST_DAY (x) It is used to determine the number of days remaining
in a month from the date 'x' specified.

SYSDATE Returns the systems current date and time.
NEW_TIME (x, zone1,
zone2)

Returns the date and time in zone2 if date 'x'
represents the time in zone1.

Function Name Examples Return
Value

ADD_MONTHS () ADD_MONTHS ('14-Feb-14', 9) 14-Nov-14
MONTHS_BETWEEN(
)

MONTHS_BETWEEN ('16-Sep-14', '16-
Dec-14') 3

NEXT_DAY() NEXT_DAY ('20-Mar-2014', 'Thursday') 21-Mar-
2014

LAST_DAY() LAST_DAY ('01-Jun-14') 30-Jun-14
NEW_TIME() NEW_TIME ('01-Jun-18', 'IST', 'EST') 31-May-14

4) Conversion Functions:

These are functions that help us to convert a value in one form to another form.
For Ex: a null value into an actual value, or a value from one datatype to another
datatype like NVL, TO_CHAR, TO_NUMBER, TO_DATE.

Few of the conversion functions available in oracle are:

Function Name Return Value

SQL 373

Function Name Return Value

TO_CHAR (x [,y])
Converts Numeric and Date values to a character string
value. It cannot be used for calculations since it is a
string value.

TO_DATE (x [,
date_format])

Converts a valid Numeric and Character values to a
Date value. Date is formatted to the format specified
by 'date_format'.

NVL (x, y) If 'x' is NULL, replace it with 'y'. 'x' and 'y'must be of the
same datatype.

DECODE (a, b, c, d,
e, default_value)

Checks the value of 'a', if a = b, then returns'c'. If a = d,
then returns 'e'. Else, returnsdefault_value.

The below table provides the examples for the above functions

Function
Name Examples Return Value

TO_CHAR ()
TO_CHAR (3000, '$9999')
TO_CHAR (SYSDATE, 'Day, Month
YYYY')

$3000
WEDNESDAY, MARCH
2014

TO_DATE () TO_DATE ('19-MAR-2014') 19-MAR-14
NVL () NVL (null, 1) 1

Summary
>Sql -Structured Query Language(SQL)
>SQL ARCHITECTURE:
>SQl languages: DDL,DML,DCL,
> Data access and retrival
>SQL built-in function.

SQL374

Review questions

One mark questions
1. Expand SQL.
2. Give the syntax for create command in SQL.
3. What is drop command in SQL.
4. Give the command to display all the details in the table.
5. What is update command?
6. What is commit command?

Two marks questions
1. Classify Numeric and Character string data types in SQL.
2. Classify various SQL operators.
3. Which are the logical operators in SQL.
4. How do you modify the column name and width for existing table?
5. Write the syntax for distinct command in SQL.
6. What is the use of NULL value?
7. What is create view command?
8. What is dual table?

Three marks questions
1. Explain the features of SQL?
2. List the components of SQL architecture.
3. Explain DDL commands with example.
4. Explain DML commands with example.
5. Explain with an example Boolean expression in SQL.
6. Explain AND operator using where in SQL.
7. List the built-in functions associated with Group functions in SQL.
8. What is the use of join command?
9. What are privileges and rules?
10.Classify various built-in functions in SQL.

Five marks questions
1. Explain SQL constraints with example.
2. Explain with example to create details of employees and give the

minimum and maximum in the salary domain.
3. Write the differences between order by and group by with example.

