- 1. Which of the following expression is a monomial
 - a. 4x³
 - b. $x^6 + 2x^2 + 2$
 - c. None of these
 - d. 3 + x
- 2. The value of $(a^2 b^2)^3 + (b^2 c^2)^3 + (c^2 a^2)^3$ is
 - a. 3(a+b)(b+c)(c+a)(a-b)(b-c)(c-a)
 - b. 3(a-b)(b-c)(c-a)
 - c. 3(a+b)(b+c)(c+a)
 - d. none of these
- 3. The value of $\left(\sqrt{x}+\sqrt{y}
 ight)\left(\sqrt{x}-\sqrt{y}
 ight)(x+y)\left(x^2+y^2
 ight)$ is
 - a. $(x^4 + y^4)$
 - b. $(x^4 y^4)$
 - c. $(x+y)^4$
 - d. $(x y)^4$
- 4. A polynomial containing one nonzero term is called a _____.
 - a. trinomial
 - b. binomial
 - c. none of these

- d. monomial
- 5. The value of $(x-a)^3 + (x-b)^3 + (x-c)^3$ 3 (x-a) (x-b) (x-c) when a + b + c= 3x, is
 - a. 1
 - b. 2
 - c. 3
 - d. 0
- 6. Fill in the blanks:

A polynomial containing three non-zero terms is called a _____.

7. Fill in the blanks:

The coefficient of x in the expansion of $(x + 3)^3$ is _____.

- 8. Write the degree of the following polynomial: 5t $\sqrt{7}$
- 9. Whether the following are zero of the polynomial, indicated against them.p(x) = lx + m, x = $-\frac{m}{L}$
- 10. Expand: $\left(\frac{1}{x} + \frac{y}{3}\right)^3$
- 11. Find the following product: $(2x y + 3z) (4x^2 + y^2 + 9z^2 + 2xy + 3yz 6xz)$
- 12. Determine the remainder when the polynomial $p(x) = x^4 3x^2 + 2x + 1$ is divided by x 1.

13. Simplify:
$$\frac{\left(a^2-b^2\right)^3+\left(b^2-c^2\right)^3+\left(c^2-a^2\right)^3}{(a-b)^3+(b-c)^3+(c-a)^3}$$

- 14. Factorize: $4x^2 + 9y^2 + 16z^2 + 12xy 24yz 16xz$
- 15. If x 3 and x $\frac{1}{3}$ are both factors of px^2 + 5x + r, then show that p = r

CBSE Test Paper 05 CH-2 Polynomials

Solution

1. (a) $4x^3$

Explanation: $4x^3$ because monomial means only one term in an expression.

2. (a) 3(a+b)(b+c)(c+a)(a-b)(b-c)(c-a)

Explanation:

$$(a^2 - b^2)^3 + (b^2 - c^2)^3 + (c^2 - a^2)^3$$

Here,

$$a^2 - b^2 + b^2 - c^2 + c^2 - a^2 = 0$$

Therefore,

$$(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3$$
 = $3\left(a^2-b^2
ight)\left(b^2-c^2
ight)\left(c^2-a^2
ight)$ [Since $x^3+y^3+z^3=3xyz$ if $x+y+z=0$]

$$(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3=\ 3(a+b)(b+c)(c+a)(a-b)(b-c)(c-a)$$

3. (b) $(x^4 - y^4)$ Explanation:

$$\begin{split} & \left(\sqrt{x} + \sqrt{y}\right) \left(\sqrt{x} - \sqrt{y}\right) (x + y) \left(x^2 + y^2\right) \\ &= \left[\left(\sqrt{x}\right)^2 - \left(\sqrt{y}\right)^2\right] (x + y) \left(x^2 + y^2\right) \\ &= \left(x - y\right) (x + y) \left(x^2 + y^2\right) \\ &= \left[(x)^2 - (y)^2\right] \left(x^2 + y^2\right) \\ &= \left(x^2 - y^2\right) \left(x^2 + y^2\right) \\ &= \left(x^2\right)^2 - \left(y^2\right)^2 \end{split}$$

=
$$x^4 - y^4$$

4. (d) monomial

Explanation: A polynomial containing one nonzero term is called a monomial.

Example: 3x, $5x^2$, y^3

5. (d) 0

Explanation:

$$(x-a)^{3} + (x-b)^{3} + (x-c)^{3} - 3(x-a)(x-b)(x-c)$$

$$= [x-a+x-b+x-c]$$

$$[x-a^{2}) + (x-b^{2}) + (x-c^{2}) - (x-a)(x-b) - (x-b)(x-c) - (x-c)(x-b)(x-c)]$$

$$= [3x-(a+b+c]]$$

$$[(x-a)^{2} + (x-b)^{2} + (x-c)^{2} - (x-a)(x-b) - (x-b)(x-c) - (x-c)(x-b)(x-c)]$$

$$= [3x-3x]$$

$$[(x-a)^{2} + (x-b)^{2} + (x-c)^{2} - (x-a)(x-b) - (x-b)(x-c) - (x-c)(x-b)(x-c)]$$

$$= [0] [(x-a)^{2} + (x-b)^{2} + (x-c)^{2} - (x-a)(x-b) - (x-b)(x-c)]$$

- 6. trinomial
- 7. 27
- 8. Term with the highest power of t = 5t
 Exponent of t in this term = 1
 ∴ Degree of this polynomial = 1
- 9. $p(-\frac{m}{l}) = l(-\frac{m}{l}) + m = -m + m = 0$ $\therefore -\frac{m}{l}$ is a zero of p(x).
- 10. $(x+y)^3 = x^3 + y^3 + 3x^2y + 3xy^2$

$$\begin{bmatrix} \frac{1}{x} + \frac{y}{3} \end{bmatrix}^3 = \left(\frac{1}{x}\right)^3 + 3\left(\frac{1}{x}\right)^2 \frac{y}{3} + 3\frac{1}{x}\left(\frac{y}{3}\right)^2 + \left(\frac{y}{3}\right)^3$$
$$= \left(\frac{1}{x}\right)^3 + 3 \cdot \left(\frac{1^2}{x^2}\right) \frac{y}{3} + 3 \cdot \frac{1}{x} \frac{y^2}{3^2} + \frac{y^3}{3^3}$$
$$= \frac{1}{x^3} + \frac{y}{x^2} + \frac{y^2}{3x} + \frac{y^3}{27}$$

11.
$$(2x - y + 3z) (4x^2 + y^2 + 9z^2 + 2xy + 3yz - 6xz)$$

= $(2x + (-y) + 3z) \{(2x)^2 + (-y)^2 + (3z)^2 - 2x \times (-y) - (-y) \times (3z) - 2x \times 3z)\}$
= $(a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)$, where $a = 2x$, $b = -y$, $c = 3z$
= $a^3 + b^3 + c^3 - 3abc$
= $(2x)^3 + (-y)^3 + (3z)^3 - 3 \times 2x \times (-y) \times 3z$
= $8x^3 - y^3 + 27z^3 + 18xyz$

- 12. By remainder theorem, the required remainder is equal to p(1). Now, p(x) = $x^4 - 3x^2 + 2x + 1$ $\Rightarrow p(1) = (1)^4 - 3 \times 1^2 + 2 \times 1 + 1 = 1 - 3 + 2 + 1 = 1$ Hence, required remainder = p(1) = 1
- 13. We have,

$$(a^{2} - b^{2}) + (b^{2} - c^{2}) + (c^{2} - a^{2}) = 0$$

$$\therefore (a^{2} - b^{2})^{3} + (b^{2} - c^{2})^{3} + (c^{2} - a^{2})^{3} = 3(a^{2} - b^{2})(b^{2} - c^{2})(c^{2} - a^{2})$$

$$\Rightarrow (a^{2} - b^{2})^{3} + (b^{2} - c^{2})^{3} + (c^{2} - a^{2})^{3} = 3(a - b)(a + b)(b - c)(b + c)(c - a)(c + a)$$

Similarly, we have,

$$(a - b) + (b - c) + (c - a) = 0$$

$$\Rightarrow (a - b)^{3} + (b - c)^{3} + (c - a)^{3} = 3(a - b)(b - c)(c - a)$$

$$\therefore \frac{(a^{2} - b^{2})^{3} + (b^{2} - c^{2})^{3} + (c^{2} - a^{2})^{3}}{(a - b)^{3} + (b - c)^{3} + (c - a)^{3}}$$

$$= \frac{3(a - b)(a + b)(b - c)(b - c)(c - a)}{3(a - b)(b - c)(c - a)} = (a + b)(b + c)(c + a)$$

14.
$$4x^2 + 9y^2 + 16z^2 + 12xy - 24yz - 16xz$$

The given expression can be re written as

$$(2x)^2 + (3y)^2 + (-4z)^2 + 2 imes 2x imes 3y + 2 imes 3y imes (-4z) + 2 imes (-4z) imes 2x$$

As we know,
$$(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

 $(2x)^2 + (3y)^2 + (-4z)^2 + 2 \times 2x \times 3y + 2 \times 3y \times (-4z) + 2 \times (-4z) \times 2x,$
 $\Rightarrow (2x + 3y - 4z)^2 = (2x + 3y - 4z)(2x + 3y - 4z)$
 $\Rightarrow 4x^2 + 9y^2 + 16z^2 + 12xy - 24yz - 16xz = (2x + 3y - 4z)(2x + 3y - 4z)$

15. \therefore x - 3 and x - $\frac{1}{3}$ are factors of $px^2 + 5x + r$ \therefore x = 3, x = $\frac{1}{3}$ zero of $px^2 + 5x + r$

> Putting x = 3 in given polynomial, $\therefore p(3)^2 + 5 \times 3 + r = 0$ 9p + 15 + r = 0 9p + r = -15 ----- (1)

Again putting x = $\frac{1}{3}$ in given polynomial, $p\left(\frac{1}{3}\right)^2 + 5 \times \frac{1}{3} + r = 0$ $\frac{p}{9} + \frac{5}{3} + r = 0$ $\frac{p+15+9r}{9} = 0$ p+9r = -15 - - - - -(2)

Fron eq.(1) and eq.(2), we have, 9p + r = p + 9r 9p-p=9r-r 8p=8r p=r Hence proved