Assignment (Basic & Advance Level Questions)

				Magnet and it's properties
		Basic	e Level	
1.	A bar magnet is equ	livalent to		
	(a) Straight conduc	ctor carrying current	(b) Toroid carrying	g current
	(c) Circular coil ca	rrying current	(d)	None of these
2.	The magnetic lines	of force inside a bar magnet		[AIEEE 2003]
	(a) Are form south magnet	-pole to north - pole of the magne	t (b) Are form nort	th – pole to south – pole of the
	(c) Do not exist magnet		(d) Depend upon t	the area of cross-section of the bar
3.	A small bar magnet ($\mu_0 = 4\pi \times 10^{-7} T.m / A$	t has a magnetic moment 1.2 $A - m$	1 ² . The magnetic field a	t a distance 0.1 m on its axis will be [MP PMT 2003]
	(a) $1.2 \times 10^{-4} T$	(b) $2.4 \times 10^{-4} T$	(c) $2.4 \times 10^4 T$	(d) $1.2 \times 10^2 T$
4.	A bar magnet of ma	agnetic moment <i>M</i> is placed in a m	agnetic field of induction	on <i>B</i> . The torque exerted on it is
	-		[EAMCE	T (Engg.) 1995; CBSE 1999; BHU 2003]
	(a) <i>M</i> . <i>B</i>	(b) – <i>M</i> . <i>B</i>	(c) $M \times B$	(d) $-M \times B$
5.	Two identical thin north pole of one to	bar magnets each of length <i>l</i> and _l buching south pole of the other. M	pole strength <i>m</i> are place agnetic moment of the	ced at right angle to each other with system is [MNR 1981; MP PMT 2002]
	(a) <i>ml</i>	(b) 2 <i>ml</i>	(c) $\sqrt{2}ml$	(d) $\frac{1}{2}ml$
6.	A ring of radius R , rotates about the a ω , then the magnit	made of an insulating material xis passing through its centre an ude of the magnetic moment of th	carries a charge Q unit d normal to plane of th he ring is	formly distributed on it. If the ring ne ring with constant angular speed
	(a) $Q\omega R^2$	(b) $\frac{1}{2}Q\omega R^2$	(c) $Q\omega^2 R$	(d) $\frac{1}{2}Q\omega^2 R$
7.	If a bar magnet of done in rotating the	magnetic moment M is freely suspense of the magnet through an angle θ is[M	pended in a uniform ma IP PMT 1989, 96, 99; AFM	agnetic field of strength <i>B</i> , the work IC 1997; MNR 1998; MP PET 1984, 89, 2001;
	(a) $MB(1-\sin\theta)$	(b) $MB\sin\theta$	(c) $MB\cos\theta$	(d) $MB(1-\cos\theta)$
8.	A magnet of magne each part will be	etic moment <i>M</i> and pole strength	<i>m</i> is divided in two equ	ual parts, then magnetic moment of
	[NCERT 1974; N	IP Board 1985; MP PMT 1988; CPMT	1988; KCET 1994; AFMC	1996; DPMT 1984; MP PET 1984, 2000]
	(a) <i>M</i>	(b) <i>M</i> /2	(c) <i>M</i> /4	(d) 2 <i>M</i>
9.	Intensity of magnet	tization is given as		[UPSEAT 1999, 2000]
	(a) Magnetic mome volume	ent per unit mass	(b)	Magnetic moment per unit
	(c) Magnetic mome	ent per unit atomic weight	(d) None of the abo	ove
10.	There is no couple	acting when two bar magnets are	placed coaxial separate	d by distance because [EAMCET (Engg.) 2
	(a) There are no fo their lines of action	rces on the poles do not coincide	(b)	The forces are parallel and

(c) The forces are perpendicular to each other (d) The forces act along the same line A bar magnet when placed at an angle of 30° to the direction of magnetic field induction of 5×10^{-2} T, 11. experiences a moment couple 2.5×10^{-6} N-m. If the length of the magnet is 5 cm, its pole strength is [EAMCET (Med.) 20 (b) $5 \times 10^2 A - m$ (a) $2 \times 10^2 A - m$ (c) 2A - m(d) 5A - mA magnet of magnetic moment $50\hat{i}A - m^2$ is placed along the x-axis in a magnetic field $\vec{B} = (0.\hat{i} + 3.0\hat{i})T$. The 12. torque acting on the magnet is [MP PMT 2000] (b) $150 \hat{k} Nm$ (c) $75\hat{i} Nm$ (d) $25\sqrt{37} \hat{k} Nm$ (a) $175 \hat{k} Nm$ Which of the following statements in not correct about the magnetic field [AIIMS 2000] 13. (a) Magnetic lines of force do not cut each other (b) Insides the magnet the lines go from north to south pole of the magnet (c) The magnetic lines form a closed loop (d) Tangents to the magnetic lines give the direction of the magnetic field. A bar magnet of magnetic moment 3.0 A-m² is placed in a uniform magnetic induction field of $2 \times 10^{-5}T$. If each 14. pole of the magnetic experiences a force of 6×10^{-4} *N*, the length of the magnet is [EAMCET 2000] (a) 0.5 m (b) 0.3 m (c) 0.2 m(d) 0.1 m A bar magnet is held perpendicular to a uniform magnetic field, If the couple acting on the magnet is to be 15. halved by rotating it, then the angle by which it is to be rotated is (a) 30° (b) 45° (c) 60° (d) 90° 16. If a magnet of length 10*cm* and pole strength 40 *A*-*m* is placed at an angle of 45° in an uniform induction field of intensity $2 \times 10^{-4} T$, the couple acting on it is (a) $0.5656 \times 10^{-4} N - m$ (b) $0.5656 \times 10^{-3} N - m$ (c) $0.656 \times 10^{-4} N - m$ (d) $0.656 \times 10^{-5} N - m$ The magnetic field strength at a point at a distance 'd' from the centre on the axial line of a very short bar 17. magnet of magnetic moment M, is B. The magnetic induction at a distance '2d' from centre, on the equatorial line of a magnet of magnetic moment 8 M, will be [EAMCET (Engg.) 1999] (c) *B*/4 (a) 4 B (b) *B*/2 (d) 2B If two bar magnets of different magnetic lengths have equal moments than the pole strength is [EAMCET (Med.) 1999] 18. (a) Equal for both the magnets (b) Lesser for shorter magnet (c)More for longer magnet A bar magnet of pole strength 2 *amp-m* kept in magnetic field of induction 4×10^{-5} Wb/m² such that the 19. axis of the magnet makes and angle of 30° with the direction of the field. The couple acting on the magnet is found to be 80×10^{-7} N-m. Then the distance between the poles of the magnet is [EAMCET 1997] (a) 20 m (b) 2 m (c) 3 cm (d) 20 cm The dipole moment of a short bar magnet is $1.25 \text{ ampere} - metre^2$. The magnetic field on its axis at a distance of 20. 0.5m form the centre of the magnet is [MP PAT 1996] 4×10^{-2} newton /amp-meter (a) 1.0×10^{-4} newton /amp-meter (b) (c) 2×10^{-6} newton /amp-meter (d) 6.64×10^{-8} newton /amp-meter The field due to a magnet at a distance R from the centre of the magnet is proportional to 21. [MP PET 1996] (a) R^2 (b) R^{3} (c) $1/R^2$ (d) $1/R^3$ A bar magnet of magnetic moment $10^4 J/T$ is free to rotate in a horizontal plane. The work done in rotating 22. the magnet slowly from a direction parallel to a horizontal magnetic field of $4 \times 10^{-5} T$ to direction 60° from the field will be [MP PET 1993, 95]

(a) 0.2J (b) 2.0J (c) 4.18J (d) $2 \times 10^2 J$

If a piece of metal was thought to be magnet, which one of the following observations would offer conclusive 23. evidence [KCET 1994] It repels a known magnet (a) It attracts a known magnet (b) (d) It attracts a steel screw dirver (c) Neither (a) nor (b) A bar magnet of length 10cm and having pole strength equal to 10^{-3} A-m is kept in a magnetic field (B) of 24. $4\pi \times 10^{-3}$ tesla. It makes an angle of 30° with the direction of *B*. The torque acting on the magnet is (a) $2\pi \times 10^{-7} Nm$ (b) $2\pi \times 10^{-5} Nm$ (c) 0.5 Nm (d) $0.5 \times 10^2 Nm$ The magnetic field due to a short magnet at a point on its axis at distance x cm from the middle point of the 25. magnet is 200 gauss. The magnetic field at a point on the neutral axis at a distance. x cm from the middle of the magnet is [MP PMT 1985; CPMT 1971, 88] (a) 100 Gauss (b) 400 Gauss (d) 200 Gauss (c) 50 Gauss 26. Points A and B are situated along the extended axis of 2 cm long bar magnet at a distance x and 2x cm respectively. From the pole nearer to the points, the ratio of magnetic field at A and B will be [EAMCET 1984; CPMT 198 (c) 8:1 exactly (a) 4:1 exactly (b) 4 : 1 approx (d) 8:1 approx Two equal bar magnets are kept as shown in the figure. The direction of resultant magnetic field, indicated by 27. arrow head at the point *P* is (approxim y) (d) ↑ (b) 🖊 (c) \ (a) \rightarrow Consider a magnetic dipole kept in the north -south direction. Let P_1, P_2, Q_1, Q_2 be four points at the same 28. distance from the dipole towards north, south, east and west of the dipole respectively. The directions of the magnetic field due to the dipole are the same at (a) P_1 and P_2 (b) P_1 and Q_2 (c) P_1 and Q_1 (d) P_2 and Q_2 A thin magnet of length L is bent into an arc of a semi- circle. The new length of the magnet is 29. (c) $\frac{2L}{\pi}$ (b) $\frac{L}{2\pi}$ (d) $\frac{2L}{3\pi}$ (a) $\frac{L}{\pi}$ The magnetic potential due to a magnetic dipole at a point on its axis distant 40 cm from its centre is found to 30. be $2.4 \times 10^{-5} J/A - m$. The magnetic moment of the dipole will be (a) $28.6A - m^2$ (b) $32.2 A - m^2$ (c) $38.4A - m^2$ (d) None of these The cross - sectional areas of three magnets of equal length are A, 2A and 6A. The ratio of their magnetic 31. moments will be (b) 1:2:6 (a) 6:2:1(c) 1:4:6 (d) 36:4:1 If a hole is made at the centre of a bar magnet, then its magnetic moment will 32. (a) Increase (b) Decrease (c) Not change (d) None of these Advance Level

33. If the angular momentum of an electron of mass m is J then the magnitude of the magnetic moment will be [MP PMT 26

(a) $\frac{eJ}{m}$ (b) $\frac{eJ}{2m}$ (c) 2eJm (d) $\frac{2m}{eJ}$

34. Two small bar magnets are placed in a line with like poles facing each other at a certain distance *d* apart. If the length of each magnet is negligible as compared to *d* the force between them will be inversely proportional to[**CPMT** 19

(a) d (b)
$$d^2$$
 (c) $\frac{1}{d^2}$ (d) d^4

- 35. Three indentical bar magnets each of magnetic moment M, are placed in the form of an equilateral triangle with north pole of one touching the south pole of the other (figure). The net magnetic moment of the system is
 - (a) Zero
 - (b) 3*M*
 - (c) $\frac{3M}{2}$
 - (d) $M\sqrt{3}$
- **36.** A bar magnet with its poles 25 cm apart and of pole strength 24.0 A-m rests with its centre on a frictionless pivot. A force F is applied on the magnet at a distance of 12 cm from the pivot so that it is held in equilibrium at an angle of 30° with respect to a magnetic field of induction 0.25 T. The value of force F is

(a) 5.62N (b) 2.56N (c) 6.52N (d) 6.25N

37. Two short bar magnets with pole strengths of 900 $ab - amp \times cm$ and 100 $ab - amp \times cm$ are placed with their axes in the same vertical lines with similar poles facing each other. Each magnet has a length of 1 cm. When the separation between the nearer poles is 1 cm. The weight of the upper magnet is supported by the repulsive force between the magnets. If g is 1000 cm/sec^2 , then the mass of the upper magnet is

(a) 100 g	(b) 55 g	(c) 77.5 g	(d) 45 <i>g</i>
-----------	----------	------------	-----------------

- **38.** A strong magnet of magnico alloy can hold a chain consisting of several cylinders made of soft iron (figure). If a similar magnet is brought up from below to this chain, what happens if the magnets are arranged with their line poles facing
 - (a) Attached cylinders loosen grip
 - (b) The attached cylinder tighten the grip
 - (c) The cylinders fall one by one on to lower magnet.
 - (d) The cylinders loose contact for the upper magnet and remains suspended in between two magnets.
- **39.** Two magnets A and B are identical and these are arranged as shown in the figure. Their length is negligible in comparison to the separation between them. A magnetic needle is placed between the magnets at point *P* which gets deflected through an angle θ under the influence of magnets. The ratio of distance *d* and *d* will be
 - (a) $(2 \tan \theta)^{1/3}$
 - **(b)** $(2 \tan \theta)^{-1/3}$
 - (c) $(2 \cot \theta)^{1/3}$
 - (d) $(2 \cot \theta)^{-1/3}$
- **40.** Two short magnets of equal dipole moments M are fastened perpendicularly at their centre (figure). The magnitude of the magnetic field at a distance d from the centre on the bisector of the right angle is
 - (a) $\frac{\mu_0}{4\pi} \frac{M}{d^3}$ (b) $\frac{\mu_0}{4\pi} \frac{M\sqrt{2}}{d^3}$

- (c) $\frac{\mu_0}{4\pi} \frac{2\sqrt{2}M}{d^3}$
- (d) $\frac{\mu_0}{4\pi} \frac{2M}{d^3}$
- Two short magnets of magnetic moment 1000 Am^2 are placed as shown at the corners of a square of side 10 41. *cm*. The net magnetic induction at *P* is
 - (a) 0.1 T
 - (b) 0.2 T
 - (c) 0.3 T
 - (d) 0.4 T
 - A long magnet is placed vertically with its S- pole resting on the table. A neutral point is obtained 10 cm form 42. the pole due geographical north of it. If $B_H = 3.2 \times 10^{-5}$ Tesla, then the strength of the magnet is

(c) 64 $ab - amp \times cm$ (a) $16 ab - amp \times cm$ (b) 32 $ab - amp \times cm$ (d) 8 $ab - amp \times cm$

- A bar magnet hangs by a thread attached to the ceiling of a room. When a horizontal magnetic field directed to 43. the right is established, //////
 - (a) Both the string and the magnet will deviate form the vertical
 - (b) The string will deviate from the vertical and the magnet will rema
 - (c) The string will remain vertical and the magnet will deviate from t
 - (d) Both will remain vertical plane of the outer ring

- A paramagnetic gas consists of atoms each with a dipole moment of 1.5×10^{-23} J/T. Temperature of the gas is 44. $27^{\circ}C$ and its number density is $2 \times 10^{26} m^{-3}$. What is the maximum magnetisation of the sample possible when placed in an external field
 - (b) $2 \times 10^3 A / m$ (c) $3 \times 10^3 A / m$ (a) $1 \times 10^3 A / m$ (d) $4 \times 10^3 A / m$

A small coil C with N = 200 turns is mounted on one end of a balance beam and introduced between the poles of 45. an electromagnet as shown in figure. The cross sectional area of coil is $A = 1.0 \text{ cm}^2$, length of arm OA of the balance beam is l = 30 cm. When there is no current in the coil the balance is in equilibrium. On passing a current I = 22 mA through the coil the equilibrium is restored by putting the additional counter weight of mass $\Delta m = 60 \ mg$ on the balance pan. Find the magnetic induction at the spot where coil is located.

46.	At a place the angle of dip intensity will be given by	o is 30°. If the horizontal con	nponent of earth's ma	gnetic field is H , then the total field
	(a) $\frac{H}{2}$	(b) $\frac{2H}{\sqrt{3}}$	(c) $H\sqrt{2}$	(d) $H\sqrt{3}$
47.	<i>I</i> is the total intensity of these are related as	earth's magnetic field, <i>H</i> its	horizontal component	and V the vertical component then
			[CPMT 2000; KCET (Engg./Med.) 2001]
	(a) $I = V^2 + H^2$	(b) $I = V + H$	(c) $I^2 = V + H$	(d) $I^2 = V^2 + H^2$
48.	At the north pole of earth			[CPMT 2001]
	(a) <i>V>>H</i>	(b) $V = H = 0$	(c) <i>V</i> << <i>H</i>	(d) $V \neq 0, H = 0$
49.	At a certain place, the hor equal in magnitude. The t	izontal component B_0 and the table of the second secon	he vertical component ll be	V_0 of the earth's magnetic field are
	(a) <i>B</i> ₀	(b) B_0^2	(c) $2B_0$	(d) $\sqrt{2}B_0$
50.	At a certain place, the hor angle of dip at this place i	rizontal component of earth' s	s magnetic field is $\sqrt{3}$	times the vertical component. The [AFMC 1999, 2000; Pb. CET 2000]
	(a) 75°	(b) 60°	(c) 45°	(d) 30°
51.	The horizontal component of the earth's magnetic fie	t of the earth's magnetic fiel eld is	d is 3.6×10 ⁻⁵ <i>T</i> where	the dip angle is 60°. The magnitude
	(a) $3.6 \times 10^{-5} T$	(b) $7.2 \times 10^{-5} T$	(c) $2.1 \times 10^{-4} T$	(d) $2.8 \times 10^{-4} T$
52.	The angle between the ma	gnetic meridian and geograp	phical meridian is calle	ed [MNR 1990; MP PMT 2000]
	(a) Angle of dip field	(b) Angle of declination	(c) Magnetic mome	ent (d) Power of magnetic
53.	The null points are on the	axial line of a bar magnet, w	when it is placed such t	hat its south pole points
	(a) South	(b) East	(c) North	(d) West
54.	At magnetic poles of earth	, angle of dip is	[NCE]	RT 1981; CPMT 1977, 91; MP PET 1997]
	(a) Zero	(b) 45°	(c) 90°	(d) 180°
55.	The angle of dip at the ma	gnetic equator is		
	[MP PET	1984; MP PMT 1987; CBSE 198	9, 90; MP Board 1980; (CPMT 1977, 87, 90; Manipal MEE 1995]
-	(a) 0°	(b) 45°	(c) 30°	(d) 90°
56.	At a place, if the earth's f will be	norizontal and vertical comp	onents of magnetic fie	elds are equal, then the angle of dip
				[MP Board 1974, 76, SCRA 1994]
	(a) 30°	(b) 90°	(c) 45°	(d) 0°
57.	The lines joining the place	es of the same horizontal inte	ensity are known as	[MNR 1984]
58.	(a) Isogonic lines A mariner's compass is us	(b) A clinic line ed	(c) Isoclinic line	(d) Isodynamic line
	(a) To compare magnetic	moments	(b)	For determination of H
	(c) For determination of a place	lirection	(d)	For determination of dip at
59.	A compass needle which i	s allowed to move in a horizo	ontal plane is taken to	a geomagnetic pole. It
	(a) Will stay in north-sou direction only	th direction	only	(b) Will stay in east-west
	(c) Will become rigid sho	wing no movement	(d) Will stay in any	position

60.	A magnetic needle of magnetic moment 60 $amp-m^2$ experiences a torque of 1.2×10^{-3} <i>N-m</i> directed in geographical north. If the horizontal intensity of earth's magnetic field at that place is $40 \mu Wb/m^2$, then the angle of declination will be			
	(a) 30°	(b) 45°	(c) 60°	(d) 90°
61.	Two similar poles of streat the smaller pole will be a	ngth 3 <i>mwb</i> and 27 <i>m wb</i> are t	e separated by a distance of	24 <i>cm</i> . The neutral point from
	(a) 6 cm	(b) 9 <i>cm</i>	(c) 4 <i>cm</i>	(d) 7 cm
62.	A bar magnet 8 <i>cms</i> long north. Two neutral points $B_{II} = 3.2 \times 10^{-5}$ Tesla then t	is placed in the magnetic m s separated by a distance of 6 the pole strength of the magn	neridian with the <i>N</i> – pole 5 <i>cms</i> are obtained on the e net. is	pointing towards geographical quatorial axis of the magnet. If
	(a) $5ab - amp \times cm$	(b) $10ab - amp \times cm$	(c) $2.5ab - amp \times cm$	(d) $20ab - amp \times cm$
		Advance	e Level	D
63.	The true value of angle magnetic meridian is	of dip at place is 60°, the a	apparent dip in a plane ind	clined at an angle of 30° with
	(a) $\tan^{-1}\frac{1}{2}$	(b) $\tan^{-1}(2)$	(c) $\tan^{-1}\left(\frac{2}{3}\right)$	(d) None of these
64.	A dip needle arranged to the needle moves is rotat	move freely in the magnetic ed through an angle α to the	meridian dips by an angle magnetic meridian, then th	9. If the vertical plane in which e needle will dip by an angle
	(a) θ	(b) <i>α</i>	(c) More than θ	(d) Less than θ
65.	If ϕ_1 and ϕ_2 be the angles then	of dip in two vertical planes	at right angles to each othe	er and ϕ is the true angle of dip
	(a) $\cot^2 \phi = \cot^2 \phi_1 + \cot^2 \phi_2$	(b) $\cot \phi = \cot^2 \phi_1 + \cot^2 \phi_2$	(c) $\cot \phi = \cot \phi_1 + \cot \phi_2$	(d) $\cot \phi = \cot \phi_1 / \cot \phi_2$
66.	Two magnets of equal n	nass are joined at 90° to ea	ach other as shown in fig.	Magnet N_1S_1 has a magnetic
	moment $\sqrt{3}$ times that of	of N_2S_2 . The arrangement is	is pivoted so that it is free	e to rotate in horizontal plane.
	When in equilibrium, what	at angle should N_1S_1 make v	vith magnetic	*
	(a) 75°		N_1	N ₂
	(b) 60°			
	(c) 30°		S2/	$+$ S_1
	(d) 45°		90	, ,
			Tangent law a	nd magnetic instruments
		Rasic	Level	
		Duster		
6-	The length of a magnet	:-]	dth and husedth The time	manial of the application in a

67. The length of a magnet is large compared to its width and breadth. The time period of its oscillation in a vibration magnetometer is 2 *sec*. The magnet is cut along its length into three equal parts and these parts are then placed on each other with their like poles together. The time period of this combination will be

(a) $2\sqrt{3}$ sec	(b) $\frac{2}{3}$ sec	(c) 2 sec	(d) $\frac{2}{\sqrt{3}}$ sec
---------------------	-----------------------	-----------	------------------------------

(a)

- In a tangent galvanometer a current of 0.1 A produces a deflection of 30°. The current required to produce a 68. deflection of 60° is
 - (c) 0.4 A (a) 0.2 A (b) 0.3 A (d) 0.5 A
- 69. A bar magnet is oscillating in earth's magnetic field with a period T. What happens to its period and motion if its mass is quadrupled

(a) Motion remains S.H.M. with the new period = 4T

- (b) Motion remains S.H.M. with the new period = $\frac{T}{2}$
- (c) Motion does not remain S.H.M. and period is approximately constant
- (d) Motion remains S.H.M. with new period 2T
- A thin rectangular magnet suspended freely has a period of oscillation equal to T. Now it is broken into two 70. equal halves (each having half of the original length) and one piece is made to oscillate freely in the same field. If its period of oscillation if *T*, the ratio $\frac{T'}{T}$ is

[AIEEE 2003]

[MP PET 2003]

- (a) $\frac{1}{4}$ (b) $\frac{1}{2\sqrt{2}}$ (c) $\frac{1}{2}$ (d) 2
- 71. Two bar magnets having same geometry with magnetic moments M and 2 M, are first placed in such a way that their similar poles are on same side then its time period of oscillation is T_1 . Now the polarity of one of the magnet is reversed then time period of oscillation is T_2 . Now

(a)
$$T_1 < T_2$$
 (b) $T_1 = T_2$ (c) $T_1 > T_2$ (d) $T_2 = \infty$

72. Two similar magnets of magnetic moment M_1 and M_2 are taken and vibrated in a vibration magnetometer with their (i) like poles together (ii) unlike poles together. If the ratio of the time periods is 1/2, then the ratio of M_1 and M_2 is [CPMT 2002] (b) 2 (a) 0.5(c) 5/3 (d) 1/3

- The period of oscillations of a magnet is 2 sec. When it is remagnetised so that the pole strength is 4 times its 73. period will be
 - (a) 4 sec (b) 2 sec (c) 1sec (d) 1/2 sec
- When two magnetic moments are compared using equal distance method the deflections produced are 45° and 30°. If 74. (c) $\sqrt{3}:1$ (d) $2\sqrt{3}:1$

(b) 3:2(a) 3:1

75. The time period of oscillation of a bar magnet suspended horizontally along the magnetic meridian is T_0 . If this magnet is replaced by another magnet of the same size and pole strength but with double the mass, the new time period will be

)
$$\frac{T_0}{2}$$
 (b) $\frac{T_0}{\sqrt{2}}$ (c) $\sqrt{2} T_0$ (d) 2 T_0

A bar magnet has a magnetic moment equal to $5 \times 10^{-5} W - m$. It is suspended in a magnetic field, which has a 76. magnetic induction *B* equal to $8\pi \times 10^{-4}$ Tesla. Magnet vibrates with a period of vibration equal to 15 sec. The moment of inertia of the magnet is

[CBSE PMT 2001]

[Kerala PMT 2002]

[SCRA 1994; JIPMER 2002]

- (b) $11.25 \times 10^{-7} kg m^2$ (c) $5.62 \times 10^{-7} kg m^2$ (d) $7.16 \times 10^{-7} kg m^2$ (a) $22.5 \times 10^7 kg - m^2$
- Which of the following statement is not the true 77.

(a) While taking reading of tangent galvanometer, the plane of the coil must be set at right angles to that earth's magnetic meridian

[KCET 2001]

	(b) A short magnet is used in a tangent galvanometer since a long magnet would be heavy and may not easily move				
	(c) Measurements with the tangent galvanometer will be more accurate when the deflection is around 45°				
	(d) A tangent galvanome	ter can not be used in the pola	ar region		
78.	Before using the tangent	galvanometer, its coil is set in	L	[MP PMT 2001]	
	(a) Magnetic meridien		(b) Perpendicular to mag	netic meridien	
	(c) At angle of 45° to mag	gnetic meridien	(d) It does not require a	ny setting	
7 9 .	The error in measuring th	ne current with a tangent galv	anometer is minimum when	n deflection is about	
	(a) 0°	(b) 30°	(c) 45°	(d) 60°	
80.	The time period of a the parts perpendicular to i	in bar magnet in earth's ma ts length, the time period of	gnetic field is <i>T</i> . If the n each part in the same fie	nagnet is cut into two equal ld will be	
	(a) $\frac{T}{2}$	(b) <i>T</i>	(c) $\sqrt{2} T$	(d) 2 <i>T</i>	
81.	Two tangent galvanome them produces deflectio	ters having coils of the same ns of 60° and 45° respective	e radius are connected in ly. The ratio of the numbe	series. A current flowing in er of turns in the coils is	
	(a) $\frac{4}{3}$	(b) $\frac{(\sqrt{3}+1)}{1}$	(c) $\frac{(\sqrt{3}+1)}{(\sqrt{3}-1)}$	(d) $\frac{\sqrt{3}}{1}$	
82.	When the radius of the t	angent galvanometer coil is	decreased its sensitivity	[KCET 1999]	
	(a) Increases	(b) May increase or decreas	se (c)	Decreases (d)	
83.	A short magnetic needle	e is provided in a uniform m	nagnetic field of strength	1 <i>T</i> . When another magnetic	
	field of strength $\sqrt{3}T$ is	s applied to the needle in a	perpendicular direction,	the needle deflects through	
	an angle θ , where θ is	[KCET 1999]			
	(a) 45°	(b) 90°	(c) 60°	(d) 30°	
84.	A tangent galvanomete magnetic meridian. Whe	r of reduction factor I A i en a current of I A is passed	is placed with the plane through it, the deflection	of its coil parallel to the produced is	
	(a) 45°	(b) Zero	(c) 30°	(d) 60°	
85.	Magnets A and B are gebe the time periods o	ometrically similar but the s of the oscillation when the	magnetic moment of <i>A</i> is eir like poles and unlik	twice that of <i>B</i> . If T_1 and T_2 we poles are kept together	
	respectively, then $\frac{I_1}{T_2}$ w	ill be	[SCRA 1998]		
	(a) $\frac{1}{3}$	(b) $\frac{1}{2}$	(c) $\frac{1}{\sqrt{3}}$	(d) $\sqrt{3}$	
86.	Two magnets of same siz ratio of their magnetic mo	e and mass make respectively oments is	y 10 and 15 oscillations per	r minute at certain place. The	
	(a) 4:9	(b) 9:4	(c) 2:3	(d) 3:2	
87.	The time period of a freel part is suspended in the s	y suspended magnet is 4 seco ame way, then its time period	nds. If it is broken in lengtl l will we	n into two equal parts and one	
	(a) 4 seconds	(b) 2 seconds	(c) 0.5 second	(d) 0.25 second	
88.	A bar magnet A of mag magnetic moment M_B will	netic moment <i>M</i> _A is found i hen placed in a vibrating ma	s oscillate at a frequency gnetometer. We may say	y twice that of magnet <i>B</i> of that	
	(a) $M_A = 2M_B$	(b) $M_A = 8M_B$	(c) $M_A = 4M_B$	(d) $M_B = 8M_A$	
89.	A magnet of magnetic mo minute. If the magnetic n	ment <i>M</i> oscillating freely in e noment is quadrupled and the	arth's horizontal magnetic earth's field is doubled, the	field makes <i>n</i> oscillations per e number of oscillations made	

per minute would be [MP PET1991]

126	Magnetism			
	(a) $\frac{n}{2\sqrt{2}}$	(b) $\frac{n}{\sqrt{2}}$	(c) $2\sqrt{2} n$	(d) $\sqrt{2} n$
90.	The period of osci whose magnetic m	lation of a magnet in vibration of a magnet in vibration of the second sec	on magnetometer is 2 sec. ' ne first magnet is	The period of oscillation of a magnet
	(a) 1 sec	(b) 4 sec	(c) 8 sec	(d) 0.5 sec
91.	The number of tu reduction factor	irns and radius of cross-sec K will be	ction of the coil of a tang	ent galvanometer are doubled. The [NCERT 1983]
	(a) <i>K</i>	(b) 2 <i>K</i>	(c) 4 <i>K</i>	(d) $\frac{K}{4}$
92.	A small magnet o distance of 20 <i>cr</i> small magnet of 1	f magnetic moment 4 $A-m^2$ n from the compass needle moment 0.5 $A-m^2$ be placed	is placed on a deflection n . At what distance from t such that the deflection of	nagnetometer in tan <i>B</i> position at a the compass needle should another f the needle remains zero
	(a) 5 <i>cm</i>	(b) 10 cm	(c) 15 cm	(d) 20 <i>cm</i>
		Ad	vance Level	
93.	The materials suit	able for making electromagne	ets should have	
	(a) High retentivi	ty and low coercivity	(b) Low retentivi	ty and low coercivity
	(c) High retentivi	ty and high coercivity	(d) Low retentivi	ty and high coercivity
94.	A vibration magner perpendicular and $2^{5/4}$ seconds. One period in seconds	etometer consists of two ider d bisect each other. The t of the magnets is removed ar is	ntical bar magnets placed o ime period of oscillation nd if the other magnet oscil [EAMCET 2003]	one over the other such that they are in a horizontal magnetic field is lates in the same field, then the time
	(a) $2^{1/4}$	(b) $2^{1/2}$	(c) 2	(d) $2^{-1/4}$
95.	The period of osc another magnet is	illations of a freely suspend brought near it, the period of	ed bar magnet in the earth f oscillating is reduced to 2s	h Horizontal field (<i>H</i>) is 4 <i>sec</i> . When <i>sec</i> .The field of the second magnet is
	(a) $\sqrt{3}H$	(b) 2 <i>H</i>	(c) 3 <i>H</i>	(d) 4 <i>H</i>
96.	In a deflection m centre of the com pole strength as t	agnetometer experiment in pass needle produces a def hat of first magnet is place	tan A position, short-bai lection of 30°. If another 1 d in tan B position at 36 c	r magnet placed at 18 <i>cm</i> from the magnet of same length but 16 times im the deflection will be
	(a) 0°	(b) 30°	(c) 45°	(d) 60°
97.	A compass needle distance is increas	placed at a distance r from a sed to $r(3)^{1/3}$, then the deflection	short magnet in $\tan A$ posion of the compass needle is	ition shows a deflection of 60°. If the
	(a) 30°	(b) $60^{\circ} \times (3)^{1/3}$	(c) $60^{\circ} \times (3)^{2/3}$	(d) $60^{\circ} \times (3)^{3/3}$
98.	A bar magnet sus turning the upper meridian. Then th through 90° from	pended by a horse hair lies in end of the hair through 150° he angle through which the the meridian, is	n the magnetic meridian w from the meridian the mag upper end of the hair has	when there is no twist in the hair. On net is deflected through 30° from the to be twisted to deflect the magnet
	(a) 450°	(b) 360°	(c) 330°	(d) 150°
99.	The magnetic nee earth's magnetic	dle of an oscillation magnet field alone. When a bar mag	tometer makes 10 oscillati gnet is placed at some dist	ons per minute under the action of cance along the axis of the needle it

 $\overline{}$

makes 14 oscillations per minute. If the bar magnet is turned so that its pole interchange their position, Then the new frequency of oscillation of the needle is

(a) 10 vibrations per minute

(d) 2 vibrations per minute

(b)

14 vibrations per minute (c) 4 vibrations per

100. Two magnets are suspended by a given wire one by one. In order to deflect the first magnet through 45°, the wire has to be twisted through 540° whereas with the second magnet the wire requires a twist of 360° for the same deflection. Then the ratio of magnetic moments of the two is

(a) $\frac{3}{2}$ (b) $\frac{4}{3}$ (c) $\frac{7}{6}$ (d) $\frac{11}{7}$

				М	agnetic mate	rials
		Bas	ic Level			
101.	The material of perma	nent magnet has			[KCET 1994;	2003]
	(a) High retentivity, lov coercivity	w coercivity	(b)	Low	retentivity,	high
	(c) Low retentivity, low coercivity	v coercivity	(d)	High	retentivity,	high
102.	When a diamagnetic s	ubstance is placed near a	magnet then it is			
		[Si]	milar to EAMCET 1995, 96; CE	SE PMT 19	99; AFMC 1999,	2003]
	(a) Attracted	(b) Repelled	(c) No effect	(d) N	one of these	
l 03.	According to Curie's proportional to	law, the magnetic susce	ptibility of a substance at	an absolı	ite temperatur	e T is
					[CBSE PMT	2003]
	(a) <i>T</i>	(b) $\frac{1}{T^2}$	(c) T^2	(d) $\frac{1}{T}$		
04.	Which of the magnetic	materials have negative sus	sceptibly			
	(a) Diamagnetic materi	als (b) Paramagnetic mate	erials (c) Ferromagnetic ma	terials (d)Ferromagneti	c materia
105.	A frog can be levitated This is possible because	in a magnetic field produce the body of the frog behav	ced by a current in a vertical ve as	solenoid]	placed below th	e frog.
	(a) Paramagnetic	(b) Diamagnetic	(c) Ferromagnetic	(d) A	nti-ferromagne	tic
. 06.	A superconductor exhib	its perfect				
	(a) Ferromagnetism	(b) Ferromagnetism	(c) Diamagnetism	(d) P	aramagnetism	
107.	A small rod of bismuth itself at right angles to	is suspended freely betwee the magnetic field. This ob	en the poles of a strong elect servation establishes that bis	romagnet. muth is	It is found to a	rrange
	(a) Diamagnetic	(b) Paramagnetic	(c) Ferromagnetic	(d) A	nti-ferromagne	tic
L 08.	A liquid is there in a <i>U</i> up, the magnetic charac	tube. A sudden magnetic fi cter of liquid is	ield is produced perpendicula	ar to one o	f its arms, liqui	d rises
	(a) Diamagnetic	(b) Paramagnetic	(c) Both	(d) N	one of these	
109.	Susceptibility of a mate	erial varies as $\chi = \frac{C}{T}$, wher	e C is a constant and T is ten	nperature	at absolute stat	e, then
	material must be					
				[BHI	U 2000; UPSEAT	2002]

(a) Diamagnetic (b) Paramagnetic

	(c) Ferromagnetic temperature		(d) Any of the above	e depending upon range of		
110.	Which of the following s	statements is incorrect about 1	hysterisis			
	(a) This effect is commo	(a) This effect is common to all ferromagnetic substances				
	(b) The hysterisis loop	(b) The hysterisis loop area is proportional to the thermal energy developed per unit volume of the material				
	(c) The hysterisis loop	area is independent of the the	rmal energy developed per	unit volume of the material		
	(d) The shape of the hys	sterisis loop is characteristic o	of the material			
111.	Of dia, para and ferror	nagnetism, the universal pro	operty of all substances is	[CPMT 1995, 2002]		
	(a) Diamagnetism	(b) Paramagnetism	(c) Ferromagnetism	(d) All of the above		
112.	The figure illustrate howith B_0 , the magnetic spermanent magnet	ow <i>B</i> , the flux density inside flux density in which the sar	a sample of unmagnetised nple is kept. For the samp [AMU 2001]	ferromagnetic material varies ole to be suitable for making a		
	(a) OQ should be large,	OR should be small	Q P			
	(b) OQ and OR should both be large		$ \xrightarrow{R/} 0 0 \xrightarrow{R/} 0 \xrightarrow$	·Bo		
	(c) <i>OQ</i> should be small and <i>OR</i> should be large		5			
	(d) <i>OQ</i> and <i>OR</i> should both be small					
113.	Which of the following is true					
	(a) Diamagnetism is temperature dependent		(b) Paramagnetism is to	emperature dependent		
	(c) Paramagnetism is te	emperature independent	(d) None of these			
114.	The relative permeabili paramagnetic substance	ty is represented by μ_r and the	he susceptibility by χ for a	magnetic substance. Then for a		
				[KCET 2001]		
	(a) $\mu r > 1, \chi > 0$	(b) $\mu_r > 1, \chi < 0$	(c) $\mu r < 1, \chi > 0$	(d) $\mu r < 1, \chi < 0$		
115.	Identify the paramagn	etic substance		[Kerala (Engg.) 2001]		
	(a) Iron	(b) Aluminium	(c) Nickel	(d) Hydrogen		
116.	Magnetic susceptibility	of which material does not de	pend on the temperature	[CBSE PM/PD 2001]		
	(a) Dia-magnetism	(b) Paramagnetism	(c) Ferro-magnetism	(d) Ferrite		
117.	The magnetic material,	which moves from stronger to	weaker parts of a magneti	c field is known as		
	(a) Diamagnetic	(b) Paramagnetic	(c) Ferromagnetic	(d) Anti-ferromagnetic		
118.	The use of study of hys	steresis curve for a given ma	aterial is to estimate the	[CBSE PMT 2000]		
	(a) Voltage loss	(b) Hysteresis loss	(c) Current loss	(d) All of these		
119.	When a diamagnetic sub	ostances is inserted in a curre	nt carrying coil, the magnet	tic field is		
	(a) Decreased					
	(b) Unchanged					
	(c) Increased					

(d) Increased or decreased depending upon the relative volume of the substance

120. An example for diamagnetic substance is

128 Magnetism

[KCET 2000]

	(a) Iron	(b) Copper	(c) Aluminum	(d) Nickel	
21.	If a diamagnetic substa	nce is brought near north or	south pole of a bar magnet,	, it is [EAMCET (B	Engg.) 1995; CBSE
	(a) Attracted by the pol	es	(b) Repelled by the po	oles	
	(c) Repelled by the nor pole and repelled by the	th pole and attracted by the s e south pole	south pole	(d) Attracte	ed by the north
22.	Substances in which the	e magnetic moment of a sing	le atom is not zero, are kno	wn as	
	(a) Diamagnetic	(b) Ferromagnetic	(c) Paramagnetic	(d) Ferrom	agnetic
23.	Which one of the follo	wing materials is ferromag	netic		
	(a) Gold	(b) Nickel	(c) Wood	(d) Mangar	nese
124. The major contribution of magnetism in s			ces is due to		
	(a) Orbital motion of el electrons	ectrons		(b) Spin	motion of
	(c) Equally due to orbit	al and spin motions of electr	rons (d) Hidden magnets		
25.	The softness of a mag	netic substance is measured	d by		
	(a) Magnetic induction	(b) Coercivity	(c) Intensity of magne	etisation (d)	Density
:6.	Select the wrong statem	nent			
	(a) In a diamagnetic su	bstance the direction \vec{I} is of	pposite to that of \overrightarrow{H}		
	(b) In a paramagnetic s	substance the direction \vec{I} is	along \overrightarrow{H}		
	(c) In a ferromagnetic	substance, the direction \vec{I} is	along \vec{H}		
	(d) In a diamagnetic su	bstance, the direction \vec{I} is a	long \overrightarrow{H}		
27.	A thin bar of diamagner orientation of bar (repr	tic substances is placed betv esented by thick black)	veen two pole pieces. Whic	h of the following	g represents the

(a) N S (b) N S (c) N	S (d) N S
-----------------------	-----------

Advance	Level

- **128.** The variation of the intensity of magnetisation (*I*) with respect to the magnetising field *H* in a diamagnetic substance is described by the graph
 - (a) *OA*
 - (b) *OB*
 - (c) *OC*
 - (d) *OD*

129. Magnetic moment of *Ne* is

```
(a) 0
```

(b) $1.27 \times 10^{-24} amp - m^2$

```
(c) 3.4 \times 10^{-24} \text{ amp-}m^2
```

```
(d) 5.6 \times 10^{-24} amp - m^2
```

Magnetism 120

130. If a diamagnetic solution is poured into a U-tube and one arm of this U-tube placed between the poles of a strong magnet with the meniscus in a line with the field, then the level of the solution will

(a) Rise (b) Fall (c) Oscillate slowly (d) Remain as such

131. The number of atoms per unit volume in a sample of iron is 9×10^{28} atom/ m^3 . The magnetic moment of every iron atom is 1.5×10^{28} *A*- m^2 . If all the dipoles are aligned in a domain due to ferromagnetic interaction, then the magnetization of an iron rod of length 10 *cm* and area of cross-section 1 *cm*² will be

(a) $1.8 \times 10^6 A/m$ (b) $1.31 \times 10^5 A/m$ (c) $1.35 \times 10^5 A/m$ (d) $1.4 \times 10^3 A/m$

Assignment (Basic & Advance Level)																			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
С	a	b	с	С	b	d	b	b	d	С	b	b	d	a	b	b	d	d	С
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
d	a	b	а	a	d	b	a	d	с	b	с	b	d	a	d	b	b	с	с
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
с	b	С	с	a	b	d	d	d	d	b	b	с	с	a	С	d	с	d	a
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
а	a	b	с	a	с	с	b	d	с	a	с	с	d	с	d	a	a	с	а
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
d	a	с	a	с	a	b	с	с	a	a	b	a	с	d	b	a	с	d	d
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
d	b	d	a	b	с	a	b	b	с	a	b	b	a	b	a	a	b	a	b
121	122	123	124	125	126	127	128	129	130	131									
b	с	b	b	b	d	b	с	a	b	с									