
arrays

In C we have the following derived data types:

 • Arrays
 • Pointers
 • Structures
 • Unions

Imagine a problem that requires to read, process, and print 10
integers. We can declare 10 variables, each with different name.
Having 10 different names creates a problem; we need 10 read and
10 write statements each for different variable.

Defi nition
An array is a collection of elements of same data type. Array is a
sequenced collection. So, we can refer to the elements in array as 0th
element, 1st element, and so on, until we get the last element. The
array elements are individually addressed with their subscripts/indi-
ces along with array name. We place subscript value in square brack-
ets ([]) followed by array name. This notation is called indexing.

There is a powerful programming construct, loop, that makes
array processing easy. It does not matter if there are 1, 10, 100 or
1000 elements.

We can also use a variable name in subscript, as the value of
variable changes; it refers different elements at different times.

Syntax of Array Declaration
Data_type array_name_[size];
Here, data type says the type of elements in collection, array_name
is the name given to collection of elements and size says the num-
ber of elements in array.

Example: int marks[6];
Here, ‘int’ specifi es the type of variable, marks specifi es name of
variable. The number 6 tells the dimension/size. The ‘[]’ tells the
compiler that we are dealing with array.

Accessing array elements: All the array elements are num-
bered, starting from 0, thus marks [3] is not the third, but the fourth
element.

Example: marks[2] – 3rd element
marks[0] – 1st element
We can use the variable as index.
Thus marks[i] – ith element. As the value of i changes, refers dif-
ferent elements in array.

Summary about Arrays
 • An array is a collection of similar elements.
 • The fi rst element in array is numbered 0, and the last element is

one less than the total size of the array.
 • An array is also known as subscripted variable.
 • Before using an array, its type and dimension must be

declared.
 • How big an array is, its elements are always stored in contiguous

memory locations.
 • Individual elements accessed by index indicating relative posi-

tion in collection.
 • Index of an array must be an integer.

Array Initialization
Syntax
Data_type array_name[size] = {values};

Chapter 3

Arrays, Pointers and Structures

 Arrays

 Array initialization

 Passing array elements to function

 Two dimensional arrays

 Syntax for 3D array declaration

 Pointers

 Pointer to pointer

 Pointer to void (generic pointer)

 Array of pointers

 Pointer to function

 Dynamic memory management

 Memory allocation function

 Realloc

 Structures

 Nesting of structures

 Array of structures

 Structures & functions

 Union

 Declaration

 Bit fi elds

LEARNING OBJECTIVES

Chapter 3  •  Arrays, Pointers and Structures | 3.31

Example:
int n[6]= {2,4,8,12,20,25}; // Array ini-
tialized with list of values
int num[10] = {2,4,12,20,35};
// remaining 5 elements are initialized with
0
// values
int b[10] = {0}; // Entire array elements
initialized with 0.

Note:

 • Till the array elements are not given any specific value,
they are supposed to contain garbage values.

 • If the number of elements used for initialization is lesser
than the size of array, then the remaining elements are
initialized with zero.

 • Where the array is initialized with all the elements, men-
tioning the dimension is optional.

Array Elements in Memory
Consider the following declaration – int num[5].

What happens in memory when we make this declaration?

 • 10 bytes get received in memory, 2 bytes each for
5 integers.

 • Since array is not initialized, all five values in it would be
garbage. This happens because the default storage class
is auto. If it is declared as static, all the array elements
would be initialized with 0.

20012 20014 20016 20018 20020

Note: In C, the compiler does not check whether the sub-
script used for array exceeds the size of array.

Data entered with a subscript exceeding the array
size will simply be placed in memory out size the array,
and there will be no error/warning message to warn the
programmer.

Passing array elements to function
Array elements can be passed to a function by value or by
reference.

Example: A program to pass an array by value:

void main()
{
void display(int[]);// Declaration
int marks[] = {10,15,20,25,30};
display (marks);// function call
}
void display(int n[])// function definition
{
int i;
for(i = 0 ; i < 5 ; i++)
printf(“%d “, n[i]);
}

Output:

10 15 20 25 30

Here, we are passing the entire array by name. The formal
parameter to receive is declared as an array, so it receives
entire array elements.

To pass the individual elements of an array, we have to
use index of element with array name.

Example: display (marks[i]); sends only the ith element
as parameter.

Example: A program to demonstrate call by reference:

void main()
{
void display (int *);
int marks[] = {5, 10 15, 20, 25};
display(&marks[0]);
}
void display(int *p)
{
int i;
for(i = 0; i < 5; i++)
printf(“%d “,*(p+i));
}

Output:

5 10 15 20 25

Here, we pass the address of very first element. Hence, the
variable in which this address is collected (p) is declared as
a pointer variable.

Note: Array elements are stored in contiguous memory
location, by passing the address of the first element; entire
array elements can be accessed.

Two-dimensional arrays
In C a two-dimensional array looks like an array of arrays,
i.e., a two-dimensional array is the collection of one-dimen-
sional arrays.

Example: int x[4][2];

0 1

0

1

2

3

By convention, first dimension says the number of rows in
array and second dimension says the number of columns in
each row.

In memory, whether it is one-dimensional or a two-
dimensional array, the array elements are stored in one con-
tinuous chain.

3.32 | Unit 3  •  Programming and Data Structures

The arrangement of array elements of a two-dimensional array in memory is shown below:

X [0][0] x [0][1] x [1][0] x [1][1] x [2][0] X [2][1] X [3][0] X [3][1]

6000 6002 6004 6006 6008 6010 6012 6014

Initialization
We can initialize two-dimensional array as one-dimensional
array:

int a[4] [2] = {0,1,2,3,4,5,6,7}

The nested braces can be used to show the exact nature
of array, i.e.,

int a[4][2] = {{0,1},{2,3}{4,5},{6,7}}

Here, we define each row as a one-dimensional array of
two elements enclosed in braces.

Note: If the array is completely initialized with supplied
values, then we can omit the size of first dimension of an
array (the left most dimension).

 • For accessing elements of multi-dimensional arrays, we
must use multiple subscripts with array name.

 • Generally, we use nested loops to work with multi-
dimensional array.

mulTidimensional arrays
C allows array of two or more dimensions and maximum
numbers of dimensions a C program can have depends on
the compiler, we are using. Generally, an array having one
dimension is called 1D array; array having two dimensions
is called 2D array and so on.

Syntax:
type array-name[d1] [d2] [d3] [d4]…[dn];
where dn is the size of last dimension.

Example:
int table[5][5][20];
float arr[5][6][5][6][5];
In our example array “table” is a 3D. (A 3D array is an array
of array of array)

Declaration and Initialization of 3D array
A 3D array can be assumed as an array of arrays; it is an
array of 2D arrays and as we know 2D array itself is an array
of 1D arrays. A diagram can help you to understand this.

31 32 33

232221

11 12 13

14 15 16

17 18 19

2nd 2D array

1st 2D array

0th 2D array

Figure 1 3D array conceptual view

Example:
void main()
{
int i, j, k;
int arr [3] [3] [3] =
{
{11, 12, 13},
{14, 15, 16},
{17, 18, 19}
},
{21, 22, 23},
{24, 25, 26},
{27, 28, 29}
},
{31, 32, 33},
{34, 35, 36},
{37, 38, 39}
}
};
printf(“3D Array Elements \n”);
for (i = 0; i<3; i++)
{
for(j =0; j <3; j++)
{
for (k= 0; k<3; k++)
{
printf (“% d\t”, arr[i][j][k]);
}
printf (“\n”);
}
printf (“\n);
}
}

Output: 3D Array Elements

11 12 13
14 15 16
17 18 19

21 22 23
24 25 26
27 28 29

31 32 33
34 35 36
37 38 39

Syntax for 3D Array Declaration
data–type array–name [table] [row] [column];
To store values in any 3D array, first point to table number,
row number and lastly to column number.

Chapter 3  •  Arrays, Pointers and Structures | 3.33

PoinTers
Pointer is a variable which contains address of another varia-
ble. C’s clever use of pointers makes it the excellent language.

Consider the declaration:
int i = 3;
The declaration tells the C compiler to:

 • Reserve space in memory to hold in integer value.
 • Associate the name i with this memory location.
 • Store the value 3 at this location.

Memory map is:

3

i

2568

Location Name

Value at location

Location Number
(address)

Computer may choose different location at different times
for same variable. The important point is the address is a
number.
The expression ‘&i’ gives the address of variable ‘i’.
p = &i;
Assigns the address of ‘i’ to variable ‘p’.
The variable ‘p’ is declared as:
int *p;
* tells the compiler that variable ‘p’ is an address variable.
Memory map of i, *p is –

*p i

2568 3

2720 2568

Now, pointer ‘p’ is referring to the variable ‘i’.
The variable ‘i’ can be accessed in two ways:

 • By using the name of variable.
 • By using the pointer variable referring to location ‘i’.

The operator ‘*’ can also be used along with pointer variable
in expressions. The operator ‘*’ acts as indirection operator.

xint x, *p;

p = & x;

*p = 4

p

x ?

? ?

Value of p has

Value of x has
been changed

x

p

p
4

Usage of ‘p’ refers to value of ‘p’, where as ‘*p’ refers to
value at the address stored in ‘p’, i.e., value of ‘i’.

Example: int *p;
 float *x;
 char *ch ;

Here, p, x and ch are pointer variables, i.e., variables capa-
ble of holding address. Since addresses are always whole
numbers, pointers would always contain whole numbers.

The declaration float *x does not mean that x contains
floating value, x will contain address of floating point vari-
able. Similarly, ‘ch’ contains address of char value.

Pointer to Pointer
We know, pointer is a variable that contains address of
another variable. Now this variable address might be stored
in another pointer. Thus, we now have a pointer that con-
tains address of another pointer, known as pointer to pointer.

Example:
void main()
{
int i = 3, *p, **q;
p = &i;
q =&p;
printf(“\n Address of i = %u”, &i);
printf(“\n Address of i = %u”, p);
printf(“\n Address of i = %u”, *q);
printf(“\n Address of p= %u”, &p);
printf(\n Address of p= %u, q);
printf(“\n Address of q = %u”, &q)
printf(‘\n value of i= %d”,i);
printf(‘\n value of i= %d”,*(&i));
printf(‘\n value of i= %d”,*p);
printf(‘\n value of i= %d”,**q);
}

If the memory map is

**q *p i

2010 2000 3

2050 2010 2000

Then the output is:
Address of i = 2000
Address of i = 2000
Address of i = 2000
Address of p = 2010
Address of p = 2010
Address of q = 2050
Value of i = 3
Value of i = 3
Value of i = 3
Value of i = 3

Note: We can extend pointer to a pointer to pointer. In prin-
cipal, there is no limit on how far we can go on extending
this definition.

Pointers for Inter-function Communication
We know that functions can be called by value and called
by reference.

 • If the actual parameter should not change in called func-
tion, pass the parameter-by value.

3.34 | Unit 3  •  Programming and Data Structures

 • If the value of actual parameter should get changed in
called function, then use pass-by reference.

 • If the function has to return more than one value, return
these values indirectly by using call-by-reference.

Example: The following program demonstrates how to
return multiple values.

void main()
{
void areaperi(int, int *, int *);
int r;
float a,p;
printf(“\n Enter radius of a circle”);
scanf(“%d”, &r);
areaperi(r, &a, &p);
printf(“Area = %f”, a);
printf(“\n Perimeter = %f”, p);
}
void areaperi(int x, int *p, int *q)
{
*p = 3.14*x*x;
*q = 2 * 3.14*x;
}

Output:
Enter radius of circle 5
Area = 78:500000
Perimeter = 31.400000

Compatibility: Pointers have a type associated with them.
They are not just pointer types, but rather are pointers to
a specific type. The size of all pointers is same, which is
equal to size of int. Every pointer holds the address of one
memory location in computer, but size of variable that the
pointer references can be different.

Pointer to Void (Generic Pointer)
A pointer to void is a generic type; this can point to any
type. Its limitation is that the pointed data cannot be refer-
enced directly. Since void pointer has no object type, so its
length is undetermined; it cannot be dereference unless it
is cast.

Example: The following example demonstrates generic
pointer.

void main ()
{
int a = 10;
float x = 5.7;
void *p;
p = &a;
printf(“\n value of a = %d”, *((int*)p));
p= &x;
printf (“\n value of x = % f”, *((float *)p));
}

Output:
value of a = 10
value of x = 5.700000

Operations can be Performed on Pointers
 1. Addition of a number to a pointer.

Example: int i = 4, *j, *k;
 j =&i;
 j = j +1;
 k = j +5;

 2. Subtraction of a number from a pointer.

Example: int i = 4, * j, * k;
 j = &i; j = j −1;
 k = j – 3;

 3. Subtraction of one pointer from another. One pointer
variable can be subtracted from another (provided both
variables point to same array elements). The resulting
value indicates the number of bytes (elements) separat-
ing (the corresponding array elements).

Example:
void main ()
{
int a[] = {5,10,15,20,25} ,*i, *j;
i = &a[0];
j = &a[4];
printf(“%d, %d”, j−i,*j−*i);
}

Output: 4, 20
The expression j-i prints 4 but not 8. because j and i pointing
to integers that are 4 integers apart.

 4. Comparison of two pointer variables. Pointer variables
can be compared provided both pointing to the same
data type.

Notes: Do not attempt the following operations on pointers:
 1. Addition of two pointers.
 2. Multiplication of a pointer with a number or another

pointer.
 3. Division of a pointer with a number or another pointer.

Important points about pointer arithmetic
 • A pointer when incremented always points to an immedi-

ately next location.
 • A pointer when decremented always points to an element

precedes the current element.

Notice the difference with:
 (*p)++

Here, the expression would have been evaluated as the value
pointed by p increased by one. The value of p would not be
modified if we write

*p++ = *q++;

Because ++ has a higher precedence than *, both p and q
are increased, but because both increase operators (++) are
used as postfix and not prefix, the value assigned to *p is

Chapter 3  •  Arrays, Pointers and Structures | 3.35

*q before both p and q are increased. And then both are
increased, it would be equivalent to
*p = *q
++p;
++q;

Implementation of arrays in C
Array name is the pointer to the first element in array. The
following discussion explains how pointers are used for
implementing arrays in C.
int n[] = {10,20,30,40,50};

n 10 20 30 40 50
5512 5514 5516 5518 5520

 • We know that mentioning the array name gets the base
address.

int *p = n;

Now ‘p’ points to 0th element of array ‘n’.
 • 0th element can be accessed as *array_ name.
int x = *n;
stores n[0] into ‘x’.

 • we can say that *array _ name and *(array _ name+0) are
same. This indicates the following are same.

num[i]
*(num + i)
*(i+num)

(num is an array; i is an index)

array of PoinTers
The way there can be an array of ints or array of f loats, sim-
ilarly there can be an array of pointers. An array of pointers
is the collection of addresses.

These arrays of pointers may point to isolated elements
or an array element.

Example 1: Array of pointers pointing to isolated elements:

int i = 5, j=10, k =15;
int *ap[3];
ap[0] = &i; ap[1] = &j; ap[2] = &k;

Example 2: Array of pointers pointing to elements of an
array:

int a[] = {0,20,45,50,70};
int *p[5], i ;
for(i = 0; i <5 ; i++)
p[i] = &a[i] ;

Example 3: Array of pointers pointing to elements of dif-
ferent arrays;
int a[] = {5,10,20,25};
int b[] = {0,100,200,300,400};
int c[] = {50,150,250,350,450};
int *p[3];
p[0] = a; p[1] = b; p[2]=c;

Example 4: Array of pointers pointing to 0th element of
each row of a two-dimensional array
int a[3][2] = {{1,2} {3,4}, {5,6}};
int *p[3];
p[0] = a[0]; p[1] =a[1];p[2] = a[2];

PoinTer To funcTion
Function is a set of instructions stored in memory, so the
function also contains the base address. This address can
hold by using a pointer called pointer to function.

Syntax:
return_type (*function_pointer)(parameter –
list);

Example: int (*fp)(float, char, char);

Example:
// pointer to functions
include <iostream>
Using name space std;
int addition(int a, int b)
{
return (a + b);
}
int subtraction(int a, int b)
{
return (a – b) ;
}
int operation (int x, int y, int (*funtocall)
(int, int))
{
int g;
g = (*functocall)(x, y);
return (g);
}
int main()
{
int m, n;
int (*minus)(int, int) = substraction;
m = operation(7, 5, addition);
n = operation(20, m, minus);
cout < < n;
return 0;
}

In the example, minus is a pointer to a function that has two
parameters of type int. It is immediately assigned to point to
the function subtraction, all in a single line.

Example: Program to demonstrate function pointer
int add(int, int);
int sub(int, int);
void main()
{
Int (*fp) (int, int);
fp = add;

3.36 | Unit 3  •  Programming and Data Structures

printf(“\n 4+5=%d”, fp(4,5));
fp = sub;
printf (“\n 4 − 5 = %d”, fp(4,5));
}
int add(int x, int y)
{
return x + y;
}
int sub(int x,int y)
{
return x – y;
}

Output: 4 + 5 = 9
 4 – 5 = –1

Pointer to structure The main usage of pointer to structure
is we can pass structure as parameter to function as call by
reference.

The other usage is to create linked lists and other dynamic
data structures which depend on dynamic allocation.

Consider the declaration
struct employee

{
char name[20];
Int age;
float salary;
};

struct employee ∗ p;
Variable of structures can be accessed using ‘.’ Operator (or)
→ operator that is
(∗p).age = 20 ; (or) p → age = 20;
(∗p).salary = 40, 231.0; (or) p → salary = 40,231.0;

dynamic memory managemenT
We can allocate the memory to objects in two ways—static
and dynamic allocation. Static memory allocation requires
declaration and definition of memory fully specified in the
source program. The number of bytes required cannot be
changed during run time. Dynamic memory allocation uses
predefined functions to allocate and de-allocate memory for
data dynamically during the execution of program.

We can refer to dynamically allocated memory only
through pointers. Conceptual view of memory:

Main() Functions

Program memory

Global Heap Stack

Data Memory

Memory

Memory Allocation Function
 • Static memory allocation uses stack memory for variables.
 • Dynamic memory management allocates memory from

heap.

The following are the four memory management functions
available in alloc.h and stdlib.h.

 1. Malloc (Block memory allocation): Malloc function
allocates block of memory that contained the num-
ber of bytes specified in parenthesis. It returns ‘void’
pointer to the first byte of allocated memory. The allo-
cated memory is not initialized. If the memory alloca-
tion is not successful then it return NULL pointer.
Declaration
void *malloc (size_t size);
The type size_t is defined as unsigned int in several
header files including stdio.h.

Syntax: pointer = (type*) malloc(size);

 2. Calloc (contiguous memory allocation): Calloc is
primarily used to allocate memory for arrays. It initial-
izes the allocated memory with null characters.

Declaration: void *calloc (size_t ele_count, size_t
ele_size);

Syntax: ptr = (type*)calloc(ele-count,ele-size);
 3. Realloc (reallocation of memory): The realloc func-

tion is highly inefficient. When given a pointer to a
previously allocated block of memory, realloc changes
the size of block by deleting or extending the memory
at the end of block. If the memory cannot be extended,
then realloc allocates completely new block, copies the
contents from existing memory location to new loca-
tion, and deletes the old location.

Declaration: void *realloc (void *ptr, size_t new_
size);

Syntax: ptr = (type*)realloc(ptr, new_ size);
 4. Free (Releasing memory): When the memory allo-

cated by malloc, calloc or realloc is no longer needed,
they can be freed using the function free().

 Declaration: void free(void *ptr);

 Syntax: free(ptr);

Free function de-allocates complete memory referenced by
the pointer. Part of the memory block cannot be de-allocated.

sTrucTures
Arrays are used to store large set of data and manipulate
them but the disadvantage is that all the elements stored in
an array are to be of the same data type. When we require
using a collection of different data items of different data
types, we can use a structure.

 • Structure is a method of packing data of different types.
 • A structure is a convenient method of handling a group of

related data items of different data types.

Chapter 3  •  Arrays, Pointers and Structures | 3.37

Syntax for declaration
struct sturct_name
{
Data_type_1 var1;
Data_type_2 var2;
:
Data_type_n varn;
};

Example:
struct lib – books
{
char title [20];
char author[15];
int pages;
float price;
};

The keyword struct declares a structure to hold the details
of four fields namely title, author, pages and price, these are
members of the structures.

We can declare structure variables using the tag name
anywhere in the program.

Example: struct lib – books book1, book2, book3;
 • Declares book1, book2, book3 as variables of type struct

lib
–
 books, each declaration has four elements of the

structure lib
–
 books.

Memory map of book1:

Book1 Title 20 bytes
Author 15 bytes
Pages 2 bytes
Price 4 bytes

 • Memory will not be allocated to the structure until it
is instantiated. i.e., till the declaration of a variable to
structure.

 • To access the members of a structure variable, C provides
the member of (.) operator.

Example: To access author of book 1 – book1. author

Syntax: structure_var.member_name;

 • The structures can also be initialized as any other variable
of C.

Example: struct lib-books book4={“Let us C”,
“yashwanth”, 450, 200.95};

Note: The values must provide in the same order as they
appear in structure declaration.

 • One structure variable can be assigned to another struc-
ture variable.

 • Structure variables cannot be compared.

Example:
include <stdio.h>
void main()
{
Struct s1{
int id

–
no;

char name[20];

char address[20];
char combination[3];
 int age;
 } newstudent;
printf (“ Enter student Information”);
printf (“Enter student id – no”);
scanf (“%d”, &newstudent.id_no):
printf (“ Enter the name of the student”);
scanf (“%s”, & newstudent.name);
printf (“ Enter the address of the student”);
scanf (“%s”, &newstudent.address);
printf(“Enter the combination of the
student”)’;
scanf(“%s”, &newstudent.combination”);
printf (“ Enter the age of student);
scanf (“%d “, &newstudent.age”);
printf (“ student information”);
printf (“ student id–no = %d”, newstudent.
id – no);
printf(“student name = %s”, newstudent.
name);
printf(“student address = %s“, newstudent.
address);
printf (“students combination = %s”, newstu-
dent. combination);
printf(“Age of student = %d”, newstudent.
age);
}

Nesting of Structures
The structures can be nested in two ways:

 • Placing the structure variable as a member in another
structure declaration.

 • Declaration of the entire structure in another structure.

Example:
struct date
{
int day;
int month;
int year;
};
struct student
{
int id

–
no;

char name[20];
char address [20];
int age;
structure date doa;
} oldstudent, newstudent;

The structure ‘student’ contains another structure date as
one of its members.

To access the day of date of admission (doa) of old stu-
dent – oldstudent.doa.day.

Example:
struct outer
{

3.38 | Unit 3  •  Programming and Data Structures

int o1;
float o2;
struct inner
{
int i1;
float i2;
};
} out1, out2;

The innermost members in a nested structure can be
accessed by chaining all the concerned structure variables,
from outermost to innermost; accessing i1 for out1-out1.
inner.i1;

Array of Structures
It is possible to define an array of structures. For example,
if we are maintaining information of all the students in the
college and if 100 students are studying in the college, we
need to use an array than single variables.

Example:
structure information
{
int id

 –
no;

char name[20];
char address[20];
char combination[3];
int age;
}
student[100];

Example:
include <stdio.h>
{
struct info
{
int id _ no;
char name[20];
char address[20];
char combination[3];
int age;
}
struct info std[100];
int, i ,n;
printf (“ Enter the number of students”);
scanf (“%d”, &n);
scanf(“Enter id

–
no, name, address, combina-

tion and age”);
for (i = 0; i<n; i ++)
scanf(“ %d %s %s %s %d”, &std[i].id_no,
std[i].name, std[i].address,
std[i]. combination,&std [i].age);
printf(“student information”);
for (i = 0 ; i < n; i ++)
printf(“%d %s %s % s % d”, std[i].id_no,
std[i].name, std[i].address, std[i]. combi-
nation, std[i]. age);

Structures and Functions
 • An entire structure can be passed as a parameter like any

other variable.
 • A function can also return a structure variable.

Example:
include <stdio.h>
struct employee
{
int emp

–
id;

char name[25];
char department[10];
float salary;
};
void main()
{
static struct employee emp1 = {
12, “shyam”, “computer”, 7500.00};
/* sending entire employee structure */
display(emp1);
}
/* function to pass entire structure vari-
able */
display(empf)
struct employee empf
{
printf (“ %d %s % s %f”, empf.empid, empf.
name, empf.department, empf.salary);
}

union
Union, like structure contains members whose individual
data types may differ from one another. The members that
compose union all share the same storage area within the
computer’s memory whereas each member within a struc-
ture is assigned its own unique storage area. Thus, unions
are used to conserve memory.

Declaration
union item
{
int m;
float p;
char c;
}Code;

This declares a variable code of type union item.
The union contains three members each with a differ-

ent data type. However, we can use only one of them at a
time. The compiler allocates a piece of storage that is large
enough to access a union member; we can use the same syn-
tax that we use to access structure members, i.e.,
 Code.m
 Code.p
 Code.c
are all valid member variables. During accessing, we should
make sure that we are accessing the member whose value is
currently stored.

Chapter 3  •  Arrays, Pointers and Structures | 3.39

Example:
union marks
{
float perc;
char grade;
}
main()
{
union marks student1;
student1.perc = 98.5;
printf(“marks are %f address is %16ℓu”, stu-
dent1.perc, &student1. perc);
student1. grade = ‘c’;
printf(“grade is %c address is %16ℓu”, stu-
dent1. grade, &student1. grade);
}

Example:
include <stdio.h>
void main ()
{
Union u

–
example

{
float decval;
int p

-
num;

double my
–
value;

}U1;
U1.my

–
value = 125.5;

U1.pnum = 10;

U1.decval = 1000.5f;
printf(“decval = %f pnum = %d my

-
value = % lf

“, U1. decval, U1.pnum, U1.my
–
value);

printf(“ U1 size = %d decval size =%d,
pnum size = %d my-value size = % d”,
sizeof (U1), sizeof (U1.decval), sizeof
(U1.pnum), sizeof (U1.my

-
value));

 }

Bit Fields
When a program variable ‘x’ is declared as int, then ‘x’ takes
the values from (-215) to (215 – 1), if x in the program takes
only two values, 1 and 0, which requires only one bit, then
the remaining 15 bits are waste.

In order to not to have this wastage, we can use bit fields
with the several variables with the small enough maximal
values, which can pack into a single memory location

Example:
struct student
{
Int gender : 1 ; // gender takes only 0,1
values
Int marriage : 2 ; // marriage takes 4(0, 1,
2, 3) values
Int marks : 7 ; // marks takes values from
0 – 127
}

exercises

Practice Problems 1
Directions for questions 1 to 15: Select the correct alterna-
tive from the given choices.

 1. Output of the following C program is

 intF(int x, int *py, int **pz)
 {
 int y, z;
 ** pz+= 1;
 z = *pz;
 *py+= 2;
 y = *py;
 x+ = 3;
 return x+y+z;
 }
 void main()
 {
 int c, *b, **a ;
 c = 4;
 b = &c;
 a = &b;
 printf(“%d”, F(c, b, a));
 }

 (A) 30 (B) 22
 (C) 20 (D) Error
 2. main()
 {
 char *ptr;
 ptr = “Hello World”;
 printf(“%c\n”,*&*ptr);
 }

 Output of the above program is
 (A) Garbage value
 (B) Error
 (C) H
 (D) Hello world
 3. #include <stdio.h>
 main()
 {
 register a =10;
 char b[] = “Hi”;
 printf(“%s %d ”, b, a);
 }

 Output is
 (A) Hi 10 (B) Error
 (C) Hi (D) Hi garbage value

3.40 | Unit 3  •  Programming and Data Structures

 4. main ()
 {
 int fun() ;
 (*fun)() ;
 }
 int fun()
 { printf(“Hello”) ;
 }

 (A) Hello (B) Error
 (C) No output (D) H

 5. Let B be a two-dimensional array declared as
 B : array[1...10] [1...15] of integer;

 Assuming that each integer takes one memory location
the array is stored in row major order and the first ele-
ment of the array is stored at location 100, what is the
address of the element B[i] [j]?

 (A) 15i + 10j + 84 (B) 15i + j − 16
 (C) 15i + j (D) 15i + j + 84

 6. Consider the following C program which is supposed
to compute the transpose of a given 4 × 4 matrix M.
Note that, there is a Y in the program which indicates
some missing statements. Choose the correct option to
replace Y in the program.

 # include <stdio.h>
 int M[4][4] = { 8, 10, 9, 16, 12, 13, 11,

15, 14, 7, 6, 3, 4, 2, 1, 5 };
 main()
 {
 int i, j, temp;
 for (i = 0; i<4; ++i)
 {
 Y
 }
 for (i=0; i<4; ++i)
 for (j=0; j<4; ++j)
 printf(“%d”, M[i] [j]);
 }
 (A) for (j=0; j<4; ++j)
 {
 M[j] [i] = temp;
 temp = M[j][i];
 M[j][i] = M[i][j];
 }
 (B) for (j=0; j<4; ++j)
 {
 temp = M[j][i];
 M[i][j] = M[j][i];
 M[j][i] = temp;
 }
 (C) for (j=i; j<4; ++j)
 {
 temp = M[i][j];
 M[i][j] = M[j][i];
 M[j][i] = temp;
 }

 (D) for (j=i; j<4; ++j)
 {
 M[i][j] = temp;
 temp = M[j][i];
 M[j][i] = M[i][j] ;
 }

 7. Consider the C program shown below:

 # include <stdio.h>
 # define print(a) printf(“%d”, a)
 int a;
 void z(int n)
 {
 n += a;
 print (n);
 }
 void x(int *p)
 {
 int a = *p+2;
 z(a) ;
 *p = a;
 print(a);
 }
 main(void)
 {
 a = 6;
 x(&a);
 print(a);
 }

 The output of this program is
 (A) 14 8 6 (B) 16 6 6
 (C) 8 6 6 (D) 22 11 12

 8. Consider the program below:

 # include <stdio.h>
 int fun(int n, int *p)
 {
 int x,y;
 if (n<=1)
 {
 *p = 1;
 return 1;
 }
 x = fun(n-1, p);
 y = x +p;
 *p = x;
 return y;
 }
 int main()
 {
 int a =15;
 printf(“%d\n”, fun(5, &a));
 return 0;
 }
 The output value is
 (A) 14 (B) 15
 (C) 8 (D) 95

Chapter 3  •  Arrays, Pointers and Structures | 3.41

 9. Consider the following C program segment

 char p[20] ;
 int i;
 char *s = “string” ;
 int l = strlen(s);
 for (i=0; i<l; i++)
 p[i] = s[l – i] ;
 printf(“%s”, p) ;

 The output of the program is
 (A) string
 (B) gnirt
 (C) gnirts
 (D) No output is printed

 10. # include <stdio.h>
 main()
 {
 struct AA
 {
 int A = 5;
 char name[] = “ANU”;
 };
 struct AA *p = malloc(sizeof(struct

AA));
 printf(“%d”,p–>A);
 printf(“%s”,p–>name);
 }

 Output of the program is
 (A) 5 ANU
 (B) Runtime error
 (C) Compiler error
 (D) Linker error

 11. The declaration

 union u_tag {

 int ival;

 float fval;

 char sval;
 } u;

 denotes u is a variable of type u_tag and
 (A) u can have a value of int, float and char
 (B) u can represent either integer value, float value or

character value at a time
 (C) u can have a value of float but not integer
 (D) None of the above

 12. If the following program is run from command line as
myprog 1 2 3, what would be the output?

 main (int argc, char *argv[])
 {
 int i;
 i = argv [1] + argv [2] − argv [3];
 printf ("%d", i);
 }

 (A) 123 (B) 6
 (C) 0 (D) Error

 13. The following C program is run from the command line
as

 myprog one two;
 what will be the output?

 main (int argc, char *argv [])
 {
 printf (“%c”,**++argv);
 }
 (A) m (B) o
 (C) myprog (D) one

 14. The following program

 change(int *);
 main() {
 int a = 4;
 change(a);
 printf (“%d”, a);
 }
 change(a)
 int a;
 {
 printf(“%d”, a);
 }

 Outputs
 (A) 44 (B) 55
 (C) 34 (D) 22

 15. What is the output of the following program:
 main()

 {
 const int x = 10;
 int *ptrx;
 ptrx = &x;
 *ptrx = 20;
 printf (“%d”, x);
 }

 (A) 5 (B) 10
 (C) Error (D) 20

3.42 | Unit 3  •  Programming and Data Structures

Practice Problems 2
Directions for questions 1 to 11: Select the correct alterna-
tive from the given choices.

 1. The following program segment
 int *i;
 *i = 10;
 (A) Results in run time error
 (B) Is a dangling reference
 (C) Results in compilation error
 (D) Assigns 10 to i

 2. A m × n matrix is stored in column major form. The
expression which accesses the (ij)th entry of the same
matrix is

 (A) n × (j − 1) + i
 (B) m × (j − 1) + i
 (C) n × (m − 1) + ij
 (D) m × (n − 1) + j

 3. int ∗ S[a] is 1D array of integers, which of the follow-
ing refers to the third element in the array?

 (A) ∗(S + 2) (B) ∗(S + 3)
 (C) S + 2 (D) S + 3

 4. If an array is declared as char a[10][12]; what is referred
to by a[5]?

 (A) Pointer to 3rd Row
 (B) Pointer to 4th Row
 (C) Pointer to 5th Row
 (D) Pointer to 6th Row

 5. The following code is run from the command line as
myprog 1 2 3. What would be the output?

 main(int argc, char *argv[])
 {
 int i, j = 0;
 for (i = 1; i < argc; i++)
 j = j + atoi (argv [i]);
 printf (“%d”, j);
 }

 (A) 123 (B) 6
 (C) Error (D) “123”

 6. What will be the following C program output?
 main (int argc, char *argv[], char *env

[]) {
 int i;
 for(i = 1; i < argc; i++)
 printf (“%s”, env[i]);
 }

 (A) List of all arguments
 (B) List of all path parameters
 (C) Error
 (D) List of environment variables

 7. The declaration

 enum colors {
 red,

 blue,
 yellow = 1,
 green
 };

 assigns the value 1 to
 (A) Red and Yellow
 (B) Blue
 (C) Red and blue
 (D) Blue and yellow

 8. What would be the output of the following program?

 sum = 0;
 for (i = −10; i < 0; i++)
 sum = sum + abs(i);
 printf ("%d", sum);

 (A) 100 (B) −505
 (C) 55 (D) −55

 9. An integer occupies 2 bytes of memory, float occupies
4 bytes and character occupies 1 byte. A structure is
defined as:

 struct tab {
 char a;
 int b;
 float c;
 } table [10];

 Then the total memory requirement (in bytes) is
 (A) 14 (B) 70
 (C) 40 (D) 100

 10. What are the values of u1 and u2?
 int u1, u2;
 int x = 2;
 int *ptr;
 u1 = 2*(x + 10);
 ptr = &x;
 u2 = 2*(*ptr + 10);
 (A) u1 = 8, u2 = 16
 (B) u1 = 23, u2 = 24
 (C) u1 = 24, u2 = 24
 (D) None of the above

 11. What is the output?
 func(a, b)
 int a, b;
 {
 return (a = (a = = b));
 }
 main ()
 {
 int process(), func();
 printf(“The value of process is %d”, pro-

cess (func,3,6));
 }
 process (pf, val1, val2)
 int (*pf) ();

Chapter 3  •  Arrays, Pointers and Structures | 3.43

 int val1, val2;
 {
 return ((*pf) (val1, val2));
 }

 (A) The value of process is 0
 (B) The value of process is 3
 (C) The value of process is 6
 (D) Logical error

 1. Consider the following program in C language:

 # include < stdio. h>
 main ()
 {
 int i;
 int *pi = &i;
 scanf (“%d”, pi);
 printf(“%d\n”, i + 5);
 }

 Which one of the following statement is TRUE?
 [2014]
 (A) Compilation fails
 (B) Execution results in a run-time error
 (C) On execution, the value printed is 5 more than

the address of variable i.
 (D) On execution, the value printed is 5 more than

the integer value entered.

 2. Consider the following C function in which size is the
number of elements in the array E:

 int MyX (int *E, unsigned int size)
 {
 int Y = 0;
 int Z;
 int i, j, k;
 for (i = 0; i < size; i++)
 Y = Y + E[i];
 for (i = 0; i < size; i++)
 for (j = 1; j < size; j++)
 {
 Z = 0;
 for (k = i; k < = j; k++)
 Z = Z + E[k];
 if (Z > Y)
 Y = Z;
 }
 return Y;
 }

 The value returned by the function My X is the [2014]
 (A) maximum possible sum of elements in any sub -

array of array E.
 (B) maximum element in any sub-array of array E.
 (C) sum of the maximum elements in all possible

sub-arrays of array E.
 (D) the sum of all the elements in the array E.

 3. The output of the following C program is ______
 [2015]

 void f1 (int a, int b) {
 int c;
 c=a; a=b; b=c;
 }
 void f 2(int *a, int *b) {
 int c;
 c=*a; *a=*b; *b=c;
 }
 int main () {
 int a=4, b=5, c=6;
 f1 (a, b);
 f2 (&b, &c);
 printf(“%d”, c-a-b);
 }

 4. What is the output of the following C code? Assume
that the address of x is 2000 (in decimal) and an inte-
ger requires four bytes of memory. [2015]

 int main () {

 unsigned int x[4] [3] =

 { {1, 2, 3}, {4, 5, 6}, {7, 8, 9},
{10, 11, 12}};

 printf (“%u, %u, %u”, x + 3, *(x +
3), *(x + 2) + 3);

 }

 (A) 2036, 2036, 2036 (B) 2012, 4, 2204
 (C) 2036, 10, 10 (D) 2012, 4, 6

 5. Consider the following function written in the C pro-
gramming language. [2015]

 void foo(char *a {
 if (*a && *a != ‘ ‘){
 foo(a + 1);
 putchar(*a);
 }
 }

 The output of the above function on input “ABCD
EFGH” is

 (A) ABCD EFGH (B) ABCD

 (C) HGFE DCBA (D) DCBA

 6. Consider the following C program segment. [2015]
 #include <stdio.h>
 int main()
 {
 char s1[7] = “1234”, *p;

Previous years’ QuesTions

3.44 | Unit 3  •  Programming and Data Structures

 p = s1 + 2;
 *p = ‘0’;
 printf(“%s”, s1);
 }

 What will be printed by the program?
 (A) 12 (B) 120400
 (C) 1204 (D) 1034

 7. Consider the following C program [2015]

 #include<stdio.h>
 int main ()
 {
 static int a[] = {10, 20, 30, 40,

50};
 static int *p[] = {a, a+3, a+4,

a+1, a+2};
 int **ptr = p;
 ptr++;
 printf(“%d%d”, ptr-p, **ptr);
 }

 8. Consider the following C program. [2016]

 void f (int, short);

 void main()

 {

 int i = 100;

 short s = 12;

 short *p = &s;

 _____; // call to f()

 }

 Which one of the following expressions, when placed
in the blank above, will NOT result in a type checking
error?

 (A) f (s,*s) (B) i = f (i,s)
 (C) f (i,*s) (D) f (i,*p)

 9. Consider the following C program. [2016]

 # include<stdio.h>

 void mystery (int *ptra, int *ptrb) {

 int *temp;

 temp = ptrb;

 ptrb = ptra;

 ptra = temp;

 }

 int main () {

 int a = 2016, b = 0, c = 4, d = 42;

 mystery (&a, &b);

 if (a < c)

 mystery(&c, &a);

 mystery (&a, &d);

 printf(“%d\n”, a)

 }

 The output of the program is _____.

 10. The following function computes the maximum value
contained in an integer array p [] of size n (n > = 1).

 [2016]

 int max (int *p, int n) {

 int a = 0, b = n – 1;

 while (_____) {

 if (p [a] < = p [b]) {a = a+1;}

 else { b = b – 1;}

 }

 return p[a];

 }

 The missing loop condition is
 (A) a ! = n
 (B) b ! = 0
 (C) b > (a +1)
 (D) b ! = a

 11. The value printed by the following program is ___.
 [2016]

 void f (int* p, int m) {

 m = m +5;

 *p = *p + m;

 return;

 }

 void main () {

 int i = 5, j = 10;

 f(&i, j);

 print f (“%d”, i +j);

 }

 12. Consider the following program: [2016]

 int f (int *p, int n)

 { if (n < = 1) return 0;

 else return max (f (p +1, n – 1), p [0] – p [1]);

 }

 int main ()

 {

 int a[] = {3,5,2,6,4};

 printf (“%d”, f(a,5));

 }

 Note: max (x,y) returns the maximum of x and y.

 The value printed by this program is ______

Chapter 3  •  Arrays, Pointers and Structures | 3.45

 13. Consider the following C code:
include <stdio.h>
int *assignval (int *x, int val) {

*x = val;
return x;

}
void main () {

int *x = malloc (sizeof (int));
if (NULL == x) return;
x = assignval (x, 0);
if (x) {

x = (int *) malloc
(sizeof (int));
if (NULL == x) return;
x = assignval (x, 10);

}
printf(“%d\n”, *x);
free (x);

}

 The code suffers from which one of the following
problems: [2017]

 (A) compiler error as the return of malloc is not type-
cast appropriately

 (B) compiler error because the comparison should be
made as x == NULL and not as shown

 (C) compiles successfully but execution may result
in dangling pointer

 (D) compiles successfully but execution may result
in memory leak

 14. Consider the following C program.

include <<stdio.h>
include <<string.h>
 void printlength (char *s, char *t)
{

unsigned int c = 0;
 int len = ((strlen(s) − strlen
(t)) > c) ? strlen (s) : strlen
(t);
printf (“%d\n”, len);

}
void main () {

char *x = “abc”;
char *y = “defgh”;
printlength (x, y);

}

 Recall that strlen is defined in string.h as returning
a value of type size_t, which is an unsigned int. the
output of the program is _________. [2017]

 15. Given the following binary number in 32-bit (single
precision) IEEE-754 format:

00111110011011010000000000000000

 The decimal value closest to this floating-point num-
ber is [2017]

 (A) 1.45 × 101 (B) 1.45 × 10-1

 (C) 2.27 × 10-1 (D) 2.27 × 101

 16. Match the following:

(P) static char var; (i) Sequence of memory loca-
tions to store addresses

(Q) m = malloc (10);
 m = NULL;

(ii) A variable located in data
section of memory

(R) char *ptr [10]; (iii) Request to allocate a CPU
register to store data

(S) register int var1; (iv) A lost memory which cannot
be freed

 [2017]
 (A) P → (ii), Q → (iv), R → (i), S → (iii)
 (B) P → (ii), Q → (i), R → (iv), S → (iii)
 (C) P → (ii), Q → (iv), R → (iii), S → (i)
 (D) P → (iii), Q → (iv), R → (i), S → (ii)

 17. Consider the following function implemented in C:
void printxy (int x, int y) {

int ptr;
x = 0;
ptr = &x;
y = ptr;
ptr = 1;
printf (“%d, %d” x, y);

}

 The output of invoking printxy (1, 1) is [2017]
 (A) 0, 0 (B) 0, 1
 (C) 1, 0 (D) 1, 1

 18. Consider the following snippet of a C program.
Assume that swap (&x, &y) exchanges the contents
of x and y.
int main () {

int array[] = {3, 5, 1, 4, 6, 2};
int done = 0;
int i;

while (done == 0) {
done = 1;
for (i=0; i <=4; i++) {

if (array[i] < array[i+1]) {
swap(&array[i], &array[i + 1]) ;
done = 0;

}
}
for (i=5; i >=l; i--) {

if (array[i] > array[i−l]) {
swap(&array[i],

& array[i−1]);
done = 0;

}
}

}

3.46 | Unit 3  •  Programming and Data Structures

answer Keys

exercises

Practice Problems 1
 1. B 2. C 3. A 4. A 5. D 6. C 7. A 8. C 9. D 10. C
 11. B 12. D 13. B 14. A 15. D

Practice Problems 2
 1. B 2. B 3. A 4. D 5. B 6. D 7. D 8. C 9. B 10. C
 11. A

Previous Years’ Questions
 1. D 2. A 3. -5 4. A 5. D 6. C 7. 140 8. D 9. 2016 10. D
 11. 30 12. 3 13. D 14. 3 15. C 16. A 17. C 18. 3 19. 2 20. A
 21. A

printf{“%d”, array[3]);
}

 The output of the program is ________. [2017]

 19. Consider the following C Program.
#include<stdio.h>

#include<string,h>

int main () {

char* c = “GATECSIT2017”;

char* p = c;

printf{“%d”,

(int) strlen(c+2[p]-6[p]-1)) ;

return 0;

}

 The output of the program is __________. [2017]

 20. Consider the following C program.

 #include<stdio.h>

 struct Ournode {

 char x, y, z;

 } ;

 Int main () {

 struct Ournode p = {‘1’, ‘0’, ‘a’+2};

 struct Ournode *q = &p;

 printf (“%c, %c”, *((char*)q+1),

 * ((char*)q+2));

 return 0;

 }

 The output of this program is: [2018]

(A) 0, c
(B) 0, a+2
(C) ‘0’, ‘a+2’
(D) ‘0’, ‘c’

 21. Consider the following C program:
 #include<stdio.h>
 void fun1 (char *s1, char * s2) {
 char *tmp;
 tmp = s1;
 s1 = s2
 s2 = tmp;
 }
 void fun2 (char **s1, char **s2) {
 char *tmp;
 tmp = *s1;
 *s1 = *s2;
 *s2 = tmp;
 }
 int main () {
 char *str1 = “Hi”, *str2 = “Bye”;
 fun1 (str1, str2);
 printf (“%s %s “, str1, str2);
 fun2 (&str1, &str2);
 printf (“%s %s”, str1, str2);
 return 0;
 }

 The output of the program above is: [2018]
 (A) Hi Bye Bye Hi (B) Hi Bye Hi Bye
 (C) Bye Hi Hi Bye (D) Bye Hi Bye Hi

	Unit 3: Programming and Data Structures
	PART A: Programming and Data Structures
	Chapter 3: Arrays, Pointers and Structures
	Arrays
	Two-dimensional Arrays
	Multidimensional Arrays
	Pointers
	Array of Pointers
	Pointer to Function
	Dynamic Memory Management
	Structures
	Union
	Exercises
	Previous Years’ Questions
	Answer Keys

