Chapter 4

Electric Fields in Matter

.1 Polarization

4.1.1 Dielectrics

In this chapter we shall study electric fields in matter. Matter, of course, comes in many
varieties—solids, liquids, gases, metals, woods, glasses—and these substances do not all
respond in the same way to electrostatic fields. Nevertheless, most everyday objects belong
(at least, in good approximation) to one of two large classes: conductors and insulators (or
dielectrics). We have already talked about conductors; these are substances that contain
an “unlimited” supply of charges that are free to move about through the material. In
practice what this ordinarily means is that many of the electrons (one or two per atom in a
typical metal) are not associated with any particular nucleus, but roam around at will. In
dielectrics, by contrast, all charges are attached to specific atoms or molecules—they’re
on a tight leash, and all they can do is move a bit within the atom or molecule. Such
microscopic displacements are not as dramatic as the wholesale rearrangement of charge in
a conductor, but their cumulative effects account for the characteristic behavior of dielectric
materials. There are actually two principal mechanisms by which electric fields can distort
the charge distribution of a dielectric atom or molecule: stretching and rotating. In the next
two sections I’ll discuss these processes.

4.1.2 Induced Dipoles

What happens to a neutral atom when it is placed in an electric field E? Your first guess
might well be: “Absolutely nothing—since the atom is not charged, the field has no effect
on it” But that is incorrect. Although the atom as a whole is electrically neutral, there is a
positively charged core (the nucleus) and a negatively charged electron cloud surrounding
it. These two regions of charge within the atom are influenced by the field: the nucleus
is pushed in the direction of the field, and the electrons the opposite way. In principle, if
the field is large enough, it can pull the atom apart completely, “ionizing” it (the substance
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then becomes a conductor). With less extreme fields, however, an equilibrium is soon
established, for if the center of the electron cloud does not coincide with the nucleus, these
positive and negative charges attract one another, and this holds the atoms together. The
two opposing forces—E pulling the electrons and nucleus apart, their mutual attraction
drawing them together—reach a balance, leaving the atom polarized, with plus charge
shifted slightly one way, and minus the other. The atom now has a tiny dipole moment
p, which points in the same direction as E. Typically, this induced dipole moment is
approximately proportional to the field (as long as the latter is not too strong):

p=cE. (4.1)
The constant of proportionality « is called atomic polarizability. Its value depends on the

detailed structure of the atom in question. Table 4.1 lists some experimentally determined
atomic polarizabilities.

H He Li Be C Ne Na Ar K Cs
0.667 0205 243 560 176 0396 241 164 434 596

Table 4.1 Atomic Polarizabilities («/47 €o, in units of 10730 m3),
Source: Handbook of Chemistry and Physics, 78th ed.
(Boca Raton: CRC Press, Inc., 1997).

Example 4.1

A primitive model for an atom consists of a point nucleus (4¢) surrounded by a uniformly
charged spherical cloud (—¢g) of radius a (Fig. 4.1). Calculate the atomic polarizability of such
an atom.

Solution: In the presence of an external field E, the nucleus will be shifted slightly to the right
and the electron cloud to the left, as shown in Fig. 4.2. (Because the actual displacements

-4

Figure 4.1 Figure 4.2
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involved are extremely small, as you’ll see in Prob. 4.1, it is reasonable to assume that the
electron cloud retains its spherical shape.) Say that equilibrium occurs when the nucleus is
displaced a distance d from the center of the sbhere. At that point the external field pushing
the nucleus to the right exactly balances the internal field pulling it to the left: E = E,, where
E. is the field produced by the electron cloud. Now the field at a distance d from the center of
a uniformly charged sphere is

1
g L ad
dmey ad
(Prob. 2.12). At equilibrium, then,
1 qd 3
= —, or p=gqd=(4reya’)E.
dmey a3

The atomic polarizability is therefore
o= 47'[60(13 = 3¢qv, 4.2)

where v is the volume of the atom. Although this atomic model is extremely crude, the result
(4.2) is not too bad—it’s accurate to within a factor of four or so for many simple atoms.

For molecules the situation is not quite so simple, because frequently they polarize
more readily in some directions than others. Carbon dioxide (Fig. 4.3), for instance, has
a polarizability of 4.5 x 10740 C2.m/N when you apply the field along the axis of the
molecule, but only 2 x 1074 for fields perpendicular to this direction. When the field is
at some angle to the axis, you must resolve it into parallel and perpendicular components,
and multiply each by the pertinent polarizability:

p:aLE_;_-i-Ot”E”.

In this case the induced dipole moment may not even be in the same direction as E. And
COy is relatively simple, as molecules go, since the atoms at least arrange themselves in
a straight line; for a completely asymmetrical molecule Eq. 4.1 is replaced by the most
general linear relation between E and p:

Dx = 0 Ex + oy Ey +ayE;
Py =0y Ex +aywEy +ay E; (4.3)

Z

P = Ex + oy Ey 4o E,

Figure 4.3
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The set of nine constants «;; constitute the polarizability tensor for the molecule. Their
actual values depend on the orientation of the axes you chose, though it is always possible to
choose “principal” axes such that all the off-diagonal terms (o, oy, etc.) vanish, leaving
just three nonzero polarizabilities: oy, oyy, and o .

Problem 4.1 A hydrogen atom (with the Bohr radius of half an angstrom) is situated between
two metal plates 1 mm apart, which are connected to opposite terminals of a 500 V battery.
What fraction of the atomic radius does the separation distance d amount to, roughly? Estimate
the voltage you would need with this apparatus to ionize the atom. [Use the value of « 1n Table
4.1. Moral: The displacements we’re talking about are minute, even on an atomic scale.]

Problem 4.2 According to quantum mechanics, the electron cloud for a hydrogen atom in the
ground state has a charge density.

qg _
plr) = —=e 14,
Ta

where g is the charge of the electron and « is the Bohr radius. Find the atomic polarizability of
such an atom. [Hint: First calculate the electric field of the electron cloud, E, (#); then expand
the exponential, assuming r < a. For a more sophisticated approach, see W. A. Bowers, Am.
J. Phys. 54,347 (1986).]

Problem 4.3 According to Eq. 4.1, the induced dipole moment of an atom is proportional to
the external field. This is a “rule of thumb,” not a fundamental law, and it is easy to concoct
exceptions—in theory. Suppose, for example, the charge density of the electron cloud were
proportional to the distance from the center, out to a radius R. To what power of E would
p be proportional in that case? Find the condition on p(r) such that Eq. 4.1 will hold in the
weak-field limit.

Problem 4.4 A point charge q is situated a large distance r from a neutral atom of polarizability
«. Find the force of attraction between them.

4.1.3 Alignment of Polar Molecules

The neutral atom discussed in Sect. 4.1.2 had no dipole moment to start with—p was
induced by the applied field. Some molecules have built-in, permanent dipole moments.
In the water molecule, for example, the electrons tend to cluster around the oxygen atom
(Fig. 4.4), and since the molecule is bent at 105°, this leaves a negative charge at the vertex
and a net positive charge at the opposite end. (The dipole moment of water is unusually
large: 6.1 x 10739 C.m; in fact, this is what accounts for its effectiveness as a solvent.)
What happens when such molecules (called polar molecules) are placed in an electric field?
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Figure 4.4 Figure 4.5

If the field is uniform, the force on the positive end, F = gE, exactly cancels the force
on the negative end, F_ = —qE (Fig. 4.5). However, there will be a forque:

N = (s xFp)+ (- xF)
[(d/2) x (¢E)] + [(—d/2) x (—gE)] = qd x E.

Thus a dipole p = gd in a uniform field E experiences a torque

wo

Notice that N is in such a direction as to line p up parallel to E; a polar molecule that is
free to rotate will swing around until it points in the direction of the applied field.

If the field is nonuniform, so that F does not exactly balance F_, there will be a net
Jorce on the dipole, in addition to the torque. Of course, E must change rather abruptly
for there to be significant variation in the space of one molecule, so this is not ordinarily a
major consideration in discussing the behavior of dielectrics. Nevertheless, the formula for
the force on a dipole in a nonuniform field is of some interest:

F=F; +F_=qE; -E_)=q(AE),

where AE represents the difference between the field at the plus end and the field at the
minus end. Assuming the dipole is very short, we may use Eq. 1.35 to approximate the
small change in E,:

AE, =(VE,)-d,
with corresponding formulas for E and E,. More compactly,

AE = (d - V)E,
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and therefore!
F=(p-V)E 4.5)

For a “perfect” dipole of infinitesimal length, Eq. 4.4 gives the torque about the center of
the dipole even in a nonuniform field; about any other point N = (p x E) + (r x F).

Problem 4.5 In Fig. 4.6, p; and p; are (perfect) dipoles a distance » apart. What is the torque
on p; due to pp? What is the torque on py due to py? [In each case I want the torque on the
dipole about its own center. If it bothers you that the answers are not equal and opposite, see
Prob. 4.29.]

Figure 4.6 Figure 4.7

Problem 4.6 A (perfect) dipole p is situated a distance z above an infinite grounded conducting
plane (Fig. 4.7). The dipole makes an angle 6 with the perpendicular to the plane. Find the
torque on p. If the dipole is free to rotate, in what orientation will it come to rest?

Problem 4.7 Show that the energy of an ideal dipole p in an electric field E is given by

“o

Problem 4.8 Show that the interaction energy of two dipoles separated by a displacement r is

1 1

U= 4——3[111 -p2 — 3(p1 - B)(p2 - D). 4.7
TEY r

[Hint: use Prob. 4.7 and Eq. 3.104.]

Problem 4.9 A dipole p is a distance r from a point charge g, and oriented so that p makes an
angle 0 with the vector r from g to p.

(a) What is the force on p?
(b) What is the force on ¢g?

n the present context Eq. 4.5 could be written more conveniently as F = V(p - E). However, it is safer to
stick with (p - V)E, because we will be applying the formula to materials in which the dipole moment (per unit
volume) is itself a function of position and this second expression would imply (incorrectly) that p roo is to be
differentiated.
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4.1.4 Polarization

In the previous two sections we have considered the effect of an external electric field on an
individual atom or molecule. We are now in a position to answer (qualitatively) the original
question: What happens to a piece of dielectric material when it is placed in an electric field?
If the substance consists of neutral atoms (or nonpolar molecules), the field will induce in
each a tiny dipole moment, pointing in the same direction as the field.2 If the material is
made up of polar molecules, each permanent dipole will experience a torque, tending to
line it up along the field direction. (Random thermal motions compete with this process, so
the alignment is never complete, especially at higher temperatures, and disappears almost
at once when the field is removed.)

Notice that these two mechanisms produce the same basic result: a lot of little dipoles
pointing along the direction of the field—the material becomes polarized. A convenient
measure of this effect is

P = dipole moment per unit volume,

which is called the polarization. From now on we shall not worry much about how the
polarization got there. Actually, the two mechanisms I described are not as clear-cut as 1
tried to pretend. Even in polar molecules there will be some polarization by displacement
(though generally it is a lot easier to rotate a molecule than to stretch it, so the second
mechanism dominates). It’s even possible in some materials to “freeze in” polarization, so
that it persists after the field is removed. But let’s forget for a moment about the cause of
the polarization and study the field that a chunk of polarized material itself produces. Then.
in Sect. 4.3, we’ll put it all together: the original field, which was responsible for P, plus
the new field, which is due to P.

4.2 The Field of a Polarized Object

4.2.1 Bound Charges

Suppose we have a piece of polarized material—that is, an object containing a lot of micro-
scopic dipoles lined up. The dipole moment per unit volume P is given. Question: What
is the field produced by this object (not the field that may have caused the polarization.
but the field the polarization itself causes)? Well, we know what the field of an individual
dipole looks like, so why not chop the material up into infinitesimal dipoles and integrate
to get the total? As usual it’s easier to work with the potential. For a single dipole p we
have equation (Eq. 3.99),

V() = ' (4.8)

ZIn asymmetric molecules the induced dipole moment may not be parallel to the field, but if the molecules are
randomly oriented, the perpendicular contributions will average to zero. Within a single crystal, the orientations
are certainly nof random, and we would have to treat this case separately.
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Figure 4.8

where » is the vector from the dipole to the point at which we are evaluating the potential
(Fig. 4.8). In the present context we have a dipole moment p = Pdz’ in each volume
element d1’, so the total potential is

V(r) = 1 /”P(r)dr’.

4,
4reg 22 “9)
1%

That does it, in principle. But a little sleight-of-hand casts this integral into a much
more illuminating form. Observing that

2
=7
where (unlike Prob. 1.13) the differentiation is with respect to the source coordinates (r'),
we have
1

1
V= /P-V’(—) dt’.
dmey 2
1%

Integrating by parts, using product rule number 5, gives

] 4 P 7 1 7 7
V= Vil - dr—/—(V-P)dr ,
4meq 2 2
1% 1%

or, using the divergence theorem,

1 1 , 1 1 _, ,
=——@¢-P.da — —(V' -P)ydr'.
dreg J 2 dweg J 2
S 1%

The first term looks like the potential of a surface charge

4.10)

op,=P-n

.11
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(where #i is the normal unit vector), while the second term looks like the potential of a
volume charge
op=—V . .P. 4.12)

With these definitions, Eq. 4.10 becomes

1 1

vy = — ¢ Zaa + ——/&df/. (4.13)
dmey 2 4 eg 2

5 v

What this means is that the potential (and hence also the field) of a polarized object is
the same as that produced by a volume charge density p, = —V - P plus a surface charge
density o}, = P-fi. Instead of integrating the contributions of all the infinitesimal dipoles, as
in Eq. 4.9, we just find those bound charges, and then calculate the fields they produce, in
the same way we calculate the field of any other volume and surface charges (for example.
using Gauss’s law).

Example 4.2

Find the electric field produced by a uniformly polarized sphere of radius R.

Solution: We may as well choose the z axis to coincide with the direction of polarization
(Fig. 4.9). The volume bound charge density pj, is zero, since P is uniform, but

op =P-0n = Pcos#,

where 0 is the usual spherical coordinate. What we want, then, is the field produced by a
charge density P cos 0 plastered over the surface of a sphere. But we have already computed
the potential of such a configuration in Ex. 3.9:

P
—rcosf, forr < R,
€0
V(r,0)=
R3
— — ¢0S0, forr > R.
3¢y 2

Figure 4.9
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Since r cos 6 = z, the field inside the sphere is uniform,

P 1
E=-VV=——2=-—P, forr <R. 4.14)
3¢p 3eg

This remarkable result will be very useful in what follows. Qutside the sphere the potential is
identical to that of a perfect dipole at the origin,

, forr > R, (4.15)

whose dipole moment is, not surprisingly, equal to the total dipole moment of the sphere:
p = inR°P. (4.16)

The field of the uniformly polarized sphere is shown in Fig. 4.10.

Figure 4.10

Problem 4.10 A sphere of radius R carries a polarization
P(r) = kr,

where k is a constant and r is the vector from the center.
(a) Calculate the bound charges o, and py,.

(b) Find the field inside and outside the sphere.
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Problem 4.11 A short cylinder, of radius @ and length L, carries a “frozen-in” uniform polar-
ization P, parallel to its axis. Find the bound charge, and sketch the electric field (i) for L > a.
(i1) for L « a, and (iii) for L =~ a. [This device is known as a bar electret; it is the electrical
analog to a bar magnet. In practice, only very special materials—barium titanate is the most
“familiar” example—will hold a permanent electric polarization. That’s why you can’t buy
electrets at the toy store.]

Problem 4.12 Calculate the potential of a uniformly polarized sphere (Ex. 4.2) directly from
Eq. 4.9.

4.2.2 Physical Interpretation of Bound Charges

In the last section we found that the field of a polarized object is identical to the field
that would be produced by a certain distribution of “bound charges,” o and p,. But this
conclusion emerged in the course of abstract manipulations on the integral in Eq. 4.9, and
left us with no clue as to the physical meaning of these bound charges. Indeed, some
authors give you the impression that bound charges are in some sense “fictitious”—mere
bookkeeping devices used to facilitate the calculation of fields. Nothing could be farther
from the truth; pp, and o} represent perfectly genuine accumulations of charge. In this
section I’ll explain how polarization leads to such accumulations of charge.

The basic idea is very simple: Suppose we have a long string of dipoles, as shown in
Fig. 4.11. Along the line, the head of one effectively cancels the tail of its neighbor, but at
the ends there are two charges left over: plus at the right end and minus at the left. It is as
if we had peeled off an electron at one end and carried it all the way down to the other end.
though in fact no single electron made the whole trip—a lot of tiny displacements add up to
one large one. We call the net charge at the ends bound charge to remind ourselves that it
cannot be removed; in a dielectric every electron is attached to a specific atom or molecule.
But apart from that, bound charge is no different from any other kind.

00 >00>00 00000 = &

A A S e S +

Figure 4.11

To calculate the actual amount of bound charge resulting from a given polarization.
examine a “tube” of dielectric parallel to P. The dipole moment of the tiny chunk shown
inFig. 4.12 is P(Ad), where A is the cross-sectional area of the tube and d is the length of
the chunk. In terms of the charge (¢) at the end, this same dipole moment can be written
qd. The bound charge that piles up at the right end of the tube is therefore

qg = PA.
If the ends have been sliced off perpendicularly, the surface charge density is

q
gp A
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Figure 4.12 Figure 4.13

For an oblique cut (Fig. 4.13), the charge is still the same, but A = Ayg cos 8, so

= Pcosf =P ..

Op =
end
The effect of the polarization, then, is to paint a bound charge o3, = P - fi over the surface
of the material. This is exactly what we found by more rigorous means in Sect. 4.2.1. But
now we know where the bound charge comes from.

If the polarization is nonuniform we get accumulations of bound charge within the
material as well as on the surface. A glance at Fig. 4.14 suggests that a diverging P results
in a pileup of negative charge. Indeed, the net bound charge [ p5 d7 in a given volume is
equal and opposite to the amount that has been pushed out through the surface. The latter
(by the same reasoning we used before) is P - fi per unit area, so

/pbdrz—fP-daz—/(V-P)dr.
1%

1% S

Since this is true for any volume, we have
pp ==V -P,

confirming, again, the more rigorous conclusion of Sect. 4.2.1.

Figure 4.14
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Example 4.3

There is another way of analyzing the uniformly polarized sphere (Ex. 4.2), which nicely
illustrates the idea of a bound charge. What we have, really, is »wo spheres of charge: a
positive sphere and a negative sphere. Without polarization the two are superimposed and
cancel completely. But when the material is uniformly polarized, all the plus charges move
slightly upward (the z direction), and all the minus charges move slightly downward (Fig. 4.15).
The two spheres no longer overlap perfectly: atthe top there’sa “cap” of leftover positive charge
and at the bottom a cap of negative charge. This “leftover” charge is precisely the bound surface
charge op,.

Figure 4.15

In Prob. 2.18 you calculated the field in the region of overlap between two uniformly charged
spheres; the answer was

1 gd
4meg R3’

where ¢ is the total charge of the positive sphere, d is the vector from the negative center
the positive center, and R is the radius of the sphere. We can express this in terms of the
polarization of the sphere, p = gd = (%nR3)P, as

1
E=-—FP.
RIS

Meanwhile, for points outside, it is as though all the charge on each sphere were concentrated
at the respective center. We have, then, a dipole, with potential

>

1 p-

V= .
ey r?

(Remember that d is some small fraction of an atomic radius; Fig. 4.15 is grossly exaggerated. )
These answers agree, of course, with the results of EX. 4.2.
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Problem 4.13 A very long cylinder, of radius «, carries a uniform polarization P perpendicular
to its axis. Find the electric field inside the cylinder. Show that the field outside the cylinder
can be expressed in the form

a?

Ex) = 2507[2(1’ -8)s — P].

[Careful: 1 said “uniform,” not “radial”!]
Problem 4.14 When you polarize a neutral dielectric, charge moves a bit, but the foral remains

zero. This fact should be reflected in the bound charges o, and pp. Prove from Eqgs. 4.11 and
4.12 that the total bound charge vanishes.

4.2.3 The Field Inside a Dielectric

I'have been sloppy about the distinction between “pure” dipoles and “physical” dipoles. In
developing the theory of bound charges, I assumed we were working with the pure kind—
indeed, I started with Eq. 4.8, the formula for the potential of a pure dipole. And yet, an
actual polarized dielectric consists of physical dipoles, albeit extremely tiny ones. What is
more, I presumed to represent discrete molecular dipoles by a continuous density function
P. How can I justify this method? Outside the dielectric there is no real problem: here
we are far away from the molecules (z is many times greater than the separation distance
between plus and minus charges), so the dipole potential dominates overwhelmingly and
the detailed “graininess” of the source is blurred by distance. Inside the dielectric, however,
we can hardly pretend to be far from all the dipoles, and the procedure I used in Sect. 4.2.1
i8 open to serious challenge.

In fact, when you stop to think about it, the electric field inside matter must be fantas-
tically complicated, on the microscopic level. If you happen to be very near an electron,
the field is gigantic, whereas a short distance away it may be small or point in a totally
different direction. Moreover, an instant later, as the atoms move about, the field will have
altered entirely. This true microscopic field would be utterly impossible to calculate, nor
would it be of much interest if you could. Just as, for macroscopic purposes, we regard
water as a continuous fluid, ignoring its molecular structure, so also we can ignore the
microscopic bumps and wrinkles in the electric field inside matter, and concentrate on the
macroscopic field. This is defined as the average field over regions large enough to contain
many thousands of atoms (so that the uninteresting microscopic fluctuations are smoothed
over), and yet small enough to ensure that we do not wash out any significant large-scale
variations in the field. (In practice, this means we must average over regions much smaller
than the dimensions of the object itself.) Ordinarily, the macroscopic field is what people
mean when they speak of “the” field inside matter.’

3In case the introduction of the macroscopic field sounds suspicious to you, let me point out that you do exactly
the same averaging whenever you speak of the density of a material.
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Figure 4.16

It remains to show that the macroscopic field is what we actually obtain when we use
the methods of Sect. 4.2.1. The argument is subtle, so hang on. Suppose I want to calculate
the macroscopic field at some point r within a dielectric (Fig. 4.16). I know I must average
the true (microscopic) field over an appropriate volume, so let me draw a small sphere about
r, of radius, say, a thousand times the size of a molecule. The macroscopic field at r, then.
consists of two parts: the average field over the sphere due to all charges outside, plus the
average due to all charges inside:

E = Eout + Eip.

Now you proved in Prob. 3.41(d) that the average field (over a sphere), produced by
charges outside, is equal to the field they produce at the center, so E is the field at r due to
the dipoles exterior to the sphere. These are far enough away that we can safely use Eq. 4.9:

1 2 P
Viut = f Z(r) dv'. 4.17)
4 eq 2

outside

The dipoles inside the sphere are too close to treat in this fashion. But fortunately all we
need is their average field, and that, according to Eq. 3.103, is

1 p
47'[60 R3’

Ein =

regardless of the details of the charge distribution within the sphere. The only relevant
quantity is the total dipole moment, p = (37 R?) P:

1
Ep = ——FP. (4.18)
360

Now, by assumption the sphere is small enough that P does not vary significantly over
its volume, so the term left our of the integral in Eq. 4.17 corresponds to the field at the
center of a uniformly polarized sphere, to wit: —(1/3¢p)P (Eq. 4.14). But this is precisel
what E;; (Eq. 4.18) puts back in! The macroscopic field, then, is given by the potential

1 2P
V() = /" O 4, (4.19)
4 eg n
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where the integral runs over the entire volume of the dielectric. This is, of course, what
we used in Sect. 4.2.1; without realizing it, we were correctly calculating the averaged,
macroscopic field, for points inside the dielectric.

You may have to reread the last couple of paragraphs for the argument to sink in.
Notice that it all revolves around the curious fact that the average field over any sphere
(due to the charge inside) is the same as the field at the center of a uniformly polarized
sphere with the same total dipole moment. This means that no matter how crazy the actual
microscopic charge configuration, we can replace it by a nice smooth distribution of perfect
dipoles, if all we want is the macroscopic (average) field. Incidentally, while the argument
ostensibly relies on the spherical shape I chose to average over, the macroscopic field is
certainly independent of the geometry of the averaging region, and this is reflected in the
final answer, Eq. 4.19. Presumably, one could reproduce the same argument for a cube or
an ellipsoid or whatever—the calculation might be more difficult, but the conclusion would
be the same.

4.3 The Electric Displacement

4.3.1 Gauss’s Law in the Presence of Dielectrics

In Sect. 4.2 we found that the effect of polarization is to produce accumulations of bound
charge, p, = —V - P within the dielectric and 6, = P - f on the surface. The field due
to polarization of the medium is just the field of this bound charge. We are now ready to
put it all together: the field attributable to bound charge plus the field due to everything
else (which, for want of a better term, we call free charge). The free charge might consist
of electrons on a conductor or ions embedded in the dielectric material or whatever; any
charge, in other words, that is not a result of polarization. Within the dielectric, then, the
total charge density can be written:

P=pp+pf, (4.20)
and Gauss’s law reads
«©V-E=p=p,+pr=-V -P4py,

where E is now the total field, not just that portion generated by polarization.
It is convenient to combine the two divergence terms:

V - («oE+P) = py.
The expression in parentheses, designated by the Jetter D,

D =¢E +P, .21)

is known as the electric displacement. In terms of D, Gauss’s law reads

am
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or, in integral form,

?{D da= Q. (4.23)

where Q 4, denotes the total free charge enclosed in the volume. This is a particularly
useful way to express Gauss’s law, in the context of dielectrics, because it makes reference
only 1o free charges, and free charge is the stuff we control. Bound charge comes along
for the ride: when we put the free charge in place, a certain polarization automatically
ensues, by the mechanisms of Sect. 4.1, and this polarization produces the bound charge.
In a typical problem, therefore, we know p ¢, but we do not (initially) know pp; Eq. 4.23
lets us go right to work with the information at hand. In particular, whenever the requisite
symmetry is present, we can immediately calculate D by the standard Gauss’s law methods.

Example 4.4

A long straight wire, carrying uniform line charge A, is surrounded by rubber insulation out to
aradius a (Fig. 4.17). Find the electric displacement.

Figure 4.17

Solution: Drawing a cylindrical Gaussian surface, of radius s and length L, and applying
Eq. 4.23, we find

DQ2nsL) = AL.
Therefore,
A,
D = ——8. (4.24)
27

Notice that this formula holds both within the insulation and outside it. In the latter region.
P=0,s0

1 A

E=—-D= §, fors>a.
€9 2megs

Inside the rubber the electric field cannot be determined, since we do not know P.

It may have appeared to you that I left out the surface bound charge o} in deriving
Eq. 4.22, and in a sense that is true. We cannot apply Gauss’s law precisely at the surface of
a dielectric, for here pp blows up, taking the divergence of E with it. But everywhere else
the logic is sound, and in fact if we picture the edge of the dielectric as having some finite
thickness within which the polarization tapers off to zero (probably a more realistic model
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than an abrupt cut-off anyway), then there is no surface bound charge; p; varies rapidly
but smoothly within this “skin,” and Gauss’s law can be safely applied everywhere. At any
rate, the integral form (Eq. 4.23) is free from this “defect.”

Problem 4.15 A thick spherical shell (inner radius a, outer radius b) is made of dielectric
material with a “frozen-in” polarization

P(r)=-r,

N A

where & is a constant and r is the distance from the center (Fig. 4.18). (There is no free charge
in the problem.) Find the electric field in all three regions by two different methods:

(a) Locate all the bound charge, and use Gauss’s law (Eq. 2.13) to calculate the field it produces.

(b) Use Eq. 4.23 to find D, and then get E from Eq. 4.21. [Notice that the second method is
much faster, and avoids any explicit reference to the bound charges.]

Problem 4.16 Suppose the ficld inside a large piece of dielectric is Eq, so that the electric
displacement is Dy = ¢gEq + P.

(a) Now a small spherical cavity (Fig. 4.19a) is hollowed out of the material. Find the field at
the center of the cavity in terms of Eg and P. Also find the displacement at the center of the
cavity in terms of Dy and P.

(b) Do the same for a long needle-shaped cavity running parallel to P (Fig. 4.19b).
(c) Do the same for a thin wafer-shaped cavity perpendicular to P (Fig. 4.19¢).

[Assume the cavities are small enough that P, Eq, and Dy are essentially uniform. Hint:
Carving out a cavity is the same as superimposing an object of the same shape but opposite
polarization.]

(a) Sphere  (b) Needle (c) Wafer

Figure 4.18 Figure 4.19
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4.3.2 A Deceptive Parallel

Equation 4.22 looks just like Gauss’s law, only the roral charge density p is replaced by the
free charge density p ¢, and D is substituted for gE. For this reason, you may be tempted
to conclude that D is “just like” E (apart from the factor €p), except that its source is o,
instead of p: “To solve problems involving dielectrics, you just forget all about the bound
charge—calculate the field as you ordinarily would, only call the answer D instead of E.”
This reasoning is seductive, but the conclusion is false; in particular, there is no “Coulomb’s
law” for D:

A

1 2 "o
D(r) #Z;/;Pf(r)df-

The parallel between E and D is more subtle than that.

For the divergence alone is insufficient to determine a vector field; you need to know
the curl as well. One tends to forget this in the case of electrostatic fields because the curl
of E is always zero. But the curl of D is not always zero.

VxD=¢(VXE)+(VxP)=V xP, 4.25

and there is no reason, in general, to suppose that the curl of P vanishes. Sometimes it does.
as in Ex. 4.4 and Prob. 4.15, but more often it does not. The bar electret of Prob. 4.11 is a
case in point; here there is no free charge anywhere, so if you really believe that the only
source of D is p ¢, you will be forced to conclude that D = 0 everywhere, and hence that
E = (—1/¢g)P inside and E = 0 outside the electret, which is obviously wrong. (I leave it
for you to find the place where V x P £ ( in this problem.) Because V x D # 0, moreover.
D cannot be expressed as the gradient of a scalar—there is no “potential” for D.

Advice: When you are asked to compute the electric displacement, first look for sym-
metry. If the problem exhibits spherical, cylindrical, or plane symmetry, then you can get D
directly from Eq. 4.23 by the usual Gauss’s law methods. (Evidently in such cases V x P is
automatically zero, but since symmetry alone dictates the answer you're not really obliged
to worry about the curl.) If the requisite symmetry is absent, you’ll have to think of another
approach and, in particular, you must not assume that D is determined exclusively by the
free charge.

4.3.3 Boundary Conditions

The electrostatic boundary conditions of Sect. 2.3.5 can be recast in terms of D. Equation
4.23 tells us the discontinuity in the component perpendicular to an interface:

Diove — Ditiow = 0> (4.26)

above

while Eq. 4.25 gives the discontinuity in parallel components:

_nl _pl _pl
D below — p above Pbelow'

p!

above

4.2
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In the presence of dielectrics these are sometimes more useful than the corresponding
boundary conditions on E (Eqs. 2.31 and 2.23):

1

1 1
Eabove - Ebelow = 50’ (4.28)
and
I [
Eabove - Ebelow =0. (4.29)

You might try applying them, for example, to Probs. 4.16 and 4.17.

Problem 4.17 For the bar electret of Prob. 4.11, make three careful sketches: one of P, one of
E, and one of D. Assume L is about 2a. [Hins: E lines terminate on charges; D lines terminate
on free charges.]

4.4 Linear Dielectrics

4.4.1 Susceptibility, Permittivity, Dielectric Constant

In Sects. 4.2 and 4.3 we did not commit ourselves as to the cause of P; we dealt only with the
effects of polarization. From the qualitative discussion of Sect. 4.1, though, we know that
the polarization of a dielectric ordinarily results from an electric field, which lines up the
atomic or molecular dipoles. For many substances, in fact, the polarization is proportional
to the field, provided E is not too strong:

P = ¢oxE. (4.30)

The constant of proportionality, ., is called the electric susceptibility of the medium (a
factor of €g has been extracted to make x, dimensionless). The value of x, depends on the
microscopic structure of the substance in question (and also on external conditions such as
temperature). I shall call materials that obey Eq. 4.30 linear dielectrics.*

Note that E in Eq. 4.30 is the toral field; it may be due in part to free charges and in
part to the polarization itself. If, for instance, we put a piece of dielectric into an external
field Ey, we cannot compute P directly from Eq. 4.30; the external field will polarize the
material, and this polarization will produce its own field, which then contributes to the total
field, and this in turn modifies the polarization, which ... Breaking out of this infinite
regress is not always easy. You’ll see some examples in a moment. The simplest approach
is to begin with the displacement, at least in those cases where D can be deduced directly
from the free charge distribution.

4In modern optical applications, especially, nonlinear materials have become increasingly important. For these
there is a second term in the formula for P as a function of E—typically a cubic one. In general, Eq. 4.30 can be
regarded as the first (nonzero) term in the Taylor expansion of P in powers of E.
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In linear media we have

D = ¢E +P = ¢E + g x.E = €o(1 + x.)E, (4.31)
so D is also proportional to E:
D =¢E, (4.32)
where
€ = ol + xe). (4.33)

This new constant € is called the permittivity of the material. (In vacuum, where there is
no matter to polarize, the susceptibility is zero, and the permittivity is ep. That’s why €y
is called the permittivity of free space. I dislike the term, for it suggests that the vacuum
is just a special kind of linear dielectric, in which the permittivity happens to have the
value 8.85 x 10712 C2/N-m?2.) If you remove a factor of g, the remaining dimensionless
quantity

6 =14y =— (4.34)

€0

is called the relative permittivity, or dielectric constant, of the material. Dielectric con-
stants for some common substances are listed in Table 4.2. Of course, the permittivity
and the dielectric constant do not convey any information that was not already available in
the susceptibility, nor is there anything essentially new in Eq. 4.32; the physics of linear
dielectrics is all contained in Eq. 4.30.

Material Dielectric Constant | Material Dielectric Constant
Vacuum 1 Benzene 2.28

Helium 1.000065 Diamond 57

Neon 1.00013 Salt 5.9

Hydrogen 1.00025 Silicon 11.8

Argon 1.00052 Methanol 33.0

Air (dry) 1.00054 Water 80.1

Nitrogen 1.00055 Ice (-30° C) 99

Water vapor (100° C)  1.00587 KTaNbO3 (0° C) 34,000

Table 4.2 Dielectric Constants (unless otherwise specified, values given are for 1 atm,
20° C). Source: Handbook of Chemistry and Physics, 78th ed.
(Boca Raton: CRC Press, Inc., 1997).

JAs long as we are engaged in this orgy of unnecessary terminology and notation, I might as well mention that
formulas for D in terms of E (Eq. 4.32, in the case of linear dielectrics) are called constitutive relations.
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Figure 4.20

Example 4.5

A metal sphere of radius a carries a charge Q (Fig. 4.20). It is surrounded, out to radius b, by
linear dielectric material of permittivity €. Find the potential at the center (relative to infinity).

Solution: To compute V, we need to know E: to find E, we might first try to locate the bound
charge; we could get the bound charge from P, but we can’t calculate P unless we already
know E (Eq. 4.30). We seem to be in a bind. What we do know is the free charge Q, and
fortunately the arrangement is spherically symmetric, so let’s begin by calculating D, using
Eq. 4.23:

D= Lf', for all points r > a.
4mr?

(Inside the metal sphere, of course, E = P = D = 0.) Once we know D, it is a trivial matter
to obtain E, using Eq. 4.32:

0 r, fora <r <b,
4rer?
E =
0 forr > b.
dmepr?

The potential at the center is therefore

0 b a 0
_ o Y _ o _
V = /OOE dl = /Oo <4ne0r2) dr /b (471”2) dr /a ) dr

o/ 1
T 4 <60b+ea eb)'

As it turns out, it was not necessary for us to compute the polarization or the bound charge
explicitly, though this can easily be done:

GOXle,

P =¢pxeE = R
0Xe 4yrer?



182 CHAPTER 4. ELECTRIC FIELDS IN MATTER

in the dielectric, and hence
,Ob =-V.P= 07

while 0
€
0Xe 5 at the outer surface,
. 4rmeb
—€
L‘ZZQ. at the inner surface.
dmea

Notice that the surface bound charge at a is negative (0 points outward with respect to the
dielectric, which is +F at b but —F at a). This is natural, since the charge on the metal
sphere attracts its opposite in all the dielectric molecules. It is this layer of negative charge
that reduces the field, within the dielectric, from 1/47ep(Q/ r2)f to 1/4me(Q/r?)E. In this
respect a dielectric is rather like an imperfect conductor: on a conducting shell the induced
surface charge would be such as to cancel the field of Q completely in the region a < r < b:
the dielectric does the best it can, but the cancellation is only partial.

You might suppose that linear dielectrics would escape the defect in the parallel between
E and D. Since P and D are now proportional to E, does it not follow that their curls, like
E’s, must vanish? Unfortunately, it does nos, for the line integral of P around a closed path
that straddles the boundary between one type of material and another need not be zero, even
though the integral of E around the same loop must be. The reason is that the proportionality
factor €q x. is different on the two sides. For instance, at the interface between a polarized
dielectric and the vacuum (Fig. 4.21), P is zero on one side but not on the other. Around this
loop ¢ P - dl # 0, and hence, by Stokes’ theorem, the curl of P cannot vanish everywhere
within the loop (in fact, it is infinite at the boundary).

P=0
Vacuum -
Dielectric -
P=0
Figure 4.21

Of course, if the space is entirely filled with a homogeneous® linear dielectric, then this
objection is void; in this rather special circumstance

V-D=p; and VD=0,
so D can be found from the free charge just as though the diclectric were not there:
D = ¢Ey,

where Ey, is the field the same free charge distribution would produce in the absence of
any dielectric. According to Eqgs. 4.32 and 4.34, therefore,

| 1

E=-D=—E,. (4.35)
€ €

r

6A homogeneous medium is one whose properties (in this case the susceptibility) do not vary with position.
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Conclusion: When all space is filled with a homogeneous linear dielectric, the field every-
where is simply reduced by a factor of one over the dielectric constant. (Actually, it is not
necessary for the dielectric to fill all space: in regions where the field is zero anyway, it can
hardly matter whether the dielectric is present or not, since there’s no pqlarization in any
event.)

For example, if a free charge ¢ is embedded in a large dielectric, the field it produces is

1
E=_— 9% (4.36)

4me r?
(that’s €, not €p), and the force it exerts on nearby charges is reduced accordingly. But it’s
not that there is anything wrong with Coulomb’s law; rather, the polarization of the medium

partially “shields” the charge, by surrounding it with bound charge of the opposite sign
(Fig. 4.22).7

+
+\ /+
+ ~de :— +
+/ \+
+
Figure 4.22

Example 4.6

A parallel-plate capacitor (Fig. 4.23) is filled with insulating material of dielectric constant ¢;.
What effect does this have on its capacitance?

Solution: Since the field is confined to the space between the plates, the dielectric will reduce
E, and hence also the potential difference V, by a factor 1/¢,. Accordingly, the capacitance
C = Q/V isincreased by a factor of the dielectric constant,

C=¢ Cvac. (437)

This is, in fact, a common way to beef up a capacitor.

"In quantum electrodynamics the vacuum itself can be polarized, and this means that the effective (or “renor-
malized”) charge of the electron, as you might measure it in the laboratory, is not its true (“bare”) value, and in
fact depends slightly on how far away you are!
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-+— Dielectric

Figure 4.23

By the way, a crystal is generally easier to polarize in some directions than in others,?
and in this case Eq. 4.30 is replaced by the general linear relation

Py = €0(Xe, Ex + Xex)-Ey + Xer E2)
Py = €0(Xe, Ex + Xey Ey + Xe,. E2) ¢, (4.38)
P, = GO(Xezx E, + Xezy Ey + Xe,, E;)

justas Eq. 4.1 was superseded by Eq. 4.3 for asymmetrical molecules. The nine coefficients.
Xexys Xewy» - - - » COnstitute the susceptibility tensor.

Problem 4.18 The space between the plates of a parallel-plate capacitor (Fig. 4.24) is filled
with two slabs of linear dielectric material. Each slab has thickness a, so the total distance
between the plates is 2a. Slab 1 has a dielectric constant of 2, and slab 2 has a dielectric
constant of 1.5. The free charge density on the top plate is o and on the bottom plate —o.

(a) Find the electric displacement D in each slab.

(b) Find the electric field E in each slab.

(c) Find the polarization P in each slab.

(d) Find the potential difference between the plates.
(e) Find the location and amount of all bound charge.

(f) Now that you know all the charge (free and bound), recalculate the field in each slab, and
confirm your answer to (b).

8 A medium is said to be isotropic if its properties (such as susceptibility) are the same in all directions. Thus
Eq. 4.30 is the special case of Eq. 4.38 that holds for isotropic media. Physicists tend to be sloppy with their
language, and unless otherwise indicated the term “linear dielectric™ certainly means “isotropic linear dielectric.”
and probably means “homogeneous isotropic linear dielectric.”
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+G

-<«+— Slab 1

-<+— Slab?2

Figure 4.24

Problem 4.19 Suppose you have enough linear dielectric material, of dielectric constant ¢,
to half-fill a parallel-plate capacitor (Fig. 4.25). By what fraction is the capacitance increased
when you distribute the material as in Fig. 4.25(a)? How about Fig. 4.25(b)? For a given
potential difference V between the plates, find E, D, and P, in each region, and the free and
bound charge on all surfaces, for both cases.

(b)

Figure 4.25

Problem 4.20 A sphere of linear dielectric material has embedded in it a uniform free charge
density p. Find the potential at the center of the sphere (relative to infinity), if its radius is R
and its dielectric constant is €.

Problem 4.21 A certain coaxial cable consists of a copper wire, radius a, surrounded by a
concentric copper tube of inner radius ¢ (Fig. 4.26). The space between is partially filled (from
b out to c) with material of dielectric constant ¢,, as shown. Find the capacitance per unit
length of this cable.
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Figure 4.26

4.4.2 Boundary Value Problems with Linear Dielectrics

In a homogeneous linear dielectric the bound charge density () is proportional to the free
charge density (p f):9

Xe Xe
=—-V.P=-V-{e2D) = — . 4.39
Pe (60 p ) (1 +xe>pf @3

In particular, unless free charge is actually embedded in the material, p = 0, and any
net charge must reside at the surface. Within such a dielectric, then, the potential obeys
Laplace’s equation, and all the machinery of Chapter 3 carries over. It is convenient.
however, to rewrite the boundary conditions in a way that makes reference only to the free
charge. Equation 4.26 says

€above E:l_)ove — €below Ed_elow =of, (4.40)
or (in terms of the potential),

d Vabove d Vbelow

éaboveT - GbelowT = —oy, (4.41)

whereas the potential itself is, of course, continuous (Eq. 2.34):

Vabove = Vielow- (4.42)

Example 4.7

A sphere of homogeneous linear dielectric material is placed in an otherwise uniform electric
field Eg (Fig. 4.27). Find the electric field inside the sphere.

9This does not apply to the surface charge (05), because x, is not independent of position (obviously) at the
boundary.
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i

Figure 4.27

[

Solution: This is reminiscent of Ex. 3.8, in which an uncharged conducting sphere was
introduced into a uniform field. In that case the field of the induced charge completely canceled
Eq within the sphere; in a dielectric, the cancellation (from the bound charge) is only partial.

Our problem is to solve Laplace’s equation, for Vi, (r, 8) when r < R, and Vot (v, 8) when
r > R, subject to the boundary conditions

6] Vin = Vout, atr = R,

A% aV
gy eDin _ o ou R (4.43)
ar ar
(iii) Vout — —Egrcos9, forr > R.
(The second of these follows from Eq. 4.41, since there is no free charge at the surface.) Inside
the sphere Eq. 3.65 says

oC
Vin(r,0) = > A;r! P(cos 0); (4.44)
=0

outside the sphere, in view of (iii), we have

Vout (r, §) = — Egr cosf + ) 57 Pi(cos 9). (4.45)
r
=0
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Boundary condition (i) requires that

ZAI R Pj(cos8) = —EgRcos0 + Z WP[(COS@),
=0 1=0
So10
AR = —— forl #1,
R+ (4.46)

B)
AR =—-EgR + p

Meanwhile, condition (ii) yields

- o~ ( + 1B
€ ZlA[Rl_lPl(cos 0) = —Epcosf — Z ———— Pj(cos 9),
=0

+2
=0 R
SO 1
-1 _ _{+DB
€lAIR = ——Rl+2 , forl#1,
4.47)
2By
ErAl = —E() — F
It follows that
A;= B} =0, forl £1,
(4.48)
r—1
A _e,3+2E0 B) = £ R3E
Evidently
Eg 3Ey
in(r, 0) = — 0 =— ,
Vin(r, 6) €r+2rcos 6r+2z
and hence the field inside the sphere is (surprisingly) uniform:
E-— FE (4.49)
= o 12 0- K

Example 4.8

Suppose the entire region below the plane z = 0 in Fig. 4.28 is filled with uniform linear
dielectric material of susceptibility .. Calculate the force on a point charge g situated a
distance d above the origin.

Solution: The surface bound charge on the xy plane is of opposite sign to ¢, so the force will
be attractive. (In view of Eq. 4.39, there is no volume bound charge.) Let us first calculate op.
using Eqgs. 4.11 and 4.30.

op =P-fi=P; =e€oxE;,

10Remember, Py (cos8) = cos 8, and the coefficients must be equal for each /, as you could prove by multiplying
by Py (cos§) sin 8, integrating from O to 77, and invoking the orthogonality of the Legendre polynomials (Eq. 3.68).
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~N

Figure 4.28

where E is the z-component of the total field just inside the dielectric, at z = 0. This field
is due in part to ¢ and in part to the bound charge itself. From Coulomb’s law, the former

contribution is
1 q 1 qd

8 1 - =T L —
dmeo P2+ d2) ey (2 4+ d2)32°

where r = +/x2 + y2 is the distance from the origin. The z component of the field of the
bound charge, meanwhile, is —op/2¢q (see footnote 6, p. 89). Thus

1 qd op :|

=€ - v
% Oxe[ dmey (r2 +d?)32  2e0

which we can solve for op:

1 Xe qd
= - — . 4.
%= T on (xe +2> (2 + d2)3/? *:30)

Apart from the factor x./(x. +2), this is exactly the same as the induced charge on an infinite
conducting plane under similar circumstances (Eq. 3.10).1! Evidently the fotal bound charge

is
Xe
=— . 4.51
qb (Xe+2>q 4.51)

We could, of course, obtain the field of o}, by direct integration

1 )
E=— — Jopda.
4reg 22

1 For some purposes a conductor can be regarded as the limiting case of a linear dielectric, with x, — oo. This
is often a useful check—try applying it to Exs. 4.5, 4.6, and 4.7.
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But as in the case of the conducting plane, there is a nicer solution by the method of images.
Indeed, if we replace the dielectric by a single point charge g;, at the image position (0, 0, —d),
we have

1 q 9»
V= + . (4.52)
4o [wﬂ +32+G@=d? Va4 4 (2 +d)?
in the region z > 0. Meanwhile, a charge (g + gp) at (0, 0, d) yields the potential
1
V= q+qp , (4.53)
dreq \/x2+y2+(z—d)2

for the region z < 0. Taken together, Egs. 4.52 and 4.53 constitute a function which satisfies
Poisson’s equation with a point charge g at (0, 0, d), which goes to zero at infinity, which
is continuous at the boundary z = 0, and whose normal derivative exhibits the discontinuity
appropriate to a surface charge o at z = O:

o( % )= () et
O\ oz =0- 2t \xe+2) G2+ y2 +d2)37

Accordingly, this is the correct potential for our problem. In particular, the force on g is:

1 1 2
F= 99b 5 — ( Xe ) 4_; (4.54)
dren (2d)? dmey \ Xe +2/) 4d?

av
=0t 92

I do not claim to have provided a compelling motivation for Eqs. 4.52 and 4.53—like all
image solutions, this one owes its justification to the fact that it works: it solves Poisson’s
equation, and it meets the boundary conditions. Still, discovering an image solution is not
entirely a matter of guesswork. There are at least two “rules of the game”: (1) You must never
put an image charge into the region where you’re computing the potential. (Thus Eq. 4.52
gives the potential for z > 0, but this image charge g, is at z = —d; when we turn to the region
z < 0 (Eq. 4.53), the image charge (¢ + ¢q») is at z = +d.) (2) The image charges must add
up to the correct total in each region. (That’s how I knew to use g to account for the charge
in the region z < 0, and (g + g) to cover the region z > 0.)

Problem 4.22 A very long cylinder of linear dielectric material is placed in an otherwise
uniform electric field Eq. Find the resulting field within the cylinder. (The radius is a, the
susceptibility x., and the axis is perpendicular to E.)

Problem 4.23 Find the field inside a sphere of linear dielectric material in an otherwise uniform
electric field E( (Ex. 4.7) by the following method of successive approximations: First pretend
the field inside is just Eq, and use Eq. 4.30 to write down the resulting polarization Py. This
polarization generates a field of its own, E; (Ex. 4.2), which in turn modifies the polarization
by an amount Py, which further changes the field by an amount E,, and so on. The resulting
field is Eg + Ej + Ey + - - .. Sum the series, and compare your answer with Eq. 4.49.

Problem 4.24 An uncharged conducting sphere of radius a is coated with a thick insulating
shell (dielectric constant €, ) out to radius b. This object is now placed in an otherwise uniform
electric field Eq. Find the electric field in the insulator.
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Problem 4.25 Suppose the region above the xy plane in Ex. 4.8 is also filled with linear
dielectric but of a different susceptibility x,. Find the potential everywhere.

4.4.3 Energy in Dielectric Systems

It takes work to charge up a capacitor (Eq. 2.55):
_1lp,y2
W=s35CV-.

If the capacitor is filled with linear dielectric, its capacitance exceeds the vacuum value by
a factor of the dielectric constant,
C = € Cyac,

as we found in Ex. 4.6. Evidently the work necessary to charge a dielectric-filled capacitor
is increased by the same factor. The reason is pretty clear: you have to pump on more (free)
charge to achieve a given potential, because part of the field is canceled off by the bound
charges.

In Chapter 2, I derived a general formula for the energy stored in any electrostatic system
(Eq. 2.45):

W= %" / E2d. (4.55)

The case of the dielectric-filled capacitor suggests that this should be changed to
1
W= G—O/ErE2dr = —/D-Edr,
2 2

in the presence of linear dielectrics. To prove it, suppose the dielectric material is fixed
in position, and we bring in the free charge, a bit at a time. As py is increased by an
amount Apy, the polarization will change and with it the bound charge distribution; but
we’re interested only in the work done on the incremental free charge:

AW = /(Apf)Vdr. (4.56)
Since V- D = pr, Aps =V - (AD), where AD is the resulting change in D, so
AW = /[V - (AD)]V dr.

Now
V- -[(AD)V]=[V - (AD)]V + AD - (VV),

and hence (integrating by parts):

AW=/V~[(AD)V]dr+/(AD)~Edr.
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The divergence theorem turns the first term into a surface integral, which vanishes if we
integrate over all of space. Therefore, the work done is equal to

AW = / (AD) -Edr. (4.57)

So far, this applies to any material. Now, if the medium is a linear dielectric, then
D =¢E,so
JAMD E) = 1A(cE?) = ¢(AE)-E = (AD) - E

(for infinitesimal increments). Thus

AW=A<%/D-Edr>.

The total work done, then, as we build the free charge up from zero to the final configuration.
is

W:%/D-Edr, (458
as anticipated.!?

It may puzzle you that Eq. 4.55, which we derived quite generally in Chapter 2, does not
seem to apply in the presence of dielectrics, where it is replaced by Eq. 4.58. The point is
not that one or the other of these equations is wrong, but rather that they speak to somewhat
different questions. The distinction is subtle, so let’s go right back to the beginning: What
do we mean by “the energy of a system”? Answer: It is the work required to assemble the
system. Very well—but when dielectrics are involved there are two quite different ways
one might construe this process: (1) We bring in all the charges (free and bound), one by
one, with tweezers, and glue each one down in its proper final location. If this is what you
mean by “assemble the system,” the Eq. 4.55 is your formula for the energy stored. Notice.
however, that this will not include the work involved in stretching and twisting the dielectric
molecules (if we picture the positive and negative charges as held together by tiny springs. it
does not include the spring energy, %kx2, associated with polarizing each molecule).!3 (2)
With the unpolarized dielectric in place, we bring in the free charges, one by one, allowing
the dielectric to respond as it sees fit. If this is what you mean by “assemble the system™
(and ordinarily it is, since free charge is what we actually push around), then Eq. 4.58 is the
formula you want. In this case the “spring” energy is included, albeit indirectly, because the
force you must apply to the free charge depends on the disposition of the bound charge; as
you move the free charge you are automatically stretching those “springs.” To put it another

121y case you are wondering why I did not do this more simply by the method of Sect. 2.4.3, starting with
W= % fr £V dt, the reason is that his formula is untrue, in general. Study the derivation of Eq. 2.42 and you
will see that it applies only to the toral charge. For linear dielectrics it happens to hold for the free charge alone.
but this is scarcely obvious a priori and, in fact, is most easily confirmed by working backward from Eq. 4.58.

3The “spring” itself may be electrical in nature, but it is still not included in Eq. 4.55, if E is taken to be the
macroscopic field.
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way, in method (2) the total energy of the system consists of three parts: the electrostatic
energy of the free charge, the electrostatic energy of the bound charge, and the *“spring”
energy:

Wiot = Wree + Whound + Wspring~

The last two are equal and opposite (in procedure (2) the bound charges are always in
equilibrium, and hence the ner work done on them is zero); thus method (2), in calculating
Wiree, actually delivers Wi, whereas method (1), by calculating Wiree+ Wpound, leaves out
Wspring~

Incidentally, it is sometimes alleged that Eq. 4.58 represents the energy even for nonlinear
dielectrics, but this is false: To proceed beyond Eq. 4.57 one must assume linearity. In fact,
for dissipative systems the whole notion of “stored energy” loses its meaning, because the
work done depends not only on the final configuration but on how it got there. If the molec-
ular “springs” are allowed to have some friction, for instance, then Wy, can be made
as large as you like, by assembling the charges in such a way that the spring is obliged
to expand and contract many times before reaching its final state. In particular, you get
nonsensical results if you try to apply Eq. 4.58 to electrets, with frozen-in polarization (see
Prob. 4.27).

Problem 4.26 A spherical conductor, of radius a, carries acharge Q (Fig.4.29). Itis surrounded
by linear dielectric material of susceptibility x., out to radius b. Find the energy of this
configuration (Eq. 4.58).

Figure 4.29

Problem 4.27 Calculate W, using both Eq. 4.55 and Eq. 4.58, for a sphere of radius R with
frozen-in uniform polarization P (Ex. 4.2). Comment on the discrepancy. Which (if either) is
the “true” energy of the system?

4.4.4 Forces on Dielectrics

Just as a conductor is attracted into an electric field (Eq. 2.51), so too is a dielectric—and
for essentially the same reason: the bound charge tends to accumulate near the free charge
of the opposite sign. But the calculation of forces on dielectrics can be surprisingly tricky.
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Dielectric

Figure 4.30

Consider, for example, the case of a slab of linear dielectric material, partially inserted
between the plates of d parallel-plate capacitor (Fig. 4.30). We have always pretended that
the field is uniform inside a parallel-plate capacitor, and zero outside. If this were literally
true, there would be no net force on the dielectric at all, since the field everywhere would be
perpendicular to the plates. However, there is in reality a fringing field around the edges.
which for most purposes can be ignored but in this case is responsible for the whole effect.
(Indeed, the field could not terminate abruptly at the edge of the capacitor, for if it did the
line integral of E around the closed loop shown in Fig. 4.31 would not be zero.) It is this
nonuniform fringing field that pulls the dielectric into the capacitor.

Fringing fields are notoriously difficult to calculate; luckily, we can avoid this altogether.
by the following ingenious method. Let W be the energy of the system—it depends, of
course, on the amount of overlap. If I pull the dielectric out an infinitesimal distance dx.
the energy is changed by an amount equal to the work done:

dW = Fyedx, (4.59)
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YA

Figure 4.31

where Fpe is the force I must exert, to counteract the electrical force F on the dielectric:

Fpe = —F. Thus the electrical force on the slab is
dw
F=——-. (4.60)
dx
Now, the energy stored in the capacitor is
W=3icv3 (4.61)
and the capacitance in this case is
€W
C= T(Grl — XeX), (4.62)

where [ is the length of the plates (Fig. 4.30). Let’s assume that the total charge on the
plates (@ = CV) is held constant, as the dielectric moves. In terms of @,

W= %%2 4.63)
SO 5
F:—%:%%i—f:%vzj—f. (4.64)
But
dc €0 XeW
dx = d
and hence
F= 0%y (4.65)

2d
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(The minus sign indicates that the force is in the negative x direction; the dielectric is pulled
into the capacitor.)

It is a common error to use Eq. 4.61 (with V constant), rather than Eq. 4.63 (with Q
constant), in computing the force. One then obtains

1 ,dC
F=—-vi—,
2 dx

which is off by a sign. It is, of course, possible to maintain the capacitor at a fixed potential,
by connecting it up to a battery. But in that case the bastery also does work as the dielectric
moves; instead of Eq. 4.59, we now have

dW = Fpedx +V dQ, (4.66)
where V d Q is the work done by the battery. It follows that

dW  dQ 1 ,dC _,dC 1_,dC
_z7 Mo A v 7 £ i 4.67
dx +de 2V dx dx 2V dx’ ( )

F =
the same as before (Eq. 4.64), with the correct sign. (Please understand, the force on the
dielectric cannot possibly depend on whether you plan to hold Q constant or V constant—it
is determined entirely by the distribution of charge, free and bound. It’s simpler to calculate
the force assuming constant Q, because then you don’t have to worry about work done by
the battery; but if you insist, it can be done correctly either way.)

Notice that we were able to determine the force without knowing anything about the
fringing fields that are ultimately responsible for it/ Of course, it’s built into the whole
structure of electrostatics that V. x E = 0, and hence that the fringing fields must be
present; we’re not really getting something for nothing here—just cleverly exploiting the
internal consistency of the theory. The energy stored in the fringing fields themselves
(which was not accounted for in this derivation) stays constant, as the slab moves; what
does change is the energy well inside the capacitor, where the field is nice and uniform.

Problem 4.28 Two long coaxial cylindrical metal tubes (inner radius a, outer radius &) stand
vertically in a tank of dielectric oil (susceptibility x., mass density p). The inner one is
maintained at potential V, and the outer one is grounded (Fig. 4.32). To what height (4) does
the oil rise in the space between the tubes?
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More Problems on Chapter 4

Problem 4.29

197

(a) For the configuration in Prob. 4.5, calculate the force on p; due to p;, and the force on p;

due to pp. Are the answers consistent with Newton’s third law?

(b) Find the total torque on p, with respect to the center of py, and compare it with the torque
on p; about that same point. [Hint: combine your answer to (a) with the result of Prob. 4.5.]

Problem 4.30 An electric dipole p, pointing in the y direction, is placed midway between two
large conducting plates, as shown in Fig. 4.33. Each plate makes a small angle 6 with respect
to the x axis, and they are maintained at potentials +V. What is the direction of the net force

on p? (There’s nothing to calculate, here, but do explain your answer qualitatively.)

+V

<D
=Y

Figure 4.33
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Problem 4.31 A dielectric cube of side a, centered at the origin, carries a “frozen-in” polar-
ization P = kr, where & is a constant. Find all the bound charges, and check that they add up
to zero.

Problem 4.32 A point charge ¢ is imbedded at the center of a sphere of linear dielectric material
(with susceptibility x. and radius R). Find the electric field, the polarization, and the bound
charge densities, p, and 0. What is the total bound charge on the surface? Where is the
compensating negative bound charge located?

Problem 4.33 At the interface between one linear dielectric and another the electric field lines
bend (see Fig. 4.34). Show that

tanfy/tan ) = €3 /€y, (4.68)

assuming there is no free charge at the boundary. [Comment: Eq. 4.68 is reminiscent of Snell’s
law in optics. Would a convex “lens” of dielectric material tend to “focus,” or “defocus,” the
electric field?]

8 K,
€
€

E,
9,
Figure 4.34

Problem 4.34 A point dipole p is imbedded at the center of a sphere of linear dielectric material
(with radius R and dielectric constant ¢, ). Find the electric potential inside and outside the
sphere.

0 3 (e —1 0 3
Answer : peos 1+ 2r_ (€r ) , (r <R); pcos <—~—) , r=R)
Amer? R3 (¢; +2) dregr? \ e +2

Problem 4.35 Prove the following uniqueness theorem: A volume V contains a specified free
charge distribution, and various pieces of linear dielectric material, with the susceptibility of
each one given. If the potential is specified on the boundaries S of V (V = 0 at infinity
would be suitable) then the potential throughout V is uniquely determined. [Hint: integrate
V - (V3D3) over V.]
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Figure 4.35

Problem 4.36 A conducting sphere at potential V is half embedded in linear dielectric material
of susceptibility x., which occupies the region z < 0 (Fig. 4.35). Claim: the potential
everywhere is exactly the same as it would have beeil in the absence of the dielectric! Check
this claim, as follows:

(a) Write down the formula for the proposed potential V (r), in terms of V, R, and r. Use it
to determine the field, the polarization, the bound charge, and the free charge distribution on
the sphere.

(b) Show that the total charge configuration would indeed produce the potential V (r).
(c) Appeal to the uniqueness theorem in Prob. 4.35 to complete the argument.

(d) Could you solve the configurations in Fig. 4.36 with the same potential? If not, explain
why.

(2) ~~(b)

Figure 4.36

Problem 4.37 According to Eq. 4.5, the force on a single dipole is (p - V)E, so the ret force
on a dielectric object is

F = /(P - V)Eext dt. (4.69)

[Here Eex; is the field of everything except the dielectric. You might assume that it wouldn’t
matter if you used the rotal field; after all, the dielectric can’t exert a force on itself. However,
because the field of the dielectric is discontinuous at the location of any bound surface charge,
the derivative introduces a spurious delta function, and you must either add a compensating
surface term, or (better) stick with Eex;, which suffers no such discontinuity.] Use Eq. 4.69
to determine the force on a tiny sphere of radius R, composed of linear dielectric material
of susceptibility x., which is situated a distance s from a fine wire carrying a uniform line
charge A.
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Problem 4.38 In a linear dielectric, the polarization is proportional to the field: P = ¢( x.E.
If the material consists of atoms (or nonpolar molecules), the induced dipole moment of each
one is likewise proportional to the field p = o«E. Question: What is the relation between the
atomic polarizability & and the susceptibility x?

Since P (the dipole moment per unit volume) is p (the dipole moment per atom) times N
(the number of atoms per unit volume), P = Np = N«E, one’s first jnclination is to say that

Na
Xe = —. (4.70)

€0
And in fact this is not far off, if the density is low. But closer inspection reveals a subtle problem,
for the field E in Eq. 4.30 is the total macroscopic field in the medium, whereas the field in
Eq. 4.1 is due to everything except the particular atom under consideration (polarizability was
defined for an isolated atom subject to a specified external field); call this field Eqjge. Imagine
that the space allotted to each atom is a sphere of radius R, and show that

N
E= (1 . —a) Eolse. @.71)
3¢
Use this to conclude that
_ Na/g
Xe =12 Naj3ey’
or 3 )
€y [ €r —
== . 4.72
* N (ér + 2) ( )

Equation 4.72 is known as the Clausius-Mossotti formula, or, in its application to optics, the
Lorentz-Lorenz equation.

Problem 4.39 Check the Clausius-Mossotti relation (Eq. 4.72) for the gases listed in Table 4.1.
(Dielectric constants are given in Table 4.2.) (The densities here are so small that Egs. 4.70 and
4.72 are indistinguishable. For experimental data that confirm the Clausius-Mossotti correction
term see, for instance, the first edition of Purcell’s Electricity and Magnetism, Problem 9.28 )14

Problem 4.40 The Clausius-Mossotti equation (Prob. 4.38) tells you how to calculate the
susceptibility of a nonpolar substance, in terms of the atomic polarizability «. The Langevin
equation tells you how to calculate the susceptibility of a polar substance, in terms of the
permanent molecular dipole moment p. Here’s how it goes:

(a) The energy of a dipole in an external field E is u = —p - E (Eq. 4.6); it ranges from
—pE to +pE, depending on the orientation. Statistical mechanics says that for a material in
equilibrium at absolute temperature 7', the probability of a given molecule having energy u is
proportional to the Boltzmann factor,

exp(—u/kT).

The average energy of the dipoles is therefore

/ ue—@/kT) gy

fe—(u/kT) du

<u> =

14p M. Purcell, Electricity and Magnetism (Berkeley Physics Course, Vol. 2), (New York: McGraw-Hill, 1963).
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where the integrals run from — p E to + p E. Use this to show that the polarization of a substance
containing N molecules per utit volume is

P = Nplcoth(pE/kT) — (kT /pE)]. 4.73)

That’s the Langevin formula. Sketch P/Np as a function of pE /kT.

(b) Notice that for large fields/low temperatures, virtually all the molecules are lined up, and
the material is nonlinear. Ordinarily, however, kT is much greater than pE. Show that in
this régime the material is linear, and calculate its susceptibility, in terms of N, p, T, and k.
Compute the susceptibility of water at 20° C, and compare the experimental value in Table
4.2. (The dipole moment of water is 6.1 x 1030 C-m.) This is rather far off, because we have
again neglected the distinction between E and Egjq.. The agreement is better in low-density
gases, for which the difference between E and Ej is negligible. Try it for water vapor at
100° and 1 atm.




