
2

Damped Simple Harmonic Motion

Initially we discussed the case of ideal simple harmonic motion where the total energy

remained constant and the displacement followed a sine curve, apparently for an infinite

time. In practice some energy is always dissipated by a resistive or viscous process; for

example, the amplitude of a freely swinging pendulum will always decay with time as

energy is lost. The presence of resistance to motion means that another force is active,

which is taken as being proportional to the velocity. The frictional force acts in the

direction opposite to that of the velocity (see Figure 2.1) and so Newton’s Second law

becomes

m€xx ¼ � sx� r _xx

where r is the constant of proportionality and has the dimensions of force per unit of

velocity. The presence of such a term will always result in energy loss.

The problem now is to find the behaviour of the displacement x from the equation

m€xxþ r _xxþ sx ¼ 0 ð2:1Þ
where the coefficients m, r and s are constant.

When these coefficients are constant a solution of the form x ¼ C e�t can always be

found. Obviously, since an exponential term is always nondimensional, C has the

dimensions of x (a length, say) and � has the dimensions of inverse time, T �1. We shall

see that there are three possible forms of this solution, each describing a different

behaviour of the displacement x with time. In two of these solutions C appears explicitly as

a constant length, but in the third case it takes the form

C ¼ Aþ Bt�
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� The number of constants allowed in the general solution of a differential equation is always equal
to the order (that is, the highest differential coefficient) of the equation. The two values A and B are
allowed because equation (2.1) is second order. The values of the constants are adjusted to satisfy the
initial conditions.
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where A is a length, B is a velocity and t is time, giving C the overall dimensions of a

length, as we expect. From our point of view this case is not the most important.

Taking C as a constant length gives _xx ¼ �C e�t and €xx ¼ �2C e�t, so that equation (2.1)

may be rewritten

C e�tðm�2 þ r�þ sÞ ¼ 0

so that either

x ¼ C e�t ¼ 0 (which is trivial)

or

m�2 þ r�þ s ¼ 0

Solving the quadratic equation in � gives

� ¼ �r

2m
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 2

4m2
� s

m

r

Note that r=2m and ðs=mÞ1=2, and therefore, �, all have the dimensions of inverse time,

T �1, which we expect from the form of e�t.

The displacement can now be expressed as

x1 ¼ C1 e
�rt=2mþðr 2=4m 2�s=mÞ 1=2 t; x2 ¼ C2 e

�rt=2m�ðr 2=4m 2�s=mÞ 1=2 t

or the sum of both these terms

x ¼ x1 þ x2 ¼ C1 e
�rt=2mþðr 2=4m 2�s=mÞ 1=2 t þ C2 e

�rt=2m�ðr 2=4m 2�s=mÞ 1=2 t

The bracket ðr 2=4m2 � s=mÞ can be positive, zero or negative depending on the relative

magnitude of the two terms inside it. Each of these conditions gives one of the three

possible solutions referred to earlier and each solution describes a particular kind of

m

Frictional
force F = −rx

s

x

Figure 2.1 Simple harmonic motion system with a damping or frictional force r _xx acting against the
direction of motion. The equation of motion is m€xx þ r _xx þ sx ¼ 0
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behaviour. We shall discuss these solutions in order of increasing significance from our

point of view; the third solution is the one we shall concentrate upon throughout the rest of

this book.

The conditions are:

(1) Bracket positive ðr 2=4m2 > s=mÞ. Here the damping resistance term r 2=4m2

dominates the stiffness term s=m, and heavy damping results in a dead beat system.

(2) Bracket zero ðr 2=4m2 ¼ s=mÞ. The balance between the two terms results in a

critically damped system.

Neither (1) nor (2) gives oscillatory behaviour.

(3) Bracket negative ðr 2=4m2 < s=mÞ. The system is lightly damped and gives oscillatory

damped simple harmonic motion.

Case 1. Heavy Damping

Writing r=2m ¼ p and ðr 2=4m2 � s=mÞ1=2 ¼ q, we can replace

x ¼ C1 e
�rt=2mþðr 2=4m 2�s=mÞ 1=2 t þ C2 e

�rt=2m�ðr 2=4m 2�s=mÞ 1=2 t

by

x ¼ e�ptðC1 e
qt þ C2 e

�qt Þ;

where the C1 and C2 are arbitrary in value but have the same dimensions as C (note that

two separate values of C are allowed because the differential equation (2.1) is second

order).

If now F ¼ C1 þ C2 and G ¼ C1 � C2, the displacement is given by

x ¼ e�pt F

2
ðeqt þ e�qtÞ þ G

2
ðeqt � e�qtÞ

� �

or

x ¼ e�ptðF cosh qt þ G sinh qtÞ

This represents non-oscillatory behaviour, but the actual displacement will depend upon

the initial (or boundary) conditions; that is, the value of x at time t ¼ 0. If x ¼ 0 at t ¼ 0

then F ¼ 0, and

x ¼ G e�rt=2m sinh
r 2

4m2
� s

m

� �1=2

t

Figure 2.2 illustrates such behaviour when a heavily damped system is disturbed from

equilibrium by a sudden impulse (that is, given a velocity at t ¼ 0). It will return to zero
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displacement quite slowly without oscillating about its equilibrium position. More

advanced mathematics shows that the value of the velocity dx=dt vanishes only once so that
there is only one value of maximum displacement.

(Problem 2.1)

Case 2. Critical Damping ðr 2=4m2 ¼ s=mÞ
Using the notation of Case 1, we see that q ¼ 0 and that x ¼ e�ptðC1 þ C2Þ. This is, in
fact, the limiting case of the behaviour of Case I as q changes from positive to negative. In

this case the quadratic equation in � has equal roots, which, in a differential equation

solution, demands that C must be written C ¼ Aþ Bt, where A is a constant length and B a

given velocity which depends on the boundary conditions. It is easily verified that the value

x ¼ ðAþ BtÞe�rt=2m ¼ ðAþ BtÞe�pt

satisfies m€xxþ r _xxþ sx ¼ 0 when r 2=4m2 ¼ s=m.

(Problem 2.2)

Application to a Damped Mechanical Oscillator

Critical damping is of practical importance in mechanical oscillators which experience

sudden impulses and are required to return to zero displacement in the minimum time.

Suppose such a system has zero displacement at t ¼ 0 and receives an impulse which gives

it an initial velocity V.

Time

r  increasing

D
is

pl
ac

em
en

t

Heavy damping r 2

4m 2

s
m 

>

Figure 2.2 Non-oscillatory behaviour of damped simple harmonic system with heavy damping
(where r 2=4m2 > s=m) after the system has been given an impulse from a rest position x ¼ 0
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Then x ¼ 0 (so that A ¼ 0) and _xx ¼ V at t ¼ 0. However,

_xx ¼ B½ð�ptÞe�pt þ e�pt� ¼ B at t ¼ 0

so that B ¼ V and the complete solution is

x ¼ Vt e�pt

The maximum displacement x occurs when the system comes to rest before returning to

zero displacement. At maximum displacement

_xx ¼ V e�ptð1� ptÞ ¼ 0

thus giving ð1� ptÞ ¼ 0, i.e. t ¼ 1=p.
At this time the displacement is therefore

x ¼ Vt e�pt ¼ V

p
e�1

¼ 0:368
V

p
¼ 0:368

2mV

r

The curve of displacement versus time is shown in Figure 2.3; the return to zero in a

critically damped system is reached in minimum time.

Case 3. Damped Simple Harmonic Motion

When r 2=4m2 < s=m the damping is light, and this gives from the present point of view the

most important kind of behaviour, oscillatory damped simple harmonic motion.

r 2

4m 2

s
m 

2m
r

t =

m
r

=

Displacement

Time0

Critical
damping2 Ve−1x =

Figure 2.3 Limiting case of non-oscillatory behaviour of damped simple harmonic system where
r 2=4m2 ¼ s=m (critical damping)
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The expression ðr 2=4m2 � s=mÞ1=2 is an imaginary quantity, the square root of a

negative number, which can be rewritten

� r 2

4m2
� s

m

� �1=2

¼ �
ffiffiffiffiffiffiffi
�1

p s

m
� r 2

4m2

� �1=2

¼ �i
s

m
� r 2

4m2

� �1=2

ðwhere i ¼
ffiffiffiffiffiffiffi
�1

p
Þ

so the displacement

x ¼ C1 e
�rt=2m eþiðs=m�r 2=4m 2Þ 1=2 t þ C2 e

�rt=2m e�iðs=m�r 2=4m 2Þ 1=2 t

The bracket has the dimensions of inverse time; that is, of frequency, and can be written

ðs=m� r 2=4m2Þ1=2 ¼ ! 0, so that the second exponential becomes ei!
0t ¼ cos! 0tþ

i sin! 0t: This shows that the behaviour of the displacement x is oscillatory with a new

frequency ! 0 < ! ¼ ðs=mÞ1=2, the frequency of ideal simple harmonic motion. To compare

the behaviour of the damped oscillator with the ideal case we should like to express the

solution in a form similar to x ¼ A sinð! 0t þ �Þ as in the ideal case, where ! has been

replaced by ! 0.
We can do this by writing

x ¼ e�rt=2mðC1 e
i! 0t þ C2 e

�i! 0tÞ

If we now choose

C1 ¼ A

2i
e i�

and

C2 ¼ � A

2i
e�i�

where A and � (and thus ei�) are constants which depend on the motion at t ¼ 0, we find

after substitution

x ¼ A e�rt=2m ½eið! 0tþ�Þ � e�ið! 0tþ�Þ�
2i

¼ A e�rt=2msinð! 0t þ �Þ
This procedure is equivalent to imposing the boundary condition x ¼ A sin� at t ¼ 0

upon the solution for x. The displacement therefore varies sinusoidally with time as in the

case of simple harmonic motion, but now has a new frequency

! 0 ¼ s

m
� r 2

4m2

� �1=2
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and its amplitude A is modified by the exponential term e�rt=2m, a term which decays with

time.

If x ¼ 0 at t ¼ 0 then � ¼ 0; Figure 2.4 shows the behaviour of x with time, its

oscillations gradually decaying with the envelope of maximum amplitudes following the

dotted curve e�rt=2m. The constant A is obviously the value to which the amplitude would

have risen at the first maximum if no damping were present.

The presence of the force term r _xx in the equation of motion therefore introduces a loss of

energy which causes the amplitude of oscillation to decay with time as e�rt=2m.

(Problem 2.3)

Methods of Describing the Damping of an Oscillator

Earlier in this chapter we saw that the energy of an oscillator is given by

E ¼ 1
2
ma2!2 ¼ 1

2
sa2

that is, proportional to the square of its amplitude.

We have just seen that in the presence of a damping force r _xx the amplitude decays with

time as

e�rt=2m

so that the energy decay will be proportional to

ðe�rt=2mÞ2

that is, e�rt=m. The larger the value of the damping force r the more rapid the decay of the

amplitude and energy. Thus we can use the exponential factor to express the rates at which

the amplitude and energy are reduced.

τ′ τ′2
t

r t
2m

r  
2

4m 
2

s
m 

e

<

D
is

pl
ac

em
en

t

−

Figure 2.4 Damped oscillatory motion where s=m > r 2=4m 2. The amplitude decays with e�rt=2m,
and the reduced angular frequency is given by ! 02 ¼ s=m� r 2=4m2
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Logarithmic Decrement

This measures the rate at which the amplitude dies away. Suppose in the expression

x ¼ A e�rt=2m sinð! 0t þ �Þ

we choose

� ¼ �=2

and we write

x ¼ A0 e
�rt=2m cos! 0t

with x ¼ A0 at t ¼ 0. Its behaviour will follow the curve in Figure 2.5.

If the period of oscillation is � 0 where ! 0 ¼ 2�=� 0, then one period later the amplitude is

given by

A1 ¼ A0 e
ð�r=2mÞ� 0

so that

A0

A1

¼ e r�
0=2m ¼ e �

A0

At

A2

t0

τ ′ τ ′

τ ′

τ ′

e
r

2m t

e
r

2m

(2    )
e

r
2m

−

−

−

Figure 2.5 The logarithmic ratio of any two amplitudes one period apart is the logarithmic
decrement, defined as � ¼ logeðAn=Anþ1Þ ¼ r� 0=2m
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where

� ¼ r

2m
� 0 ¼ loge

A0

A1

is called the logarithmic decrement. (Note that this use of � differs from that in Figure 1.11).

The logarithmic decrement � is the logarithm of the ratio of two amplitudes of oscillation

which are separated by one period, the larger amplitude being the numerator since e � > 1.

Similarly

A0

A2

¼ e rð2�
0Þ=2m ¼ e2�

and

A0

An

¼ en�

Experimentally, the value of � is best found by comparing amplitudes of oscillations

which are separated by n periods. The graph of

loge

A0

An

versus n for different values of n has a slope �.

Relaxation Time or Modulus of Decay

Another way of expressing the damping effect is by means of the time taken for the

amplitude to decay to

e�1 ¼ 0:368

of its original value A0. This time is called the relaxation time or modulus of decay and the

amplitude

At ¼ A0 e
�rt=2m ¼ A0 e

�1

at a time t ¼ 2m=r.
Measuring the natural decay in terms of the fraction e�1 of the original value is a very

common procedure in physics. The time for a natural decay process to reach zero is, of

course, theoretically infinite.

(Problem 2.4)

The Quality Factor or Q-value of a Damped Simple Harmonic Oscillator

This measures the rate at which the energy decays. Since the decay of the amplitude is

represented by

A ¼ A0 e
�rt=2m
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the decay of energy is proportional to

A2 ¼ A2
0 e

ð�rt=2mÞ 2

and may be written

E ¼ E0 e
ð�r=mÞt

where E0 is the energy value at t ¼ 0.

The time for the energy E to decay to E0 e
�1 is given by t ¼ m=r s during which time the

oscillator will have vibrated through ! 0m=r rad.
We define the quality factor

Q ¼ ! 0m
r

as the number of radians through which the damped system oscillates as its energy

decays to

E ¼ E0 e
�1

If r is small, then Q is very large and

s

m
� r 2

4m2

so that

! 0 � !0 ¼ s

m

� �1=2

Thus, we write, to a very close approximation,

Q ¼ !0m

r

which is a constant of the damped system.

Since r=m now equals !0=Q we can write

E ¼ E0 e
ð�r=mÞt ¼ E0 e

�! 0t=Q

The fact that Q is a constant ð¼ !0m=rÞ implies that the ratio

energy stored in system

energy lost per cycle
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is also a constant, for

Q

2�
¼ !0m

2�r
¼ �0m

r

is the number of cycles (or complete oscillations) through which the system moves in

decaying to

E ¼ E0 e
�1

and if

E ¼ E0 e
ð�r=mÞt

the energy lost per cycle is

��E ¼ dE

dt
�t ¼ �r

m
E
1

� 0

where �t ¼ 1=� 0 ¼ � 0, the period of oscillation.

Thus, the ratio

energy stored in system

energy lost per cycle
¼ E

��E
¼ � 0m

r
� �0m

r

¼ Q

2�

In the next chapter we shall meet the same quality factor Q in two other roles, the first as

a measure of the power absorption bandwidth of a damped oscillator driven near its

resonant frequency and again as the factor by which the displacement of the oscillator

is amplified at resonance.

Example on the Q-value of a Damped Simple Harmonic Oscillator

An electron in an atom which is freely radiating power behaves as a damped simple

harmonic oscillator.

If the radiated power is given by P ¼ q2!4x20=12�"0c
3 W at a wavelength of 0.6mm

(6000 Å), show that the Q-value of the atom is about 108 and that its free radiation lifetime

is about 10�8s (the time for its energy to decay to e�1 of its original value).

q ¼ 1:6� 10�19C

1=4�"0 ¼ 9� 109 mF�1

me ¼ 9� 10�31 kg

c ¼ 3� 108 m s�1

x0 ¼ maximum amplitude of oscillation

The radiated power P is ���E, where ��E is the energy loss per cycle, and the energy of

the oscillator is given by E ¼ 1
2
me!

2x20.
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Thus, Q ¼ 2�E=��E ¼ ��me!
2x20=P, and inserting the values above with ! ¼ 2�� ¼

2�c=�, where the wavelength � is given, yields a Q value of � 5� 107.

The relation Q ¼ !t gives t, the radiation lifetime, a value of � 10�8 s.

Energy Dissipation

We have seen that the presence of the resistive force reduces the amplitude of oscillation

with time as energy is dissipated.

The total energy remains the sum of the kinetic and potential energies

E ¼ 1
2
m _xx2 þ 1

2
sx2

Now, however, dE=dt is not zero but negative because energy is lost, so that

dE

dt
¼ d

dt
ð1
2
m _xx2 þ 1

2
sx2Þ ¼ _xxðm€xxþ sxÞ

¼ _xxð�r _xxÞ for m _xxþ r _xxþ sx ¼ 0

i.e. dE=dt ¼ �r _xx2, which is the rate of doing work against the frictional force (dimensions

of force � velocity ¼ force � distance/time).

(Problems 2.5, 2.6)

Damped SHM in an Electrical Circuit

The force equation in the mechanical oscillator is replaced by the voltage equation in the

electrical circuit of inductance, resistance and capacitance (Figure 2.6).

IR

IR

+
+

+

+ +

−
−

dI
dt

L

dI
dt

L

q
C

q
C

= 0

−

Figure 2.6 Electrical circuit of inductance, capacitance and resistance capable of damped simple
harmonic oscillations. The sum of the voltages around the circuit is given from Kirchhoff ’s law

as L
dI

dt
þ RI þ q

C
¼ 0
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We have, therefore,

L
dI

dt
þ RI þ q

C
¼ 0

or

L€qqþ R _qqþ q

C
¼ 0

and by comparison with the solutions for x in the mechanical case we know immediately

that the charge

q ¼ q0 e
�Rt=2L�ðR 2=4L 2�1=LCÞ 1=2 t

which, for 1=LC > R2=4L2, gives oscillatory behaviour at a frequency

!2 ¼ 1

LC
� R2

4L2

From the exponential decay term we see that R=L has the dimensions of inverse time T �1

or !, so that !L has the dimensions of R; that is, !L is measured in ohms.

Similarly, since !2 ¼ 1=LC; !L ¼ 1=!C, so that 1=!C is also measured in ohms. We

shall use these results in the next chapter.

(Problems 2.7, 2.8, 2.9)

Problem 2.1
The heavily damped simple harmonic system of Figure 2.2 is displaced a distance F from its

equilibrium position and released from rest. Show that in the expression for the displacement

x ¼ e�ptðF cosh qt þ G sinh qtÞ

where

p ¼ r

2m
and q ¼ r 2

4m 2
� s

m

� �1=2

that the ratio

G

F
¼ r

ðr 2 � 4msÞ 1=2

Problem 2.2
Verify that the solution

x ¼ ðAþ BtÞe�rt=2m
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satisfies the equation

m€xxþ r _xxþ sx ¼ 0

when

r 2=4m2 ¼ s=m

Problem 2.3
The solution for damped simple harmonic motion is given by

x ¼ e�rt=2mðC 1 e
i! 0t þ C 2 e

�i! 0tÞ

If x ¼ A cos� at t ¼ 0, find the values of C 1 and C 2 to show that _xx � �! 0A sin� at t ¼ 0 only if r=m
is very small or � � �=2.

Problem 2.4
A capacitance C with a charge q0 at t ¼ 0 discharges through a resistance R. Use the voltage

equation q=C þ IR ¼ 0 to show that the relaxation time of this process is RC s; that is,

q ¼ q0 e
�t=RC

(Note that t=RC is non-dimensional.)

Problem 2.5
The frequency of a damped simple harmonic oscillator is given by

! 02 ¼ s

m
� r 2

4m2
¼ !2

0 �
r 2

4m 2

(a) If !2
0 � ! 02 ¼ 10�6!2

0 show that Q ¼ 500 and that the logarithmic decrement � ¼ �=500.
(b) If !0 ¼ 106 and m ¼ 10�10 Kg show that the stiffness of the system is 100Nm�1, and that the

resistive constant r is 2� 10�7 N 	 sm�1.

(c) If the maximum displacement at t ¼ 0 is 10�2 m, show that the energy of the system is 5� 10�3

J and the decay to e�1 of this value takes 0.5 ms.

(d) Show that the energy loss in the first cycle is 2�� 10�5 J.

Problem 2.6
Show that the fractional change in the resonant frequency !0ð!2

0 ¼ s=mÞ of a damped simple

harmonic mechanical oscillator is � ð8Q 2Þ�1
where Q is the quality factor.

Problem 2.7
Show that the quality factor of an electrical LCR series circuit is Q ¼ !0L=R where !2

0 ¼ 1=LC

Problem 2.8
A plasma consists of an ionized gas of ions and electrons of equal number densities ðn i ¼ ne ¼ nÞ
having charges of opposite sign �e, and masses mi and me, respectively, where mi > me. Relative
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displacement between the two species sets up a restoring

+
+
+
+
+
+
+
+
+

−
−
−
−
−
−
−
−
−

E

x

l

electric field which returns the electrons to equilibrium, the ions being considered stationary. In the

diagram, a plasma slab of thickness l has all its electrons displaced a distance x to give a restoring

electric field E ¼ nex=" 0, where " 0 is constant. Show that the restoring force per unit area on the

electrons is xn 2e2l=" 0 and that they oscillate simple harmonically with angular frequency !2
e ¼

ne 2=me" 0. This frequency is called the electron plasma frequency, and only those radio waves of

frequency ! > ! e will propagate in such an ionized medium. Hence the reflection of such waves

from the ionosphere.

Problem 2.9
A simple pendulum consists of a mass m at the end of a string of length l and performs small

oscillations. The length is very slowly shortened whilst the pendulum oscillates many times at a

constant amplitude l� where � is very small. Show that if the length is changed by ��l the work

done is �mg�l (owing to the elevation of the position of equilibrium) together with an increase in

the pendulum energy

�E ¼ mg
� 2

2
� ml _��2

 !
�l

where � 2 is the average value of � 2 during the shortening. If � ¼ �0 cos!t, show that the energy of

the pendulum at any instant may be written

E ¼ ml 2!2� 2
0

2
¼ mgl� 2

0

2

and hence show that

�E

E
¼ � 1

2

�l

l
¼ ��

�

that is, E=�, the ratio of the energy of the pendulum to its frequency of oscillation remains constant

during the slowly changing process. (This constant ratio under slowly varying conditions is

important in quantum theory where the constant is written as a multiple of Planck’s constant, h.)
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Summary of Important Results

Damped Simple Harmonic Motion

Equation of motion m€xxþ r _xxþ sx ¼ 0

Oscillations when

s

m
>

r 2

4m2

Displacement x ¼ A e�rt=2m cosð! 0t þ �Þ where

! 02 ¼ s

m
� r 2

4m2

Amplitude Decay

Logarithmic decrement �—the logarithm of the ratio of two successive amplitudes one

period � 0 apart

� ¼ loge

An

Anþ1

¼ r� 0

2m

Relaxation Time

Time for amplitude to decay to A ¼ A0 e
�rt=2m ¼ A0 e

�1; that is, t ¼ 2m=r

Energy Decay

Quality factor Q is the number of radians during which energy decreases to E ¼ E0 e
�1

Q ¼ !0m

r
¼ 2�

energy stored in system

energy lost per cycle

E ¼ E0 e
�rt=m ¼ E0 e

�1 when Q ¼ !0t

In damped SHM

dE

dt
¼ ðm€xxþ sxÞ _xx ¼ �r _xx2 (work rate of resistive force)

For equivalent expressions in electrical oscillators replace m by L, r by R and s by 1=C.
Force equations become voltage equations.
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