Time allowed: 45 minutes Maximum Marks: 200

General Instructions: Same as Practice Paper-1.

Choose the correct option.

1. Which of the following is true in respect of adsorption?

(a)
$$\Delta G < 0$$
, $\Delta S < 0$, $\Delta H > 0$

(b)
$$\Delta G < 0, \Delta S > 0, \Delta H < 0$$

(c)
$$\Delta G < 0$$
, $\Delta S < 0$, $\Delta H < 0$

(d)
$$\Delta G > 0$$
, $\Delta S > 0$, $\Delta H < 0$

2. Charge carried by 1 mole of electrons is

(a)
$$6.023 \times 10^{23}$$
 coulomb

(b)
$$9.65 \times 10^4$$
 coulomb

(c)
$$1.6 \times 10^{-19}$$
 coulomb

(d)
$$6.28 \times 10^{19}$$
 coulomb

3. Crystalloids and colloids differ in

(a) particle size

(b) chemical composition

(c) ionic character

(d) none of these

4. A student made the following observations in the laboratory

- Clean copper metal did not react with 1 molar Pb(NO₃)₂ solution.
- 2. Clean lead metal dissolved in a 1 molar AgNO₃ solution and crystals of silver metal appeared.
- 3. Clean silver metal did not react with 1 molar Cu(NO₃)₂ solution.

The order of decreasing reducing agent strength of the three metal is

(c) Cu, Pb, Ag

5. Arrhenius equation may not be represented as

(a)
$$\ln \frac{k}{A} = \frac{-E_a}{RT}$$

(b)
$$\frac{d \ln k}{dt} = \frac{E_a}{RT^2}$$

$$(c) \log A = \log k + \frac{E_a}{2.303RT}$$

$$(d) \log_{10}\left(-\frac{E_a}{RT}\right) = \frac{k}{A}$$

6. The e.m.f. of the given cell will be

 $Pt \mid H_1(P_1) \mid \mid H^+(aq) \mid H_2(P_2) \mid Pt$

(a)
$$\frac{RT}{F} \ln \frac{P_1}{P_2}$$

(b)
$$\frac{RT}{2F} \ln \frac{P_1}{P_2}$$
 (c) $\frac{RT}{F} \ln \frac{P_2}{P_1}$

(c)
$$\frac{RT}{F} \ln \frac{P_2}{P_1}$$

(d) None of the above

7. For a given reaction $t_{1/2} = \frac{1}{ka}$, The order of reaction is

(a) 1

(c) 3

(d) 2

8. The fraction of the total volume occupied by the atoms present in a simple cube is

- (a) $\pi/4$

- (c) π/(3√2)
- (d) π/(4√2)

9.	The half life of first order reaction is 10 min. instant is 0.01 mol/L, then the time required is		tial amount is 0.08 mo	ol/L and concentrat	ion at some	
	(a) 10 min (b) 30 min	((c) 20 min	(d) 40 min		
10.	Given below are two statements labelled as Asse	sertion	and Reason:			
	Assertion (A) : Semiconductors are solids w ohm ⁻¹ m ⁻¹ .	with cor	nductivities in the inter	rmediate range froi	n 10 ⁻⁶ – 10 ⁴	
	Reason (R): Intermediate conductivity in (a) Assertion and reason both are correct statemed (b) Assertion and reason both are correct statemed (c) Assertion is correct statement but reason is well (d) Assertion is wrong statement but reason is contained as a statement but reason is contai	nents an nents bu wrong st	d reason is correct exp it reason is not correct of tatement.	lanation for assertic	on.	
11.	Which of the following crystals does not exhibi	oit Frenl	kel defect?			
	(a) AgBr (b) AgCl	((c) KBr	(d) ZnS		
12.	Which of the following statement is wrong for (Galvan	ic cell ?			
	 (a) Its electrodes are known as half cells. (b) Cathode is the positive electrode in it. (c) Anode is the positive electrode in it. (d) The process of oxidation takes place at anode 			cathode.		
13.	In an electrical connection between cathode an (a) Cathode to anode (c) Both (a) and (b)	(le of a voltaic cell, the (b) Anode to cathode (d) None of these	electrons will flow	from	
14.	The mixture that forms minimum boiling azeot	otrope is	s			
	(a) Methanol-acetic acid		b) Chloroform-benzen	e		
	(c) Water-nitric acid	(6	d) Ethyl alcohol-water			
15.	In cold countries, glycol is added to water in ca (a) lowering in boiling point.		ators during winter. It b) reducing the viscosit			
	(c) reducing the specific heat.		d) lowering in freezing			
16.	A 5.2 molal aqueous solution of methyl alcohol				thvl alcohol	
	in the solution will be	, 3	, F F		,	
	(a) 0.100 (b) 0.190	((c) 0.086	(d) 0.050		
17.	Match the items given in Column I with the item	ems give	en in Column II.			
	Column I		Column	ı II		
	A. Coloured bands	(i)	Zone refining			
	B. Impure metal to volatile complex	(ii)	Fractional distillation			
	C. Purification of Ge and Si	(iii)	Mond Process			
	D. Purification of mercury	(iv)	Chromatography			
		(v)	Liquation			
	(a) A-(i), B-(ii), C-(iv), D-(v)	((b) A-(iv), B-(iii), C-(i),	D-(ii)		
	(c) A-(iii), B-(iv), C-(ii), D-(i)		(d) A-(v), B-(iv), C-(iii)			
18.	Identify the set of reagent/reaction conditions	'X' and	I 'Y' in the following se	et of transformation	ıs:	
	$CH_3CH_2CH_2Br \xrightarrow{X} Product \xrightarrow{Y} CH_3 - CH - CH_3$					
	3 - 2 - 2		3 Br	3		
			271			

(a) X = dil. aq. NaOH, 20°C; Y = HBr/acetic acid, 20°C (b) X = conc. alc. NaOH, 80°C; Y = HBr/acetic acid, 20°C

(c) X = dil. aq. NaOH, 20°C; Y = Br₂/CHCl₃, 0°C (d) X = conc. alc. NaOH, 80°C; Y = Br₉/CHCl₃, 0°C

19.		mber 21 belongs to the ca				
	(a) s-block elements		(b) p-block elemen			
	(c) d-block elements		(d) f-block element	ts		
20.	Manganese achieves its (a) MnO ₉	highest oxidation state in (b) Mn ₉ O ₄	(c) KMnO ₄	(d) K_9MnO_4		
21.	- 경기 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	e complex ion [Co(en) ₂ C		17 2 4		
	(a) 27	(b) 36	(c) 33	(d) 35		
99	25/27/1/2019	ned by chlorination of n-	ateronatie			
44.	(a) meso form	(b) racemic form	(c) d-form	(d) l -form		
23.	Nitrogen is chemically l	ess reactive because of its	i e			
	(a) small atomic energy		(b) stable electroni	c configuration		
	(c) high electronegativity	,	(d) high bond enth	nalpy		
24.	A one litre flask is full of bromine vapours. The intensity of brown colour of vapours will not decrease					
	appreciably on adding t	o the flask some	(b) carbon tetrachl	lovide		
	(a) pieces of marble(c) animal charcoal power	ler	(d) carbon disulph			
95						
25.	(a) Al ₂ O ₃	is used for the concentra (b) Fe ₃ O ₄	(c) ZnS	(d) Fe ₂ O ₃ .3H ₂ O		
96				(4) 10303.01130		
40.	(a) Cu ²⁺	ing has the least magnetic (b) Ni ²⁺	(c) Co ²⁺	(d) Fe ²⁺		
27.	What kind of isomerism	s are exhibited by octahe	dral [Co(NH _a),Br _a]Cl	2		
	(a) Geometrical and ioniz		(b) Geometrical an			
	(c) Optical and ionization	1	(d) Geometrical or	nly		
28.	Given below are two stat	tements labelled as Staten	ent P and Statement	Q:		
	Statement P: The deg	ree of complex formation i	n actinides decreases ir	in the order $M^{4+} > MO_2^{2+} > M^{3+} > MO_2^+$.		
				alkyl phosphines and thioethers.		
	(a) P is true, but Q is fals		(b) P is false, but Q is true(d) Both P and Q are false			
	(c) Both P and Q are tru	e				
29.	Oxygen does not show -	2 oxidation state in the c	ase of			
	(a) OH ₂	(b) CO ₂	(c) OF ₂	(d) OCl ₂		
30.	The addition of propens	with HOCl proceeds via	the addition of			
	(a) H ⁺ in the first step		(b) Cl ⁺ in the first	*		
	(c) OH in the first step		(d) Cl ⁺ and OH ⁻ in	n a single step		
31.	Which of the following i	s most powerful oxidising				
	(a) H_2SO_4	(b) H ₃ BO ₃	(c) HPO ₃	(d) H ₃ PO ₄		
32.	Which substance is not j					
	(a) Cytosine	(b) Adenine	(c) Thymine	(d) Insulin		
33.			,	nenyl hydrazone and gives negative on reduction. 'X' could be		
	(a) Pentan-3-one	(b) n-amyl alcohol	(c) pentanol	(d) Pentan-2-one		
34.		,	(/]			
		(b) C ₆ H ₅ —CHO	(c) C ₆ H ₅ —OH	(d) H ₂ CO ₃		
35.	. , , ,	ared by using caprolactan				
	(a) Terylene	-,gp	(b) Teflon			
	(c) Nylon-6		(d) Neoprene			

- 36. The characteristic group of secondary alcohol is
 - (a) -CH₉OH
- (b) CHOH
- (c) -COH (d) >C<OH
- 37. In the following reactions of aniline, a coloured product C was obtained.

$$\begin{array}{c}
NH_2 \\
\xrightarrow{\text{NaNO}_2} \\
\text{HCl}
\end{array}$$
[B] $\xrightarrow{\text{N(CH}_{3)_2}}$ [C]

The structure of [C] would be:

- (a) \sim NH-NH- \sim N(CH₃)₂
- (c) \sim N=N-CH₂-N- \sim CH₂
- 38. Which one of the following reactions is a method for the conversion of a ketone into hydrocarbon?
 - (a) Aldol condensation

(b) Reimer-Tiemann reaction

(c) Cannizzaro reaction

- (d) Wolff-Kishner reaction
- 39. A reaction in which a primary amine is formed from primary amide is called
 - (a) Hoffmann bromamide reaction
 - (b) Gabriel phthalimide reaction
 - (c) Carbylamine reaction
 - (d) Libermann's nitrosoamine reaction
- 40. The major product of the following reaction is

$$(a) \bigcirc \begin{matrix} \text{COOH} \\ \text{COOH} \end{matrix} + \text{NH}_3 \xrightarrow{\text{Strong}} \begin{matrix} \text{Strong} \\ \text{Heating} \end{matrix}$$

$$(b) \bigcirc \begin{matrix} \text{NH}_2 \\ \text{NH}_2 \end{matrix} \qquad (c) \bigcirc \begin{matrix} \text{COOH} \\ \text{CONH}_2 \end{matrix}$$

41. Identify the product C in the series of reaction:

(a) CH₃COOH

(b) CH₃CH₉NHOH

(c) CH₃CONH₂

- (d) CH₃CHO
- 42. Which of the following is used as an antacid?
 - (a) Iproniazid

(b) Salvarsan

(c) Zantac

- (d) Chloramphenicol
- 43. Which one of the following is a cross-linked polymer?
 - (a) Bakelite

(b) Glycogen

(c) Nylon

- (d) Polythene
- 44. The function of enzyme in the living system is to:
 - (a) transport oxygen

(b) provide immunity

(c) catalyse biochemical reactions

(d) provide energy

- 45. Chloroquine is an effective drug for:
 - (a) pain

(b) fever

(c) malaria

- (d) pneumonia
- 46. Which one is the general formula of monohydric alcohol?
 - (a) $C_nH_{9n}OH$
- (b) $C_{n+1}H_{2n}OH$
- (c) $C_nH_{2n+2}OH$
- (d) $C_nH_{2n+1}OH$
- 47. The presence or absence of hydroxyl group on which carbon atom of sugar differentiate RNA and DNA
 - (a) 2nd
- (b) 4th

(c) 3rd

(d) 1st

- 48. Treatment of phenol with Br₂/H₂O yields
 - (a) o-bromophenol

(b) m-bromophenol

(c) 2, 4, 6-tribromophenol

- (d) p-bromophenol
- **49.** CH_3 — $C \equiv C$ — $H \xrightarrow{H_2O, H_2SO_4} Intermediate \longrightarrow product$ (B)

$$\begin{array}{c} (a) \; \mathrm{A} \; : \mathrm{CH_3} - \mathrm{C} = \mathrm{CH_2} \; ; \; \mathrm{B} \; : \; \mathrm{CH_3} - \mathrm{C} = \; \mathrm{CH_2} \\ \mathrm{OH} \qquad \qquad & \mathrm{SO_4} \\ \end{array} \qquad \begin{array}{c} (b) \; \; \mathrm{A} \; : \; \mathrm{CH_3} - \mathrm{C} = \; \mathrm{CH_2} \; ; \; \mathrm{B} \; : \; \mathrm{CH_3} - \mathrm{C} \equiv \; \mathrm{CH}_2 \\ \mathrm{OH} \\ \end{array}$$

(b) A :
$$CH_3 - C = CH_2$$
 ; B : $CH_3 - C \equiv CH$ OH

(c) A :
$$CH_3 - C = CH_2$$
; B : $CH_3 - C - CH_3$

$$\begin{array}{c} \text{(c)} \ \ \text{A} \ : \text{CH}_3 - \text{C} = \text{CH}_2 \ ; \text{B} : \text{CH}_3 - \text{C} - \text{CH}_3 \\ \text{OH} \end{array} \quad \begin{array}{c} \text{(d)} \quad \ \text{A} \ : \text{CH}_3 - \text{C} = \text{CH}_2 \ ; \text{B} : \text{CH}_3 - \text{C} - \text{CH}_3 \\ \text{SO}_4 \end{array}$$

50. A single compound of the structure CHO CH_3 CH_3 CH_4 CH_5 is obtainable from ozonolysis of which of

the following cyclic compounds?

PRACTICE PAPER - 10

- **1.** (c)
- **2.** (b)
- **3.** (a)
- **4.** (d)
- **5.** (*d*)
- **6.** (b)
- **7.** (d)

- 8. (b)
- **9.** (b)
- **10.** (c)
- **11.** (c)
- **12.** (c)
- **13.** (b)
- 14 (d)

- **15.** (*d*)
- **16.** (c)
- **17.** (b)
- **18.** (b)
- **19.** (c)
- **20.** (c)
- **14.** (*d*) **21.** (*b*)

- **22.** (b)
- **23.** (*d*)
- **24.** (a)
- **25.** (c)
- **26.** (a) **33.** (a)
- **27.** (a) **34.** (c)
- **28.** (c)

- **29.** (c)
- **30.** (*b*)
- **31.** (a)

(d)

- **32.** (*d*) **39.** (*a*)
- **40.** (d)
- **41.** (a)
- **35.** (*c*) **42.** (*c*)

- **36.** (*b*) **43.** (*a*)
- 37. (b)44. (c)
- **45.** (c)

38.

- **46.** (*d*)
- **47.** (a)
- **48.** (c)
- **49.** (c)

50. (c)

Solutions

PRACTICE PAPER - 10

- (c) Adsorption process is feasible only when
 \(\Delta G = \Delta H T \) is negative. For adsorption, \(\Delta H \)
 is negative and \(\Delta S \) is also negative. So, for
 \(\Delta G = \text{negative}, \Delta H > T \). \(\Delta S \) in magnitude.
- **2.** (b) 1 mole of electrons carries 96500 coulomb charge or 9.65×10^4 coulomb charge.
- 3. (a) In colloids, the size of dispersed particles range between 1 nm and 1000 nm. Crystalloid is a substance which when dissolved in solvent forms a true solution and exhibits the particle size of molecular dimensions less than 1 nm.
- **4.** (*d*) The order of decrease in reducing character of three metals is Pb > Cu > Ag.

Pb has maximum reducing power. Hence, Pb can reduce both copper ions and silver ions.

Ag has a minimum reducing power. Hence, it can neither reduce copper ions nor reduce lead ions.

The reducing power of Cu is higher than that of Ag but lower than that of Pb. Hence, Cu can reduce silver ions but cannot reduce lead ions.

5. (d) Arrhenius equation is represented as

$$k = Ae^{-E_a/RT}$$

On taking natural log on both sides, we get

$$\ln k = \ln A - \frac{E_a}{RT}$$

or,
$$\ln \frac{k}{A} = -\frac{E_a}{RT}$$

or,
$$\log k = \log A - \frac{E_a}{2.303RT}$$

 $\Rightarrow \log A = \log k + \frac{E_a}{2.303RT}$

$$\frac{d \ln k}{dT} = \frac{E_a}{RT^2}$$

(b) Pt | H_{2(g}),(P₁) | H⁺(aq) | | H_{2(g}),(P₂) | Pt
 Cell reaction:

At anode:

$$H_2(g)(P_1) \longrightarrow 2H^+(aq) + 2e^-$$

At cathode:

$$2\text{H}^+(aq) + 2e^- \longrightarrow \text{H}_2(g)(P_2)$$

 $\textbf{Overall reaction:} \ \underline{H_2(g) \ (P_1) \ \longrightarrow \ H_2(g) \, (P_2)}$

$$E_{\text{cell}} = E_{\text{cell}}^{\text{o}} - \frac{RT}{nF} \ln \frac{\text{[Oxidised state]}}{\text{[Reduced state]}}$$

$$=0-\frac{RT}{2F}\ln\frac{P_2}{P_2}$$

or,
$$E_{\text{cell}} = \frac{\text{RT}}{2\text{F}} \ln \frac{P_1}{P_2}$$

- 7. (d) For second order reaction, $t_{1/2} = \frac{1}{ka}$ Where, a = initial concentration of reactant.
- 8. (b) For simple cubic unit cell.

Number of atoms = $8 \times \frac{1}{8} = 1$

Volume occupied by atom in unit cell = $\frac{4}{3}\pi r^3$

Now, we know for simple cubic unit cell

$$a=2r, r=\frac{a}{2}$$

Packing efficiency

$$= \frac{\text{Volume occupied by one atom}}{\text{Volume of cube}}$$

$$= \frac{4/3\pi r^3}{a^3} = \frac{4/3\pi \times \left(\frac{a}{2}\right)^3}{a^3}$$
$$= \frac{4}{3} \times \pi \times \frac{1}{8} = \frac{\pi}{6}$$

9. (b) Given, $t_{1/2} = 10$ mins

$$[A]_0 = 0.08 \text{ mol/L}$$

$$[A] = 0.01 \text{ mol/L}$$

$$t_{1/2} = \frac{0.693}{k} \implies k = \frac{0.693}{10}$$

$$\therefore \quad t = \frac{2.303 \times 10}{0.693} \log \frac{[0.08]}{[0.01]} = 30 \text{ min}$$

- 10. (c) The intermediate conductivity of a semiconductor is due to the small energy gap between filled valence band and the empty conduction band.
- (c) This is due to absence of large size difference between K⁺ and Br⁻.
- 12. (e) In a galvanic cell there are two half-cells, i.e., oxidation half cell and reduction half-cell. Each half-cell contains an electrode in an electrolyte. The electrolytes of the two half-cells are connected internally through a salt bridge. Anode is the negative electrode where oxidation takes place, and cathode is the positive electrode where reduction takes place.
- 13. (b) In the galvanic or voltaic cells, the electrons flow from anode to cathode while current flows from cathode to anode, i.e., in the opposite direction to the flow of electrons.
- 14. (d) Ethanol boils at 78.4°C and water boils at 100°C, but azeotropic mixture of ethanol and water boils at 78.2°C, which is lower than either of its constituents. Hence, it is minimum boiling azeotropic.
- 15. (d) Addition of glycol lowers the freezing point of water in the radiator so that the cold winter temperatures wouldn't burst the lines and therefore, glycol-water mixture is used as antifreeze in radiators of cars.
- 16. (c) A 5.2 molal aqueous solution of methyl alcohol means 5.2 moles of methyl alcohol is present in 1000 g of water.

∴ Mole fraction = $\frac{n}{n+N}$ (n = moles of methyl alcohol, N = moles of water)

$$=\frac{5.2}{5.2 + \frac{1000}{18}} = 0.086$$

18. (b)
$$CH_3CH_2CH_2Br \xrightarrow{conc. alc. NaOH} CH_3 - CH = CH_2$$

$$\xrightarrow{80^{\circ}C} CH_3 - CH = CH_3$$

$$\xrightarrow{HBr/acetic acid} CH_3CH - CH_3$$

- **19.** (c) $Z = 21 : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^1 4s^2$
 - \therefore The element belongs to d-block of the long form of the periodic table.
- 20. (c) The oxidation state of Mn in MnO₂, Mn₂O₄, KMnO₄ and K₂MnO₄ is +4, +4, +7 and +6 respectively. Thus, the highest oxidation state of Mn is achieved in KMnO₄.
- 21. (b) Atomic number of cobalt is 27.

$$Co_{27} = 3d^74s^2$$

$$Co(III) = 3d^64s^0$$

Hence, EAN =
$$27 - 3 + (4 \times 2) + (2 \times 2) = 36$$

 (b) 2-chlorobutane obtained by chlorination of butane, will be racemic form

- 23. (d) N₂ has very little reactivity at ordinary temperature. The chemical inertness of dinitrogen is attributed to high bond enthalpy of N ≡ N bond(946 kcal/mol).
- 24. (a) As marble does not react with Br₂ and therefore the intensity of brown colour of vapours will not decrease appreciably on adding to the flask some pieces of marble.Br₂ is soluble in CCl₄ and CS₂.
- 25. (c) Froth floatation method is based on preferential wetting of ore particles by pine oil and gangue particles with water. The sulphide ores of zinc, copper and lead are usually concentrated by this method.

26. (a) The electronic configuration of the given ions are as follows:

Cu(Z = 29) : [Ar] $3d^{10} 4s^1$

 Cu^{2+} : [Ar] $3d^9$

Ni(Z = 28) : [Ar] $3d^8 4s^2$

 Ni^{2+} : [Ar] $3d^8$

Co(Z = 27) : [Ar] $3d^7 4s^2$

 Co^{2+} : [Ar] $3d^7$

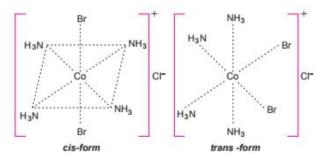
Fe(Z = 26) : [Ar] $3d^6 4s^2$

 Fe^{2+} : [Ar] $3d^6$

Transition metal	Cu ²⁺	Ni ²⁺	Co ²⁺	Fe ²⁺
d-subshell configuration	$3d^9$	$3d^8$	$3d^7$	$3d^6$
Number of unpaired electrons	1	2	3	4

Thus, Cu²⁺ with least number of unpaired electrons will have least magnetic moment.

27. (a) Goemetrical and ionisation isomerism is exhibited by the octahedral complex


[Co(NH₃)₄Br₂]Cl

Geometrical and ionisation isomerism is exhibited by the octahedral complex $[\text{Co(NH}_3)_4\text{Br}_2]\text{Cl}$

Ionisation isomers

[Co(NH₃)₄Br₂]Cl and [Co(NH₃)ClBr]Br

Geometrical isomers

- 29. (c) In case of OF₂, the oxidation state of oxygen is +2.
- 30. (b) $CH_3-CH \xrightarrow{P} CH_2 + Cl \xrightarrow{C} Cl \longrightarrow CH_3-CH-CH_2$ Cl $\xrightarrow{H_2O} CH_3-CH-CH_2 \longrightarrow CH_3-CH-CH_2Cl$ $CH_3-CH-CH_2 \longrightarrow CH_3-CH-CH_2Cl$ $CH_3-CH-CH_2 \longrightarrow CH_3-CH-CH_2Cl$

- 32. (d) Insulin is a protein while rest are the purines and pyrimidine bases present in nucleic acids.
- **33.** (a) Since 'X' yields phenyl hydrazone. This indicates presence of carbonyl group. Further, since it does not give iodoform test and tollen's test. Therefore, it must be Pentan-3-one.
- 34. (c) Phenol is also known as carbolic acid.
- 35. (c)

- 36. (b) Secondary alcohols are those alcohols in which the —OH group is attached to a secondary carbon atom.
- 37. (b) $\sim NH_2 \xrightarrow{NaNO_2} \sim N = NC\overline{1}$

Aniline Benzene diazonium chloride [B]

38. (d) In Wolff-Kishner reaction, the carbonyl group of aldehydes and ketones is reduced to —CH₂ group on treatment with hydrazine followed by heating with potassium or sodium hydroxide in a high boiling solvent such as ethylene glycol.

$$C = O \xrightarrow{+ \text{NH}_2 - \text{NH}_2} C = N - \text{NH}_2$$

$$+ \text{Hydrazone}$$

$$CH_3 \longrightarrow CH_2 + N_2$$

$$CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3$$

$$CH_3 \longrightarrow$$

39. (a) Hoffmann Bromamide Reaction:

40. (d)

$$\bigcirc \begin{array}{c} O \\ \bigcirc C - OH \\ \bigcirc C - OH \\ \bigcirc \\ O \\ O \end{array} \xrightarrow[]{2NH_3} \bigcirc \begin{array}{c} O \\ \bigcirc C - \bar{ON}H_4 \\ \bigcirc \\ O \\ O \end{array}$$

$$\stackrel{\Delta}{\longrightarrow} \bigcirc \stackrel{\text{O}}{\underset{\text{CN-H}_2}{\parallel}} \stackrel{\Delta}{\longrightarrow} \bigcirc \stackrel{\text{O}}{\underset{\text{C}}{\mid}} \stackrel{\text{O}}{\underset{\text{C}}{\mid}} \stackrel{\text{O}}{\longrightarrow} \text{NH}$$

41. (a)

$$\begin{array}{c} \text{CH}_3\text{CN} & \xrightarrow{\text{Na/C}_2\text{H}_5\text{OH}} & \text{CH}_3\text{CH}_2\text{NH}_2 \\ \text{Methyl isocyanide} & & \text{Ethylamine} \\ & \xrightarrow{\text{HONO}} & \text{CH}_3\text{CH}_2\text{OH} & \xrightarrow{\text{K}_2\text{Cr}_2\text{O}_7} & \text{CH}_3\text{COOH} \\ & \text{Ethanol} & \text{(B)} & & \text{(C)} \end{array}$$

- 42. (c) Zantac is an antacid. Iproniazid is a tranquilizer, salvarsan is used for treatment of syphilis and chloramphenicol is a broad spectrum antibiotic.
- 43. (a) Bakelite is formed by cross linking of linear chains of the polymer novolac.
- 45. (c) Chloroquine is a medication primarily used to prevent and treat malaria in areas where malaria remains sensitive to its effects.

- 46. (d) The general formula of monohydric alcohol is C_nH_{2n+1}OH where n = 1, 2, 3....etc.
- 47. (a) RNA has a hydroxy group on the second carbon which is not present in DNA.

48. (c)

OH
Phenol

$$+ 3Br_2/H_2O$$
 \xrightarrow{Br}
 \xrightarrow{Br}
 $+ 3HBr$
 \xrightarrow{Br}
 $2,4,6$ -tribromophenol

49. (c)

$$CH_{3}-C \equiv C-H+H_{2}O \xrightarrow{H_{2}SO_{4}} CH_{3}-C=CH_{2}$$

$$OH$$

$$\downarrow Lautomerise$$

$$CH_{3}-C-CH_{3}$$

50. (c) During ozonolysis the C=C is converted to C= O group.

$$\begin{array}{c|c} CH_3 & \xrightarrow{i) O_3} & CH_3 & CH_2 \\ \hline CH_3 & \xrightarrow{i) Zn/H_2O} & CH_3 & CH_2 \\ \hline CH_2 & CH_2 \\ \hline CH_3 & CH_2 \\ \hline CH_3 & CH_2 \\ \hline CH_2 & CH_2 \\ \hline CH_3 & CH_3 \\ \hline CH_3 & CH_2 \\ \hline CH_3 & CH_3 \\ \hline CH_3 & CH_2 \\ \hline CH_3 & CH_3 \\ \hline CH_3 & CH_3 \\ \hline CH_3 & CH_3 \\ \hline CH_3 & CH_2 \\ \hline CH_3 & CH_3 \\ \hline CH_3 & CH_3$$

ш