CHAPTER-08

APPLICATION OF INTEGRALS

3 MARKS QUESTIONS

- 1. Find the area enclosed by the circle $x^2 + y^2 = a^2$. (A)
- 2. Find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. (A)
- 3. Find the area of the region bounded by the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$. (A)
- 4. Find the area of the region bounded by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$. (A)
- 5. Find the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the ordinates x=0 and x=ae,

where
$$b^2 = a^2(1 - e^2)$$
 and e<1. (A)

- 6. Find the area of the region bounded by the curve $y^2 = x$ and the lines x=1, x=4 and the x-axis in the first quadrant. (A)
- 7. Find the area of the region bounded by $y^2 = 9x$ and the lines x=2, x=4 and the x-axis in the first quadrant. (A)
- 8. Find the area of the region bounded by $x^2=4\,y$, y=2,y=4 and the y-axis in the first quadrant. (A)
- 9. Find the area of the region bounded by the curve $y=x^2$ and the line y=4. and the y-axis in the first quadrant. (A)
- 10. Find the area of the region bounded by the parabola $y=x^2$ and y=|x|. (S)
- 11. Find the area of the smaller part of the circle $x^2 + y^2 = a^2$ cut off by the line $x = \frac{a}{\sqrt{2}}$. (A)
- 12. The area between $x = y^2$ and x=4 is divided into equal parts by the line x=a,

 find the value of a.

 (A)
- 13. Find the area of region bounded by the curve $y^2=4x$, y-axis and the line x=3. (A).
- 14. Find the area bounded by the curve $x^2=4y$ and the line x=4y-2. (A)

- 15. Find the area of the region bounded by the curve $y^2=4x$ and the line x=3. (A)
- 16. Find the area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines x=0, and x =2.
- 17. Find the area of the region bounded by the curves $y = x^2 + 2$, y = x, x = 0 and x = 3. (A)
- 18. Find the area of the region bounded by the curve $y^2 = 4x$, y-axis and the line y = 3. (A)
- 19. Find the area of the parabola $y^2 = 4ax$ bounded by its latus rectum. (A)
- 20. Find the smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line x+y=2. (A)
- 21. Find the area lying between the curves $y^2 = 4x$ and y=2x. (A)
- 22. Find the area of the region enclosed by the parabola $x^2=y$, the line y=x+2 and the x-axis. (A)
- 23. Find the area under the given curves and given lines $y=x^2$, x=1, x=2 and x-axis. (A)
- 24. Find the area under the given curves and given lines y=x⁴,x=1,x=5 and x-axis. (A)
- 25. Find the area between the curves y = x and $y = x^2$. (A)
- 26. Find the area of the region lying in the first quadrant and bounded by $y=4x^2.x=0,y=1$ and y=4. (A)
- 27. Find the area bounded by the curve y=cosx between x=0 and x=2 π . (A)
- 28. Find the area bounded by the curve y=sinx between x=0 and x=2 π . (A)
- 29. Find the area bounded by the y-axis, y= cosx and y=sinx when $0 \le x \le \frac{\pi}{2}$ (S)
- 30. Find the area bounded by the curves $\{(x,y): y \ge x^2 \text{ and } y = |x|\}$. (S)
- 31. Find the area bounded by the curve $y=x^3$, the x-axis and the ordinates x=-2 and x=1. (A)
- 32. Find the area bounded by the curve y=x|x|, x axis and ordinates x=-1 and x=1. (A)
- 33. Sketch the graph of y = |x+3| and evaluate $\int_{-6}^{0} |x+3| dx$. (S)

FIVE MARKS QUESTION

- 1. Find the area of the region in the first quadrant enclosed by the x-axis, the line y=x, and the circle $x^2 + y^2 = 32$. (A)
- 2. Find the area of the region in the first quadrant enclosed by x-axis, line x= $\sqrt{3}y$ and the circle $x^2 + y^2 = 4$. (A)
- 3. Find the area lying above x-axis and included between the circle $x^2 + y^2 = 8x$ and inside of the parabola $y^2 = 4x$. (A)

- 4. Using integration find the area of the region bounded by the triangle whose vertices are (1, 0), (2,2) and (3,1). (A)
- 5. Find the area of the region enclosed between the two circles:

$$x^2 + y^2 = 4$$
 and $(x-2)^2 + y^2 = 4$. (A)

- 6. Find the area of the circle $4x^2 + 4y^2 = 9$ which is interior to the parabola $x^2=4y$. (A)
- 7. Find the area bounded by curves $(x-1)^2 + y^2 = 1$ and $x^2 + y^2 = 1$. (A)
- 8. Using integration find the area of the region bounded by the triangle whose vertices are (-1, 0), (1,3) and (3,2).
- 9. Using integration find the area of the triangular whose sides have the equationsy=2x+1, y=3x+1 and x=4.(A)
- 10. Prove that the curves $y^2 = 4x$ and $x^2 = 4y$ divide the area of the square by x=0, x=4, y=4 and y=0 into three equal parts. (A)
- 11. Find the area of the region $\{(x,y): 0 \le y \le x+1, 0 \le x \le 2\}$. (A)
- 12. Find the area enclosed between the parabola $y^2 = 4ax$ and the line y=mx. (A)
- 13. Find the area enclosed by the parabola $4y=3x^2$ and the line 2y=3x+12. (A)
- 14. Find the area of the smaller region bounded by the ellipse

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
 and the line $\frac{x}{3} + \frac{y}{2} = 1$. (A)

- 15. Find the area of the smaller region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the line $\frac{x}{a} + \frac{y}{b} = 1$. (A)
- 16. Find the area of the region enclosed by the parabola $x^2=y$, the line y=x+2 and the x-axis. (A)
- 17. Using the method of integration find the area bounded by the curve |x| + |y| = 1. (A)
- 18. Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2,0),B(4,5) and C(6,3). (A)
- 19. Using method of integration find the area of the region bounded by line

$$2x+y=4$$
, $3x-2y=6$ and $x-3y+5=0$. (A)

- 20. Find the area of the region $\{(x, y): y^2 \le 4x, 4x^2 + 4y^2 \le 9\}$. (S)
- 21. Find the area of the circle $x^2+y^2=16$ exterior to the parabola $y^2=6x$. (A)
- 22 Find the area of the region bounded by the two parabolas $y=x^2$ and $y^2=x$. (A)