DPP - Daily Pra	ctice Problems
Name :	Date :
Start Time :	End Time :
CHEM	ISTRY (08)
SYLLABUS : States of Matter-1 (Gas laws, ideal average root mean square	gas equation, kinetic theory of gases, concepts of e and most probable speed)
Max. Marks : 120	Time : 60 min.
GENERAL IN	STRUCTIONS
 You have to evaluate your Response Grids yourself with the file Each correct answer will get you 4 marks and 1 mark shall be if no bubble is filled. Keep a timer in front of you and stop im The sheet follows a particular syllabus. Do not attempt the sl Refer syllabus sheet in the starting of the book for the syllab After completing the sheet check your answers with the sol analyse your performance and revise the areas which emerged 	deduced for each incorrect answer. No mark will be given/ deducted imediately at the end of 60 min. heet before you have completed your preparation for that syllabus. us of all the DPP sheets. ution booklet and complete the Result Grid. Finally spend time to e out as weak in your evaluation.
DIRECTIONS (Q.1-Q.21) : There are 21 multiple choice	(a) 5.50 atm. (b) 3.61 atm.
questions. Each question has 4 choices (a), (b), (c) and (d),	(c) 4.40atm. (d) 4.50 atm.
out of which ONLY ONE choice is correct. Q.1 Calculate the weight of CH ₄ in a 9 litre cylinder at 16 a tm and 27°C (R=0.08 lit. atm/K). (a) 96 stm	Q.4 0.333 grams of alcohol displaced 171 c.c. of air measured over water at 15°C in a Victor Meyer apparatus. The barometric pressure was 773 torr. Calculate the molecular weight of alcohol - (Aqueous tension at 15°C = 13 torr.)
 (c) \$0gm (d) 90gm Q.2 What is the density of sulphur dioxide (SO₂) at STP ? (a) 2.86 gm/lit (b) 1.76 gm/lit (c) 1.86 gm/lit (d) None of these 	 (a) 33.34 g/ mol. (b) 28.80 g/ mol. (c) 46.0 g/ mol. (d) 13.0 g/mol. Q.5 Atmospheric air contains 20% O₂ and 80% N₂ by volume and exerts a pressure of 760 mm. Calculate the partial pressure of angle and
Q.3 What is the pressure of a mixture of 1g of dihydrogen and 1.4 g of dinitrogen stored in a 5 litre vessel at 127°C?	(a) $152 \text{ nun}, 608 \text{ mm}$ (b) $608 \text{ mm}, 152 \text{ mm}$ (c) 760 mmboth (d) Non c of these
RESPONSE GRID 1. (a) (b) (c) (d) 2. (a) (b) (c) (d) Space for L	3. (a) b) c) d) 4. (a) b) c) d) 5. (a) b) c) d) Rough Work

DPP/C(08)

Q.6 2.8 g of N_2 , 2.8 gCO, 4.4 g CO₂ are found to exert a pressure of 700 torr. Find partial pressure of N_2 gas in the mixture.

(a)	280.8 torr	(b)	233.3 torr
-----	------------	-----	------------

- (c) 300torr (d) None of these
- Q.7 Calculate the relative rates of diffusion of ${}^{235}\text{UF}_6$ and ${}^{238}\text{UF}_6$ in the gaseous state (At. mass of F = 19).
 - (a) 1.0043 : 1.0000 (b) 1.0000 : 1.0043
 - (c) 1.349:1.352 (d) 1.352:1.349
- Q.8 The densities of CH₄ and O₂ are in the ratio 1 : 2. Calculate the ratio of rates of diffusion of oxygen and methane.
 (a) 1.414 : 1 (b) 1: 1.414 (c) 1.614 : 1 (d) 1.614: 1
- Q.9 Calculate the molecular weight of a gas which diffuses through a porous plug at 1/6th of the speed of hydrogen under same conditions.
 - (a) 36 (b) 76 (c) 72 (d) 63
- Q.10 The vapour density of gas A is thrice that of the gas B. If the molecular weight of B is M, then calculate the molecular weight of A.
 - (a) M (b) 3 M
 - (c) M/3 (d) None of these
- Q.11 3 moles of a gas are present in a vessel at a temperature of 27°C. Calculate the value of gas constant (R) in terms of kinetic energy of the molecules of the gas.
 - (a) 7.4×10^{-4} KE per degree kelvin.
 - (b) 9.4×10^{-5} KE per degree kelvin.
 - (c) 4.5×10^{-6} KE per degree kelvin.
 - (d) None of these
- Q.12 Calculate average kinetic energy, in joules, of the molecules in 8.0 g of methane at 27°C.
 - (a) \$169.75 Joules (b) 1869.75 Joules
 - (c) 6189.57 Joules (d) 9186.57 Joules
- Q.13 A gas occupies a volume of 2.4 litres at a pressure of 740 mm of mercury. Keeping the temperature constant, calculate its volume at standard pressure.

a) 2.4litres	(b) 2.34 litres
--------------	-----------------

(c) 2.5 litres (d) None of these

- Q.14 A gas occupies 3 litres at 32°C and one atmospheric pressure. What volume will it occupy if the temperature is changed to 18°C, the pressure remaining constant?
 - (a) 2.91 litres (b) 2.86 litres
 - (c) 2.30 litres (d) None of these
- Q.15 A gaseous mixture contains 4 molecules with a velocity of 6 cm s⁻¹, 5 molecules with a velocity of 2 cm s⁻¹ and 10 molecules with a velocity of 3 cm s⁻¹. What is the RMS velocity of the gas?
 - (a) 2.5 cm s^{-1} (b) 1.9 cm s^{-1}
 - (c) 3.6 cm s^{-1} (d) 4.6 cm s^{-1}
- Q.16 Calculate average velocity and RMS velocity for a group of six particles having speeds 11.2, 9.0, 8.3, 6.5, 3.7 and 1.8 ms⁻¹.
 - (a) 6.75 ms^{-1} , 7.47 ms^{-1} (b) 7.47 ms^{-1} , 6.75 ms^{-1}
 - (c) 7.65 ms^{-1} , 8.47 ms^{-1} (d) None of these
- Q.17 A gas occupies 300 ml at 27°C and 730 mm pressure. What would be its volume at STP?
 - (a) 162.2 ml (b) 262.2 ml
 - (c) 362.2 ml (d) 462.2 ml
- Q.18 A truck carrying oxygen cylinders is filled with oxygen at -23°C and at a pressure of 3 atm. in Srinagar, Kashmir. Determine the internal pressure when the truck drives through Madras, Tamil Nadu, where the temperature is 30°C.
 - (a) 2.64 atm. (b) 1.64 atm.
 - (c) l atm. (d) 3.64 atm.
- Q.19The odour from a gas A takes 6 seconds to reach a wall from a given point. If the molecular weight of gas A is 46 grams per mole and the molecular weight of gas B is 64 grams per mole how long will it take for the odour from gas B to reach the same wall from the same point? Assuming that volume of both gases is same.

(a)	6 sec	(b)	7 scc
(c)	8 sec	(d)	9 sec

	6. abcd	7. abcd	8. abcd	9. abcd	10. abcd
RESPONSE	11. abcd	12. abcd	13.abcd	14.abcd	15. abcd
OKID	16.abcd	17. abcd	18.abCd	19.abcd	

_ Space for Rough Work _

DPP/C(08)

- Q.20 1 litre of dioxygen effuses through a small hole in 60 min. and a litre of helium at the same temperature and pressure effuses through the same hole in 21.2 min. What is the atomic weight of helium ?
 - (a) 2.99 (b) 3.99 (c) 2.08 (d) 1.99
- Q.21 In the following diagram, container of NH₃ gas and container of HCI gas, connected through a long tube, are opened simultaneously at both ends; the white NH₄Cl ring first formed will be at Q point. If OP = 40 cm, then find OQ -

DIRECTIONS (Q.22-Q.24) : In the following questions, more than one of the answers given are correct. Select the correct answers and mark it according to the following codes:

Codes :

- (a) 1, 2 and 3 are correct (b) 1 and 2 are correct
- (c) 2 and 4 are correct (d) 1 and 3 are correct
- Q.22 If the pressure of the gas contained in a closed vessel is increased by 20% when heated by 273°C then it's initial temperature must have been
 - (1) 2184°C (2) 2457 K (3) 1365°C (4) 1029 K
- Q.23 There are three closed containers in which equal amount of the gas is filled.

If the containers are placed at the same temperature, then find the correct option s –

- (1) Pressure of the gas is minimum in (III) container
- (2) Pressure of the gas is maximum in (I)
- (3) The ratio of pressure in II and III containers is 4:3
- (4) Pressure of the gas is equal in I and II containers
- Q.24 If the rms velocities of nitrogen and oxygen molecules are same at two different temperatures and same pressures then-
 - (1) average speed of molecules is also same
 - (2) density (gm/litre) of nitrogen and oxygen is also equal
 - (3) most probable velocity of molecules is also equal
 - (4) number of moles of each gas is also equal

DIRECTIONS (Q.25-Q.27) : Read the passage given below and answer the questions that follows :

According to Dalton's law of partial pressure,

"When two or more gases, which do not react chemically are kept in a closed vessel, the total pressure exerted by the mixture is equal to the sum of the partial pressures of individual gases."

Thus,
$$P_{total} = P_1 + P_2 + P_3 + \dots$$

Where P_1 , P_2 , P_3 are partial pressures of gases, number 1, 2, 3

Partial pressure is the pressure exerted by a gas when it is present alone in the same container and at the same temperature. Partial pressure of a gas

$$(P_{I}) = \frac{\text{Number of moles of the gas } (n_{I}) \times P_{\text{Total}}}{\text{Total number of moles } (n) \text{ in the mixture}}$$

= Mole fraction $(x_1) \times P_{Total}$

- Q.25 A mixture of gases at 760 mm Hg pressure contains 65% nitrogen, 15% oxygen and 20% carbon dioxide by volume. What is the partial pressure of each in mm?
 - (a) 494, 114, 252 (b) 494,224, 152
 - (c) 494, 114, 152 (d) Nonc of these

Response	20.abcd	21. abcd	22.abcd	23.abcd	24. abcd
GRID	25.abcd				

- Space for Rough Work

31

-DPP/C (08)

EBD 7157

- Q.26 0.45 gm of a gas 1 of molecular weight 60 and 0.22 gm of a gas 2 of molecular weight 44 exert a total pressure of 75 cm of mercury. Calculate the partial pressure of the gas 2 -
 - (a) $30 \operatorname{cm} \operatorname{of} \operatorname{Hg}$ (b) $20 \operatorname{cm} \operatorname{of} \operatorname{Hg}$

32

- (c) $10 \operatorname{cm} \operatorname{of} \operatorname{Hg}$ (d) $40 \operatorname{cm} \operatorname{of} \operatorname{Hg}$
- Q.27 The total pressure of a sample of methane collected over water is 735 torr at 29°C. The aqueous tension at 29°C is 30 torr. What is the pressure exerted by dry methane?
 - (a) 605 torr (b) 205 torr
 - (c) 405torr (d) 705torr

DIRECTIONS (Q. 28-Q.30): Each of these questions contains two statements: Statement-1 (Assertion) and Statement-2 (Reason). Each of these questions has four alternative choices, only one of which is the correct answer. You have to select the correct choice.

(a) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.

- (b) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (c) Statement -I is False, Statement -2 is True.
- (d) Statement -1 is True, Statement-2 is False.
- Q.28 Statement 1 : Carbon dioxide has greater value of root mean square velocity μ_{ms} than carbon monoxide.

Statement 2: μ_{mis} is inversely proportional to molar mass.

Q.29 Statement 1 : 1/4th of the gas is expelled in air present in an open vessel is heated from 27°C to 127°C.

Statement 2 : Rate of **d**iffusion of a gas is inversely proportional to the square root of its molecular mass.

- Q.30 Statement 1 : Effusion rate of dioxygen is smaller than that of dinitrogen.
 - **Statement 2 :** Molecular size of nitrogen is smaller than oxygen.

Response Grid	26.abcd	27. abcd	28.abcd	29.@bCd	30. abcd
----------------------	---------	----------	---------	---------	----------

DAILY PRACTICE PROBLEM SHEET 8 - CHEMISTRY				
Total Questions	30	Total Marks	120	
Attempted	Correct			
Incorrect		Net Score		
Cut-off Score	32	Qualifying Score	56	
Success Gap = Net Score – Qualifying Score				
Net Score = (Correct × 4) – (Incorrect × 1)				

_ Space for Rough Work _

DPP/ C (08)

DAILY PRACTICE PROBLEMS

CHEMISTRY SOLUTIONS

(8)

- Given P = 16 atm, V = 9 litre. (1) (a) $T = 300 \text{ K}, \text{ m}_{CH_4} = 16, \text{R} = 0.08 \text{ litre aun/K}.$ $PV = \frac{W}{W} \times R \times T$ $16 \times 9 = \frac{W}{16} \times 0.082 \times 300$ w=96gm (a) The gram molecular weight of $SO_2 = 64$ gm/mole. (2) Since 1 mole of SO₂ occupies a volume of 22.4 litres at S.T.P. Density = mass / volume \therefore Density of SO₂ at STP = $\frac{64}{22.4}$ = 2.86 gm/lit. **(b)** No. of moles of $H_2 = \frac{1}{2} = 0.5$ (3) $n \bullet. of moles = \frac{mass}{molar mass}$ No. of moles of $N_2 = \frac{1.4}{28} = 0.05$:. Total number of moles of gas (n) = 0.5 + 0.05 = 0.55Using PV = nRT $P = \frac{nRT}{V} \frac{...0.55}{5} \times 0.0821 \times 400}{5} = 3.61 \text{ atm.}$ (c) $P_{dry gas} = 773 - 13 = 760 \text{torr} = \frac{760}{760} = 1 \text{ atm}$ (4) using PV = nRT $1 \times \frac{171}{1000} = \frac{0.333}{M.\text{wt.}} \times 0.0821 \times 288$ $(:: 1 \text{ cc} = 10^3 \text{ cm}^3)$ M = 46 g. per mol.(5) (a) Partial Pressure = Mole fraction × Total pressure = Vol. fraction × Total pressure $\therefore P_{02} = 0.2 \times 760 = 152 \text{ mm}$: $P_{N_2} = 0.8 \times 760 = 608 \text{mm}$ **(b)** P_{N_2} = Mole fraction × P_{total} (6) $=\frac{2.8/28}{\frac{2.8}{28}+\frac{2.8}{44}+\frac{4.4}{44}} \times 00 = \frac{0.1}{0.3} \times 00$ =233.3 Torr.
- (7) (a) Mol. mass of ${}^{235}\text{UF}_6 = 235 + 6 \times 19 = 349$ Mol. mass ${}^{238}\text{UF}_6 = 238 + 6 \times 19 = 352$ From Graham's law of diffusion

$$\frac{r_{1}}{r_{2}} = \sqrt{\frac{M_{2}}{M_{1}}} = \sqrt{\frac{352}{349}} = 1.0043$$

$$r_{1}: r_{2}:: 1.0043: 1.0000$$
(b)
$$\frac{r_{O_{2}}}{r_{CH_{4}}} = \sqrt{\left(\frac{d_{CH_{4}}}{d_{O_{2}}}\right)} = \sqrt{\left(\frac{1}{2}\right)}$$

(9) (c)
$$\sqrt{\left(\frac{M_{gas}}{M_{H_2}}\right)}$$
 Rate of diffusion of H₂
Rate of diffusion of gas

$$\therefore \sqrt{\left(\frac{M_{gas}}{2}\right)} = \left(\frac{1}{1/6}\right)$$

or
$$M_{gas} = 2 \times 36 = 72$$

(10) **(b)**
$$\frac{VD_A}{VD_B} = \frac{M_A}{M_B} [::M = 2 \times VD]$$

$$\frac{3}{1} = \frac{M_A}{M_B} = \frac{M_A}{M}$$

SoMol. wtof A(M_A) = 3 M
(11) (a) K.E. for 1 mole =
$$\frac{3}{2}$$
 RT
K.E. for 3 moles = $\frac{9}{2}$ RT
or R = $\frac{2}{9T}$ KE = $\frac{2}{9(300)}$ KE
= 7.4 × 10⁻⁴ KE per degree kelvin.
(12) (b) Average KE = $\frac{3}{2}$ nRT = $\frac{3}{2} \times \frac{8}{16} \times 8.314 \times 300$

= 1869.75 Joules
(13) (b) Initial volume (V₁) = 2.4 L,
Initial pressure (P₁) = 740 nm.
Final volume (V₂) = ?
Final pressure (P₂) = 760 mm.
From Boyle's law, P₁V₁ = P₂V₂

$$\therefore$$
 V₂ = $\frac{740 \times 2.4}{760}$ = 2.34 litres.

DPP/C (08)

18

(b) According to Charle's law, (14)

$$\frac{V_1}{T_1} = \frac{V_2}{T_2} \text{ or } V_2 = \frac{V_1 T_2}{T_1}$$

$$\frac{3L}{(273 + 32) \text{ K}} = \frac{V_2}{(273 + 18) \text{ K}}$$
or $V_2 = \frac{3 \times 291}{305} = 2.86 \text{ hitres}$
(15) (c) RMS velocity, $u = \sqrt{\left(\frac{n_1 u_1^2 + n_2 u_2^2 + n_3 u_3^2 + \dots}{n}\right)}$

$$= \sqrt{\left(\frac{4 \times 60^2 + 5 \times 20^2 + 10 \times 30^2}{19}\right)}$$

$$= \sqrt{\left(\frac{4 \times 36 + 5 \times 4 + 10 \times 9}{19}\right)}$$

$$= \sqrt{\left(\frac{254}{19}\right)} = 3.6 \text{ cm s}^{-1}$$

(16) (a) Average velocity (v) is the average of different speeds of all the molecules

$$= \frac{40.5}{6} = 6.75 \,\mathrm{ms}^{-1}$$

Also, v = 0.921 u where 'u' is RMS velocity

:. RMS velocity(u) =
$$\frac{6.75}{0.9213}$$
 = 7.47 ms⁻¹

(17) **(b)** $T_1 = 300$ K, $T_2 = 273$ K (STP)

$$V_{1} = 300 \text{ ml} = \left(\frac{300}{1000}\right) \text{ litre},$$

$$P_{1} = \left(\frac{730}{760}\right) \text{ atm}; P_{2} = 1 \text{ atm.}, \quad V_{2} = ?$$

$$using \frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}},$$

$$\frac{730 \times 300}{760 \times 000 \times 300} = \frac{1 \times V_{2}}{273},$$

$$\therefore V_{2} = 0.2622 \text{ litre} = 262.2 \text{ ml.}$$

$$P_{1} = 3 \text{ atm.}, P_{2} = ?$$

$$T_{1} = -23 + 273 = 250 \text{ K}$$

$$T_{2} = 273 + 30 = 303 \text{ K.}$$

using
$$\frac{P_1}{P_1} = \frac{P_2}{P_2}$$

 $\frac{3}{250} = \frac{P_2}{303}$
 $P_2 = \frac{3 \times 303}{250} = 3.64 \text{ atm.}$
(19) (b) $\frac{\Gamma_A}{\Gamma_B} = \sqrt{\frac{M_B}{M_A}}$ (from Graham's law of diffusion)
 $\frac{\Gamma_A}{\Gamma_B} = \sqrt{\frac{64}{46}} = 1.18 \Rightarrow \frac{V_A / \Gamma_A}{V_B / \Gamma_B} = 1.18$
 $\therefore \Gamma_B = 1.18 \times \Gamma_A$
Time taken for the odour of B to reach the wall (Γ_B)
 $= 1.18 \times 6 = 7.08 \text{ sec} \cong 7 \text{ sec.}$
(20) (b) $\frac{\Gamma_{O_2}}{\Gamma_{He}} = \frac{1000/60}{1000/21.2} = \frac{21.2}{60}$ ($\because r = \frac{v}{r}$)
 $= \sqrt{\frac{M_{He}}{M_{\Phi_2}}} = \sqrt{\frac{M_{He}}{32}}$
Squaring both of sides
 $\frac{(21.2)^2}{(60)^2} = \frac{-M_{He}}{32}$
 $M_{Fle} = \frac{(21.2)^2 \times 12}{(60)^2} = 3.99$
Since helium ismonoatomic so
Atomic weight = Molecular weight = 3.99
(21) (b) Let $OQ = x \text{ cm so } QP = (40 - x) \text{ cm}$
Diffused volume of NH₃ gas
 $= A \text{ read of TS} = 6 \text{ of the x > Distingent translided by NH_4 args}$

(21) = A rea of T.S. of tube × Distance travelled by NH_3 gas V.

$$V_{\rm NH_3} = A \times OQ$$

=Ax {where A is area of T.S. of tube} Similarly in the same time, Diffused volume of HCl gas = Area of T.S. of tube × Distance travelled by HCt gas $V_{HC1} = A \times QP = A(40-x)$ From Graham's Law of diffusion

$$\Rightarrow \frac{r_{NH_3}}{r_{HC1}} = \sqrt{\frac{M_{HC1}}{M_{NH_3}}}$$
$$\Rightarrow \frac{V_{NH_3/t}}{V_{HC1/t}} = \sqrt{\frac{36.5}{17}} = 1.46$$
$$\Rightarrow \frac{x}{(40-x)} = 1.46$$
$$\Rightarrow x = 23.74 \text{ cm}$$
$$\therefore OQ = 23.74 \text{ cm}$$

DPP/C (08)

(22) (b) Using
$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

Let initial pressure = 1 atm
 $\frac{I}{1+273} = \frac{1.2}{t+273+546}$
 $1.2t+273 \times 1.2 = t+273+546$
 $\Rightarrow t=2457 \text{K or } 2184^{\circ}\text{C}$
(23) (a) n, T same hence $P \stackrel{OC}{V}$,
 $V_1 = 1000 \text{ cm}^3$
 $V_2 = \pi (10)^2 \times 10 = 1000 \pi \text{ cm}^3$
 $V_3 = \frac{4}{3} \pi (10)^3 = \frac{4}{3} \pi 1000 \text{ cm}^3$
 \therefore Pressure of the gas is minimum in (III) container,
pressure of the gas is maximum in (I),
The ratio of pressure in II and III container is 4 : 3
(24) (a) $(v_{nns})_{N_2} \stackrel{--}{=} \sqrt{\frac{3RT_{O_2}}{M_{O_2}}}$; $\frac{T_{N_2}}{M_{N_2}} \stackrel{--T_{O_2}}{=} \frac{T_{O_2}}{M_{O_2}}$
Then v_{av} and v_{mps} is also same.
 $d_{N_2} = \frac{P_{N_2}M_{N_2}}{RT_{N_2}}$; $d_{O_2} = \frac{P_{O_2}M_{O_2}}{RT_{O_2}}$
If $P_{N_2} \stackrel{--}{=} P_{O_2}$ then $d_{N_2} \stackrel{--}{=} d_{O_2}$
(25) (c) $P'_{N_2} = 760 \times \frac{65}{100} = 494 \text{mm}$
 $P'_{O_2} = 760 \times \frac{15}{100} = 114 \text{mm}$
 $P'_{CO_2} = 760 \times \frac{20}{100} = 152 \text{mm}.$

(26) (a) No. of moles of gas $1 = n_1 = \frac{w_1}{m_1} = \frac{0.45}{60} = 0.0075$ No. of moles of gas $2 = n_2 = \frac{w_2}{m_2} = \frac{...0.22}{44} = 0.0050$ Total no. of moles $= n_1 + n_2$ = 0.0075 + 0.0050 = 0.0125P₂ (partial pressure of gas 2) $= \frac{0.0050}{0.0125} \times 75 = 30$ cm of Hg. (27) (d) P_{total} = P_{dry} methane + P_{water} $735 = P_{dry}$ methane + 30 \therefore P_{dry} methane = 735 - 30 = 705 torr. (28) (c) $\mu_{rms} = \sqrt{\frac{3RT}{M}}$ i.e., it is inversely related to molecular mass. Therefore, μ_{ms} (CO, $\neg \mu_{ms}$ (CO₂, . (29) (b) $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ (Initial fraction $\frac{V_1}{V_2} =$ when temperature is 27°C. At 127°C, the new fraction is $\frac{V_1}{V_2} = \frac{-300}{400} = \frac{.3}{4}$ \therefore air expelled $= \frac{.3}{4} = \frac{.3}{4}$ (30) (d) Statement-1 is true but Statement-2 is false because (30) (d) Statement-1 is true but Statement-2 is false because of effusion rate $\sim \frac{1}{\sqrt{M}}$ but it does not depend on molecular size.

19