Chapter 3

Special Techniques

3.1 Laplace’s Equation

3.1.1 Introduction

The primary task of electrostatics is to find the electric field of a given stationary charge
distribution. In principle, this purpose is accomplished by Coulomb’s law, in the form of
Eq. 2.8:

~

Ew) = — [ % ow)dr. 3.1)
dmeg | 22

Unfortunately, integrals of this type can be difficult to calculate for any but the simplest
charge configurations. Occasionally we can get around this by exploiting symmetry and
using Gauss’s law, but ordinarily the best strategy is first to calculate the potential, V, which
is given by the somewhat more tractable Eq. 2.29:

V(r) = L / l,o(r’)dr/. (3.2)
drey J 2

Still, even rhis integral is often too tough to handle analytically. Moreover, in problems
involving conductors p itself may not be known in advance: since charge is free to move
around, the only thing we control directly is the total charge (or perhaps the potential) of
each conductor.

In such cases it is fruitful to recast the problem in differential form, using Poisson’s
equation (2.24),

1
VY =——p, (3.3)
€0
which, together with appropriate boundary conditions, is equivalent to Eq. 3.2. Very often,

in fact, we are interested in finding the potential in a region where p = 0. (If p = 0
everywhere, of course, then V = 0, and there is nothing further to say—that’s not what 1
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mean. There may be plenty of charge elsewhere, but we're confining our attention to places
where there is no charge.) In this case Poisson’s equation reduces to Laplace’s equation:

Vv =0, (3.4)
or, written out in Cartesian coordinates,

2 2 2
1%
PV LIV LIV (3.5)
dx2 ay? 972

This formula is so fundamental to the subject that one might almost say electrostatics is
the study of Laplace’s equation. At the same time, it is a ubiquitous equation, appearing in
such diverse branches of physics as gravitation and magnetism, the theory of heat, and the
study of soap bubbles. In mathematics it plays a major role in analytic function theory. To
get a feel for Laplace’s equation and its solutions (which are called harmonic functions),
we shall begin with the one- and two-dimensional versions, which are easier to picture
and illustrate all the essential properties of the three-dimensional case (though the one-
dimensional example lacks the richness of the other two).

3.1.2 Laplace’s Equation in One Dimension

Suppose V depends on only one variable, x. Then Laplace’s equation becomes

d’vV
dx?

The general solution is
Vix)=mx +b, (3.6)

the equation for a straight line. It contains two undetermined constants (m and b), as
is appropriate for a second-order (ordinary) differential equation. They are fixed, in any
particular case, by the boundary conditions of that problem. For instance, it might be
specified that V =4 atx = 1,and V = Oatx = 5. Inthatcasem = —l and b = 5, so
V = —x + 5 (see Fig. 3.1).
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Figure 3.1
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I want to call your attention to two features of this result; they may seem silly and
obvious in one dimension, where I can write down the general solution explicitly, but the
analogs in two and three dimensions are powerful and by no means obvious:

1. V(x) is the average of V(x + a) and V(x — a), for any a:
Vx)=4iVx+a)+ Vi —a)l

Laplace’s equation is a kind of averaging instruction; it tells you to assign to the point
x the average of the values to the left and to the right of x. Solutions to Laplace’s
equation are, in this sense, as boring as they could possibly be, and yet fit the end
points properly.

2. Laplace’s equation tolerates no local maxima or minima; extreme values of V must
occur at the end points. Actually, this is a consequence of (1), for if there were a local
maximum, V at that point would be greater than on either side, and therefore could
not be the average. (Ordinarily, you expect the second derivative to be negative at
a maximum and positive at a minimum. Since Laplace’s equation requires, on the
contrary, that the second derivative be zero, it seems reasonable that solutions should
exhibit no extrema. However, this is not a proof, since there exist functions that have
maxima and minima at points where the second derivative vanishes: x?, for example,
has such a minimum at the point x = 0.)

3.1.3 Laplace’s Equation in Two Dimensions

If V depends on two variables, Laplace’s equation becomes

9*V N 2V _,
ax2  ayr

This is no longer an ordinary differential equation (that is, one involving ordinary derivatives
only); it is a partial differential equation. As a consequence, some of the simple rules you
may be familiar with do not apply. For instance, the general solution to this equation doesn’t
contain just two arbitrary constants—or, for that matter, any finite number—despite the fact
that it’s a second-order equation. Indeed, one cannot write down a “general solution” (at
least, not in a closed form like Eq. 3.6). Nevertheless, it is possible to deduce certain
properties common to all solutions.

It may help to have a pliysical example in mind. Picture a thin rubber sheet (or a soap
film) stretched over some support. For definiteness, suppose you take a cardboard box, cut
a wavy line all the way around, and remove the top part (Fig. 3.2). Now glue a tightly
stretched rubber membrane over the box, so that it fits like a drum head (it won’t be a flat
drumhead, of course, unless you chose to cut the edges off straight). Now, if you lay out
coordinates (x, y) on the bottom of the box, the height V (x, y) of the sheet above the point
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Figure 3.2

(x, y) will satisfy Laplace’s equation.! (The one-dimensional analog would be a rubber
band stretched between two points. Of course, it would form a straight line.)

Harmonic functions in two dimensions have the same properties we noted in one di-
mension:

1. The value of V at a point (x, y) is the average of those around the point. More
precisely, if you draw a circle of any radius R about the point (x, y), the average
value of V on the circle is equal to the value at the center:

1

circle

(This, incidentally, suggests the method of relaxation on which computer solutions
to Laplace’s equation are based: Starting with specified values for V at the boundary,
and reasonable guesses for V on a grid of interior points, the first pass reassigns to
each point the average of its nearest neighbors. The second pass repeats the process,
using the corrected values, and so on. After a few iterations, the numbers begin to
settle down, so that subsequent passes produce negligible changes, and a numerical
solution to Laplace’s equation, with the given boundary values, has been achieved.)?

2. V has no local maxima or minima; all extrema occur at the boundaries, (As before,
this follows from (1).) Again, Laplace’s equation picks the most featureless func-
tion possible, consistent with the boundary conditions: no hills, no valleys, just the
smoothest surface available. For instance, if you put a ping-pong ball on the stretched
rubber sheet of Fig. 3.2, it will roll over to one side and fall off—it will not find a

1Actually, the equation satisfied by a rubber sheet is

—-1/2
9 3V)+ S (VN_o un L (Y 2+ av\2]7"
_— _— _— _— = T = _— —_— M
ax \®ox ay gBy ’ cre 8 dx dy ’

it reduces (approximately) to Laplace’s equation as long as the surface does not deviate too radically from a plane.
28ee, for example, E. M. Purcell, Eleciricity and Magnetism, 2nd ed., problem 3.30 (p.- 119) (New York:
McGraw-Hill, 1985).
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“pocket” somewhere to settle into, for Laplace’s equation allows no such dents in
the surface. From a geometrical point of view, just as a straight line is the shortest
distance between two points, so a harmonic function in two dimensions minimizes
the surface area spanning the given boundary line.

3.1.4 Laplace’s Equation in Three Dimensions

In three dimensions I can neither provide you with an explicit solution (as in one dimension)
nor offer a suggestive physical example to guide your intuition (as I did in two dimensions).
Nevertheless, the same two properties remain true, and this time I will sketch a proof.

1. The value of V at point r is the average value of V over a spherical surface of radius

R centered at r: .
V)= —— Vda.
® 4m R? % “a

sphere

2. As aconsequence, V can have no local maxima or minima; the extreme values of V
must occur at the boundaries. (For if V had a local maximum at r, then by the very
nature of maximum I could draw a sphere around r over which all values of V—and
a fortiori the average—would be less than at r.)

Proof: Let’s begin by calculating the average potential over a spherical surface
of radius R due to a single point charge g located outside the sphere. We may
as well center the sphere at the origin and choose coordinates so that ¢ lies on
the z-axis (Fig. 3.3). The potential at a point on the surface is

_ 1 g
o 4JT€() 2’
where
#* =72 + R — 2zRcos b,
SO
1 q - .
Vae = o Riine /[z2 + R? —2zRcosf] Y/2R* sinf d6 d¢p
1 big
= 1 — V22 + R2 —2zRcos 0
dmeg 2ZR 0
g 1 1 g
= —~——[z+R--R)]= K
4 e ZZR[(Z +R -G )] dmeg 2

But this is precisely the potential due to g at the center of the sphere! By the
superposition principle, the same goes for any collection of charges outside the
sphere: their average potential over the sphere is equal to the net potential they
produce at the center.  qed
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Figure 3.3

Problem 3.1 Find the average potential over a spherical surface of radius R due to a point
charge g located inside (same as above, in other words, only with z < R). (In this case, of
course, Laplace’s equation does not hold within the sphere.) Show that, in general,

QC[]C
4megR’

Vave = Veenter +

where Veenter 1 the potential at the center due to all the external charges, and Qep is the total
enclosed charge.

Problem 3.2 In one sentence, justify Earnshaw’s Theorem: A charged particle cannot be
held in a stable equilibrium by electrostatic forces alone. As an example, consider the cubical
arrangement of fixed charges in Fig. 3.4. It looks, off hand, as though a positive charge at
the center would be suspended in midair, since it is repelled away from each corner. Where
is the leak in this “electrostatic bottle”? [To harness nuclear fusion as a practical energy
source it is necessary to heat a plasma (soup of charges particles) to fantastic temperatures—so
hot that contact would vaporize any ordinary pot. Earnshaw’s theorem says that electrostatic
containment is also out of the question. Fortunately, it is possible to confine a hot plasma
magnetically.]
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Problem 3.3 Find the general solution to Laplace’s equation in spherical coordinates, for the
case where V depends only on r. Do the same for cylindrical coordinates, assuming V depends
only on s.

3.1.5 Boundary Conditions and Uniqueness Theorems

Laplace’s equation does not by itself determine V'; in addition, a suitable set of boundary
conditions must be supplied. This raises a delicate question: What are appropriate boundary
conditions, sufficient to determine the answer and yet not so strong as to generate incon-
sistencies? The one-dimensional case is easy, for here the general solution V = mx + b
contains two arbitrary constants, and we therefore require two boundary conditions. We
might, for instance, specify the value of the function at the two ends, or we might give the
value of the function and its derivative at one end, or the value at one end and the derivative
at the other, and so on. But we cannot get away with just the value or just the derivative at
one end—this is insufficient information. Nor would it do to specify the derivatives at both
ends—this would either be redundant (if the two are equal) or inconsistent (if they are not).

In two or three dimensions we are confronted by a partial differential equation, and it
is not so easy to see what would constitute acceptable boundary conditions. Is the shape
of a taut rubber membrane, for instance, uniquely determined by the frame over which it
is stretched, or, like a canning jar lid, can it snap from one stable configuration to another?
The answer, as I think your intuition would suggest, is that V is uniquely determined by
its value at the boundary (canning jars evidently don’t obey Laplace’s equation). However,
other boundary conditions can also be used (see Prob. 3.4). The proof that a proposed set of
boundary conditions will suffice is usually presented in the form of a uniqueness theorem.
There are many such theorems for electrostatics, all sharing the same basic format-—I'1l
show you the two most useful ones.>

Firstuniqueness theorem: The solution to Laplace’s equation in some volume
V is uniquely determined if V is specified on the boundary surface S.

Proof: In Fig. 3.5 I have drawn such a region and its boundary. (There could
also be “islands” inside, so long as V is given on all their surfaces; also, the
outer boundary could be at infinity, where V is ordinarily taken to be zero.)
Suppose there were rwo solutions to Laplace’s equation:

V2V, =0 and V?V, =0,

both of which assume the specified value on the surface. I want to prove that
they must be equal. The trick is look at their difference:

Vs=V) — Vo

31 do not intend to prove the existence of solutions here—that’s a much more difficult job. In context, the
existence is generally clear on physical grounds.
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V specified
on this
surface (8)

Figure 3.5

This obeys Laplace’s equation,

Vv = V2V, — V2V, =0,
and it takes the value zero on all boundaries (since V; and V; are equal there).
But Laplace’s equation allows no local maxima or minima—all extrema oc-

cur on the boundaries. So the maximum and minimum of V5 are both zero.
Therefore V3 must be zero everywhere, and hence

Vi=V,. qed

Example 3.1

Show that the potential is constant inside an enclosure completely surrounded by conducting
material, provided there is no charge within the enclosure.

Solution: The potential on the cavity wall is some constant, Vg (that’s item (iv), in Sect. 2.5.1),
so the potential inside is a function that satisfies Laplace’s equation and has the constant value
Vo at the boundary. It doesn’t take a genius to think of one solution to this problem: V = Vo
everywhere. The uniqueness theorem guarantees that this is the only solution. (It follows that
the field inside an empty cavity is zero—the same result we found in Sect. 2.5.2 on rather
different grounds.)

The uniqueness theorem is a license to your imagination. It doesn’t matter how you
come by your solution; if (a) it satisfies Laplace’s equation and (b) it has the correct value
on the boundaries, then it’s right. You’ll see the power of this argument when we come to
the method of images.

Incidentally, it is easy to improve on the first uniqueness theorem: I assumed there was
no charge inside the region in question, so the potential obeyed Laplace’s equation, but
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we may as well throw in some charge (in which case V obeys Poisson’s equation). The
argument is the same, only this time

)
1 1
V2V =VV =V Vo= ——p+ —p =0.
€ €9
Once again the difference (V3 = V| — V») satisfies Laplace’s equation and has the value
zero on all boundaries, so V3 = 0 and hence V| = V5.

Corollary: The potential in a volume V is uniquely determined if (a) the charge
density throughout the region, and (b) the value of V on all boundaries, are
specified.

3.1.6 Conductors and the Second Uniqueness Theorem

The simplest way to set the boundary conditions for an electrostatic problem is to specify the
value of V on all surfaces surrounding the region of interest. And this situation often occurs
in practice: In the laboratory, we have conductors connected to batteries, which maintain
a given potential, or to ground, which is the experimentalist’s word for V = 0. However,
there are other circumstances in which we do not know the potential at the boundary, but
rather the charges on various conducting surfaces. Suppose I put charge Q1 on the first
conductor, (0, on the second, and so on—I’m not telling you how the charge distributes
itself over each conducting surface, because as soon as I put it on, it moves around in a way
I do not control. And for good measure, let’s say there is some specified charge density p
in the region between the conductors. Is the electric field now uniquely determined? Or
are there perhaps a number of different ways the charges could arrange themselves on their
respective conductors, each leading to a different field?

Second uniqueness theorem: In a volume V surrounded by conductors and
containing a specified charge density p, the electric field is uniquely determined
if the total charge on each conductor is given (Fig. 3.6). (The region as a whole
can be bounded by another conductor, or else unbounded.)

Proof: Suppose there are fwo fields satisfying the conditions of the problem.
Both obey Gauss’s law in differential form in the space between the conductors:
1 1
€0 €0
And both obey Gauss’s law in integral form for a Gaussian surface enclosing
each conductor:

1 1
y{ E,.da=~0: y{ E,-da=—0;.
€0 €0

ith conducting ith conducting
surface surface
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Integration surfaces

Outer boundary-
could be at infinity

Figure 3.6

Likewise, for the outer boundary (whether this is just inside an enclosing con-
ductor or at infinity),

1 1
f E; . da= —Qtot, f E; -da= — Qot-
€9 €0

outer outer
boundary boundary

As before, we examine the difference
E;s=E; - E;,
which obeys
V.- E;=0 (3.7

in the region between the conductors, and

¢E3 da=0 (3.8)

over each boundary surface.

Now there is one final piece of information we must exploit: Although
we do not know how the charge Q; distributes itself over the ith conducting
surface, we do know that each conductor is an equipotential, and hence Vj is
a constant (not necessarily the same constant) over each conducting surface.
(It need not be zero, for the potentials V; and V, may not be equal—all we
know for sure is that both are constant over any given conductor.) Next comes
a trick. Invoking product rule number (5), we find that

V- (V3E3) = V3(V - E3) + E3 - (VV3) = —(E3)2.
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Here I have used Eq. 3.7, and E3 = —V V3. Integrating this over the entire
region between the conductors, and applying the divergence theorem to the left
side:

/V -(ViE3)dt = f V3E; - da = —/(E3)2d1'.
A% S A%

The surface integral covers all boundaries of the region in question—the con-
ductors and outer boundary. Now V3 is a constant over each surface (if the
outer boundary is infinity, V3 = 0 there), so it comes outside each integral, and
what remains is zero, according to Eq. 3.8. Therefore,

/ (E3)?dr = 0.
%

But this integrand is never negative; the only way the integral can vanish is if
E3 = 0 everywhere. Consequently, E; = E;, and the theorem is proved.

This proof was not easy, and there is a real danger that the theorem itself will seem
more plausible to you than the proof. In case you think the second uniqueness theorem is
“obvious,” consider this example of Purcell’s: Figure 3.7 shows a comfortable electrostatic
configuration, consisting of four conductors with charges =, situated so that the plusses
are near the minuses. It looks very stable. Now, what happens if we join them in pairs,
by tiny wires, as indicated in Fig. 3.87 Since the positive charges are very near negative
charges (which is where they like to be) you might well guess that nothing will happen—the
configuration still looks stable.

Well, that sounds reasonable, but it’s wrong. The configuration in Fig. 3.8 is impossible.
For there are now effectively two conductors, and the total charge on each is zero. One
possible way to distribute zero charge over these conductors is to have no accumulation of
charge anywhere, and hence zero field everywhere (Fig. 3.9). By the second uniqueness
theorem, this must be the solution: The charge will flow down the tiny wires, canceling
itself off.

® O

© O

O ®

Figure 3.7 Figure 3.8
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ORO;

Figure 3.9

Problem 3.4 Prove that the field is uniquely determined when the charge density p is given
and either V or the normal derivative 3V /dn is specified on each boundary surface. Do not
assume the boundaries are conductors, or that V is constant over any given surface.

Problem 3.5 A more elegant proof of the second uniqueness theorem uses Green’s identity
(Prob. 1.60c), with T = U = V3. Supply the details.

3.2 The Method of Images

3.2.1 The Classic Image Problem

Suppose a point charge ¢ is held a distance d above an infinite grounded conducting plane
(Fig. 3.10). Question: What is the potential in the region above the plane? It’s not just
(1/47€0)q /2, for ¢ will induce a certain amount of negative charge on the nearby surface
of the conductor; the total potential is due in part to g directly, and in part to this induced
charge. But how can we possibly calculate the potential, when we don’t know how much
charge is induced or how it is distributed?

Figure 3.10
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+q

X -q

Figure 3.11

From a mathematical point of view our problem is to solve Poisson’s equation in the
region z > 0, with a single point charge g at (0, 0, d), subject to the boundary conditions:

1. V = 0 when z = 0 (since the conducting plane is grounded), and

2. V — 0 far from the charge (that is, for x> + y* + 2> d?.

The first uniqueness theorem (actually, its corollary) guarantees that there is only one
function that meets these requirements. If by trick or clever guess we can discover such a
function, it’s got to be the right answer.

Trick: Forget about the actual problem; we’re going to study a completely different
situation. This new problem consists of two point charges, +¢ at (0,0,d) and —g at
(0, 0, —d), and no conducting plane (Fig. 3.11). For this configuration I can easily write
down the potential:

Yy = o : - - - 69
dreg | /x24+ 2+ (z—d)2  J/x24+¥y24 (z+d)?

(The denominators represent the distances from (x, y, z) to the charges +¢q and —gq, respec-
tively.) It follows that

1. V=0whenz =0, and
2. V — 0forx? +y2 + 22 > d?,

and the only charge in the region z > O is the point charge +¢ at (0,0, d). But these
are precisely the conditions of the original problem! Evidently the second configuration
happens to produce exactly the same potential as the first configuration, in the “upper”
region z > 0. (The “lower” region, z < 0, is completely different, but who cares? The
upper part is all we need.) Conclusion: The potential of a point charge above an infinite
grounded conductor is given by Eq. 3.9, for z > 0.

Notice the crucial role played by the uniqueness theorem in this argument: without it,
no one would believe this solution, since it was obtained for a completely different charge
distribution. But the uniqueness theorem certifies it: If it satisfies Poisson’s equation in the
region of interest, and assumes the correct value at the boundaries, then it must be right.
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3.2.2 Induced Surface Charge

Now that we know the potential, it is a straightforward matter to compute the surface charge
o induced on the conductor. According to Eq. 2.49,

o= gy

where 0V /0n is the normal derivative of V at the surface. In this case the normal direction
is the z-direction, so

. A%
0O = —€g— .
9z =0
From Egq. 3.9,
w1 —q(z—d) q(z+4d) }
9z dmweo |2+ y2 4+ —d)PR T 2 +y2 4+ +d)?P2 )"
SO

—qd
2w (x2 4+ y2 +d2)3/2°
As expected, the induced charge is negative (assuming ¢ is positive) and greatest at x =
y=0.

While we’re at it, let’s compute the foral induced charge

Q:/ada.

This integral, over the xy plane, could be done in Cartesian coordinates, with da = dx dy,
but it’s a little easier to use polar coordinates (r, ¢), with r? = x% + y? and da = r dr de.
Then

o(x,y) = 3.10)

O'(r) = ___q‘i—
- 2 (r2 +d2)3/2°

and
oo

2 poo
—qd d
I R e S )
o Jo 2m(r24d?3? V2 4+d? g
Evidently the total charge induced on the plane is —g, as (with benefit of hindsight) you
can perhaps convince yourself it sad to be.

G.11)

3.2.3 Force and Energy

The charge ¢ is attracted toward the plane, because of the negative induced charge. Let’s
calculate the force of attraction. Since the potential in the vicinity of ¢ is the same as in
the analog problem (the one with +4 and —g but no conductor), so also is the field and,

' 2 I 2Z. (3‘12)
:ZGO ( )
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Beware: It is easy to get carried away, and assume that everything is the same in the two
problems. Energy, however, is not the same. With the two point charges and no conductor,
Eq. 2.42 gives

1 42
W= —. 3.13
47‘[60 2d ( )
But for a single charge and conducting plane the energy is half of this:
1 2
W= — 17 (3.14)
dmeg 4d

Why half? Think of the energy stored in the fields (Eq. 2.45):

W=€—O/E2dt.
2

In the first case both the upper region (z > 0) and the lower region (z < 0) contribute—and
by symmetry they contribute equally. But in the second case only the upper region contains
a nonzero field, and hence the energy is half as great.

Of course, one could also determine the energy by calculating the work required to
bring ¢ in from infinity. The force required (to oppose the electrical force in Eq. 3.12) is

(1/4neo)(q2/4z2)i, )
W= /dF~dl= ! /dﬁdz
o0 Areq Joo 472

1 PL d 2
4mey (_E>

1 ¢
0 dmeg 4d’
As I move g toward the conductor, I do work only on g. 1t is true that induced charge
is moving in over the conductor, but this costs me nothing, since the whole conductor is
at potential zero. By contrast, if I simultaneously bring in rwo point charges (with no
conductor), I do work on both of them, and the total is twice as great.

3.2.4 Other Image Problems

The method just described is not limited to a single point charge; any stationary charge
distribution near a grounded conducting plane can be treated in the same way, by introducing
its mirror image—hence the name method of images. (Remember that the image charges
have the opposite sign; this is what guarantees that the xy plane will be at potential zero.)
There are also some exotic problems that can be handled in similar fashion; the nicest of
these is the following.

Example 3.2

A point charge ¢ is situated a distance a from the center of a grounded conducting sphere of
radius R (Fig. 3.12). Find the potential outside the sphere.



3.2. THE METHOD OF IMAGES 125

Figure 3.12 Figure 3.13

Solution: Examine the completely different configuration, consisting of the point charge q
together with another point charge

, R
9'=-—q (3.15)
placed a distance
R2
b=— (3.16)
a

to the right of the center of the sphere (Fig. 3.13). No conductor, now—just the two point
charges. The potential of this configuration is

_ ! (a4
V) = O<¢+¢/>, (3.17)

where 2 and 2’ are the distances from ¢ and 4/, respectively. Now, it happens (see Prob. 3.7)
that this potential vanishes at all points on the sphere, and therefore fits the boundary conditions
for our original problem, in the exterior region.

Conclusion: Eq. 3.17 is the potential of a point charge near a grounded conducting
sphere. (Notice that b is less than R, so the “image” charge ¢’ is safely inside the sphere—you
cannot put image charges in the region where you are calculating V; that would change p,
and you’d be solving Poisson’s equation with the wrong source.) In particular, the force of
attraction between the charge and the sphere is

1 aq’ . 1 qua
C4mey (a—b)2  4mey @2 — RHZ

(3.18)

This solution is delightfully simple, but extraordinarily lucky. There’s as much art as
science in the method of images, for you must somehow think up the right “auxiliary problem”
to look at. The first person who solved the problem this way cannot have known in advance
what image charge ¢’ to use or where to put it. Presumably, he (she?) started with an arbitrary
charge at an arbitrary point inside the sphere, calculated the potential on the sphere, and then
discovered that with ¢’ and & just right the potential on the sphere vanishes. But it is really a
miracle that any choice does the job—with a cube instead of a sphere, for example, no single
charge anywhere inside would make the potential zero on the surface.
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g
3de+q

de—2q

Figure 3.14

Problem 3.6 Find the force on the charge +¢ in Fig. 3.14. (The xy plane is a grounded
conductor.)

Problem 3.7

(a) Using the law of cosines, show that Eq. 3.17 can be written as follows:

1 q q
V(r.0)= - , (3.19)
dreg l:\/r2+a2—2ra cos B \/R2+(ra/R)2—2ra cosG:l

where r and 6 are the usual spherical polar coordinates, with the z axis along the line through
¢g. In this form it is obvious that V = 0 on the sphere, r = R.

(b) Find the induced surface charge on the sphere, as a function of 8. Integrate this to get the
total induced charge. (What should it be?)

(¢) Calculate the energy of this configuration.

Problem 3.8 In Ex. 3.2 we assumed that the conducting sphere was grounded (V = 0). But
with the addition of a second image charge, the same basic model will handle the case of a
sphere at any potential Vj (relative, of course, to infinity). What charge should you use, and
where should you put it? Find the force of attraction between a point charge g and a neutral
conducting sphere.

Problem 3.9 A uniform line charge X is placed on an infinite straight wire, a distance d above
a grounded conducting plane. (Let’s say the wire runs parallel to the x-axis and directly above
it, and the conducting plane is the xy plane.)

(a) Find the potential in the region above the plane.

(b) Find the charge density o induced on the conducting plane.

Problem 3.10 Two semi-infinite grounded conducting planes meet at right angles. In the
region between them, there is a point charge g, situated as shown in Fig. 3.15. Set up the
image configuration, and calculate the potential in this region. What charges do you need, and
where should they be located? What is the force on ¢? How much work did it take to bring
¢ in from infinity? Suppose the planes met at some angle other than 90°; would you still be
able to solve the problem by the method of images? If not, for what particular angles does the
method work?
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\
«

Figure 3.15 Figure 3.16

! Problem 3.11 Two long, straight coppet pipes, each of radius R, are held a distance 2d apart.
One is at potential Vj, the other at — Vjy (Fig. 3.16). Find the potential everywhere. [Suggestion:
Exploit the result of Prob. 2.47.]

3.3 Separation of Variables

In this section we shall attack Laplace’s equation directly, using the method of separation
of vatiables, which is the physicist’s favorite tool for solving partial differential eduations.
The method is applicable in circumstances where the potential (V) or the charge density
(o) is specified on the boundaries of some region, and we are asked to find the potential
in the interior. The basic strategy is very simple: We look for solutions that are products
of functions, each of which depends on only one of the coordinates. The algebraic details,
however, can be formidable, so I'm going to develop the method through a sequence of
examples. We’ll start with Cartesian coordinates and then do spherical coordinates (I'11
leave the cylindrical case for you to tackle on your own, in Prob. 3.23).

3.3.1 Cartesian Coordinates

Example 3.3

Two infinite grounded metal plates lie parallel to the xz plane, one at y = 0, the otherat y = a
(Fig. 3.17). The left end, at x = 0, is closed off with an infinite strip insulated from the two
plates and maintained at a specific potential V;(y). Find the potential inside this “slot.”

Solution: The configuration is independent of z, so this is really a two-dimensional problem.
In mathematical terms, we must solve Laplace’s equation,

tv  8%v

m + 3)}—2 =0, (3.20)
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Figure 3.17

subject to the boundary conditions

(1) V =0wheny =0,
(1) V =0wheny =a,
(iii) V = Vy(y) when x =0,
(iv) V> 0asx — oo.

321

(The latter, although not explicitly stated in the problem, is necessary on physical grounds: as
you get farther and farther away from the “hot” strip at x = 0, the potential should drop to
zero.) Since the potential is specified on all boundaries, the answer is uniquely determined.

The first step is to look for solutions in the form of products:
Vix,y) = X(x)Y (). (3.22)

On the face of it, this is an absurd restriction—the overwhelming majority of solutions to
Laplace’s equation do not have such a form. For example, V(x,y) = (5x + 6y) satisfies
Eq. 3.20, but you can’t express it as the product of a function x times a function y. Obviously.
we’re only going to get a tiny subset of all possible sotutions by this means, and it would be a
miracle if one of them happened to fit the boundary conditions of our problem . .. But hang on,
because the solutions we do get are very special, and it turns out that by pasting them together
we can construct the general solution.

Anyway, putting Eq. 3.22 into Eq. 3.20, we obtain
dx? dy? ’
The next step is to “separate the variables” (that is, collect all the x-dependence into one term
and all the y-dependence into another). Typically, this is accomplished by dividing through
by V:
1 d2X 1d%Y
Xax2 Ty a? T
Here the first term depends only on x and the second only on y; in other words, we have an
equation of the form

0. (3.23)

fx)+g(y)=0. (3.24)
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Now, there’s only one way this could possibly be true: f and g must both be constant. For
what if f(x) changed, as you vary x—then if we held y fixed and fiddled with x, the sum
f(x) + g(x) would change, in violation of Eq. 3.24, which says it’s always zero. (That’s a
simple but somehow rather elusive argument; don’t accept it without due thought, because the
whole method rides on it.) It follows from Eq. 3.23, then, that

1d°X 1d%y ,

}W =C1 and ?chz, with C] +C2=O (325)
One of these constants is positive, the other negative (or perhaps both are zero). In general, one
must investigate all the possibilities; however, in our particular problem we need C positive
and C5 negative, for reasons that will appear in a moment. Thus

2x d’y

_ 2
i , P —k“Y. (3.26)

Notice what has happened: A partial differential equation (3.20) has been converted into two
ordinary differential equations (3.26). The advantage of this is obvious—ordinary differential
equations are a lot easier to solve. Indeed:

X(x) = Ak 4 Be™™ | ¥(y) = Csinky + Dcosky,

so that
V(x,y) = (Aek* + Be **)(Csinky + D cosky). (3.27)

This is the appropriate separable solution to Laplace’s equation; it remains to impose the
boundary conditions, and see what they tell us about the constants. To begin at the end,
condition (iv) requires that A equal zero.* Absorbing B into C and D, we are left with

V(x,y) = e X (Csinky + Dcosky).
Condition (i) now demands that D equal zero, so
V(x,y) = Ce " sinky. (3.28)

Meanwhile (ii) yields sin ka = 0, from which it follows that

niw

k=— n=123,..). (3.29
a

(At this point you can see why I chose C; positive and C; negative: If X were sinusoidal, we
could never arrange for it to go to zero at infinity, and if ¥ were exponential we could not make
it vanish at both 0 and a. Incidentally, n = 0 is po good, for in that case the potential vanishes
everywhere. And we have already excluded negative n’s.)

That’s as far as we can go, using separable solutions, and unless V() just happens to have the
form sin(nmry/a) for some integer n we simply can’t fir the final boundary condition at x = ().
But now comes the crucial step that redeems the method: Separation of variables has given
us an infinite set of solutions (one for each #), and whereas none of them by itself satisfies

4y

m assuming k is positive, but this involves no loss of generality—negative k gives the same solution (3.27),

only with the constants shuffled (A <> B, C — —C). Occasionally (but not in this example) k = 0 must also be
included (see Prob. 3.47).
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the final boundary condition, it is possible to combine them in a way that does. Laplace’s
equation is linear, ih the sense that if V|, V;, V4, .. . satisfy it, so does any linear combination,
V=uoV) +asVa +a3V3 + ..., where o), ay, . .. are arbitrary constants. For

V2V=011V2V1+012V2V2+...=0a1+0(¥2+...=0.

Exploiting this fact, we can patch together the separable solutions (3.28) to construct a much
more general solution:

x>
V(x,y) =Y Cpe "™ /sin(nmy/a). (3.30)
n=1
This still satisfies the first three boundary conditions; the question is, can we (by astute choice
of the coefficients Cp,) fit the last boundary condition?

oo
VO,y) =) Cusin(rmy/a) = Vo(»). (3.31)

n=1

Weil, you may recognize this sum—it’s a Fourier sine series. And Dirichlet’s theorem? guaran-
tees that virtually any function Vjy(y)—it can even have a finite number of discontinuities—can
be expanded in such a series.

But how do we actually deterniine the coefficients C n, buried as they are in that infinite sum?
The device for accomplishing this is so lovely it deserves a name—I call it Fourier’s trick,
though it seems Euler had used essentially the same idea somewhat earlier. Here’s how it goes:
Multiply Eq. 3.31 by sin(n'my/a) (where n’ is a positive integer), and integrate from 0 to a:

00 a a
Z Cn/ sin(nwy/a) sin(n'my/a) dy :/ Vo(y) sin(n'my/a) dy. (3.32)
0 0
=1
You can work out the integral on the left for yourself; the answer is
; 0, ifn' £n,
/ sin(ny/a) sin(n'ny/a)dy = a (3.33)
0 3 ifn' = n.

Thus all the terms in the series drop out, save only the one where #n” = n, and the left side of
Eq. 3.32, reduces to (a/2)C,y. Conclusion:®

2 a
Cy = -/ Vo(y) sin(nry/a) dy. (3.34)
aJo
That does it: Bq. 3.30 is the solution, with coefficients given by Eq. 3.34. As a concrete

example, suppose the strip at x = 0 is a metal plate with constant potential V;y (remember, it’s
insulated from the grounded plates at y = 0 and y = @). Then

0, if # is even,
2Vy (¢ 2V,
C, = —O/ sin(nwry/aydy = —O(l —COoSnm) = 4V, (3.35
a Jo " n—o if n is odd.
T

5Boas, M., Mathematical Methods in the Physical Sciences, 2nd ed. (New York: John Wiley, 1983).
OFor aesthetic reasons I've dropped the prime; Eq. 3.34 holds for n = 1,2,3,..., and it doesn’t matter
(obviously) what letter you use for the “dummy” index.
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V/Vo
Figure 3.18
Evidently,
4V 1
Vi, y) = 9 Z —e "X gin(nry/a). (3.36)
T n=1,3,5... "

Figure 3.18 is a plot of this potential; Fig. 3.19 shows how the first few terms in the Fourier
series combine to make a better and better approximation to the constant Vy: (a)isn = 1 only,
(b) includes n up to 5, (c) is the sum of the first 10 terms, and (d) is the sum of the first 100
terms.

]'? /AN

/ d) A4
08 |[©) (
0.4 (a)
0.2
0 02 04 0.6 0.8 1
via

Figure 3.19
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Incidentally, the infinite series in Eq. 3.36 can be summed explicitly (try your hand at it, if
you like); the result is

Vo

2 -1
V(x, y) = 7 tan

sin(zy/a) ) (3.37)

sinh(mx/a)

In this form it is easy to check that Laplace’s equation is obeyed and the four boundary
conditions (3.21) are satisfied.

The success of this method hinged on two extraordinary properties of the separable
solutions (3.28): completeness and orthogonality. A set of functions f,(y) is said to be
complete if any other function f(y) can be expressed as a linear combination of them:

FO)Y =) Cafay). (3.38)

n=1

The functions sin(ny/a) are complete on the interval 0 < y < a. It was this fact,
guaranteed by Dirichlet’s theorem, that assured us Eq. 3.31 could be satisfied, given the
proper choice of the coefficients C,,. (The proof of completeness, for a particular set of
functions, is an extremely difficult business, and I’'m afraid physicists tend to assume it’s
true and leave the checking to others.) A set of functions is orthogonal if the integral of
the product of any two different members of the set is zero:

/0 Fe ) fi0)dy =0 forn' #n. (3.39)

The sine functions are orthogonal (Eq. 3.33); this is the property on which Fourier’s trick
is based, allowing us to kill off all terms but one in the infinite series and thereby solve
for the coefficients C,,. (Proof of orthogonality is generally quite simple, either by direct
integration or by analysis of the differential equation from which the functions came.)

Example 3.4

Two infinitely long grounded metal plates, again at y = O and y = a, are connected at x = +b
by metal strips maintained at a constant potential Vj, as shown in Fig. 3.20 (a thin layer
of insulation at each corner prevents them from shorting out). Find the potential inside the
resulting rectangular pipe.

Solution: Once again, the configuration is independent of z. Our problem is to solve Laplace’s
equation

subject to the boundary conditions

(i) V=0wheny =0,
(ii) V =0wheny=a,
(ili) V = Vywhenx =b,
(iv) V = Vywhenx = —b.

(3.40)
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Figure 3.20

The argument runs as before, up to Eq. 3.27:
Vix,y) = (A* + Be™)(Csin ky 4+ D cosky).

This time, however, we cannot set A = 0; the region in question does not extend to x = oo,

s0 ek is perfectly acceptable. On the other hand, the situation is symmetric with respect to x,

so V(—x,y) = V(x, y), and it follows that A = B. Using
e ek — 2cosh kx,
and absorbing 24 into C and D, we have
V(x,y) =coshkx (Csinky + Dcosky).
Boundary conditions (i) and (ii) require, as before, that D = 0 and k = nrn/a, so
V(x,y) = Ccosh(nmx/a) sin(nwy/a). (34D

Because V (x, y) is even in x, it will automatically meet condition (iv) if it fits (iii). It remains,
therefore, to construct the general linear combination,

o0
Vix,y)= Z Cy cosh(nmx /a) sin(nwy/a),

n=1
and pick the coefficients Cy, in such a way as to satisfy condition (iii):

oo
Vb, y) = Z Cy cosh(nmb/a) sin(nwy/a) = Vj.

n=1

This is the same problem in Fourier analysis that we faced before; I quote the result from
Eq. 3.35:
0, if 7 is even

Cycosh(nmb/a) =
4V, e .
—_—, if n is odd

niw
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Figure 3.21

Conclusion: The potential in this case is given by

4V Z 1 cosh(nmx/a)

Yy =-—= n cosh(nmb/a)
T nel3s.. cosh(nmb/a

sin(nmy/a). (3.42)

This function is shown in Fig. 3.21.

Example 3.5

An infinitely long rectangular metal pipe (sides a and &) is grounded, but one end, at x = 0, is
maintained at a specified potential Vg (y, z). as indicated in Fig. 3.22. Find the potential inside
the pipe.

Solution: This is a genuinely three-dimensional problem,

3%y N 92V N 92
ax2 ay? a2

<

=0. (3.43)

Voly, 2 —|= | I
b ‘.%_V x
e

Figure 3.22
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subject to the boundary conditions
(i) V=0wheny =0,
(i) V =0wheny=aq,
(iii) V =0whenz =0,

(iv) V =0whenz=h, (344)
v) V-o0ax— o0,
(vi) V =Vy(y,z) whenx =0.
As always, we look for solutions that are products:
Vix,y,2) = Xx)Y(»)Z(2). (3.45)

Putting this into Eq. 3.43, and dividing by V, we find

1d%x 1d4%vy 1d%z
- - +=——==0.
X dx2 Y dy2  Zd2

It follows that
1 d?x 1 &%y 1d%z
——— =(], = —==Cy, =—= =C3, with C{+Cy+C3=0.
Xax2  Dyar  rzgz ot veatats

Our previous experience (Ex. 3.3) suggests that C; must be positive, C and C3 negative.
Setting Cp = —k?% and Cy = —12, we have C = k2 + 12, and hence

d*x d%y d*z
3= ** + 15X, el —k2y, = —1%z. (3.46)

Once again, separation of variables has turned a partial differential equation into ordinary
differential equations. The solutions are

X(x) = AeV K x 4 Be—«/k2+lzx’
Y(y) = Csinky+ Dcosky,
Z(z) = Esinlz+ Fcoslz.
Boundary condition (v) impliés A =0, (i) gives D = 0, and (iii) yields F = 0, whereas (ii)

and (iv) require thatk = nm/a and ! = mm /b, where n and m are positive integers. Combining
the remaining constants, we are left with

Vix, y,2) = Ce N @/ +m/X 6oy 1a) sin(mrz/b). (3.47)

This solution meets all the boundary conditions except (vi). It contains two unspecified
integers (n and m), and the most general linear combination is a double sum:

[ ClNe ]
Vix,y,z2) = Z Z Cn.me ™V (n/a)*+(m/b)? x sin(nmy/a) sin(mmz/b). (3.48)
n=1m=1
‘We hope to fit the remaining boundary condition,

oo 00
V(©0,y,2) = Z Z Cn m sin(ny/a) sin(mmz/b) = Vy(y. 2), (3.49)

n=1m=1
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by appropriate choice of the coefficients C;, ,,. To determine these constants, we multiply by
sin(n'y/a) sin(m'mz/b), where n’ and m’ are arbitrary positive integers, and integrate:

55

n=1m=1 0

b
‘ sin(ny/a) sin(n'ny/a) dy/ sin(mmz/b) sin(m'wz/b) dz
0

a pb
:/ / Vo(y, 2) sin(n’wy/a) sin(m’wz/b) dy dz.
0 JO
Quoting Eq. 3.33, the left side is (ab/4)C,y . 50
4 a rb
Com = —b/ / Vo(y, 2) sin(nmry/a) sin(mmz/b)dy dz. 3.50)
a 0 JO

Equation 3.48, with the coefficients given by Eq. 3.50, is the solution to our problem.

For instance, if the end of the tube is a conductor at constant potential V;,

Vo [ . b
Com = — sin(nry/a)dy sin(mmz/b)dz
ab Jp 0
0, if n or m is even,
— (3.51)
16V,
3 0 s if n and m are odd.
mlnm
In this case
16V, ad 1 TR
Vix.y,2) = —TO Z — TNV /A Hm/BY X Gin iy Ja) sin(mmz/b). (3.52)
T m

n
n,m=1,3,5..

Notice that the successive terms decrease rapidly; a reasonable approximation would be ob-
tained by keeping only the first few.

Problem 3.12 Find the potential in the infinite slot of Ex. 3.3 if the boundary at x = 0 consists
of two metal strips: one, from y = 0 to y = a/2, is held at a constant potential V;, and the
other, from y = a/2 to y = q, is at potential —Vj).

Problem 3.13 For the infinite slot (Ex. 3.3) determine the charge density o (y) on the strip at
x = 0, assuming it is a conductor at constant potential Vj.

Problem 3.14 A rectangular pipe, running parallel to the z-axis (from — o0 to 4+00), has three
grounded metal sides, at y = 0, y = a, and x = 0. The fourth side, at x = b, is maintained at
a specified potential V(y).

(a) Develop a general formula for the potential within the pipe.

(b) Find the potential explicitly, for the case V() = Vj (a constant).
Problem 3.15 A cubical box (sides of Jength a) consists of five metal plates, which are welded

together and grounded (Fig. 3.23). The top is made of a separate sheet of metal, insulated from
the others, and held at a constant potential V{;. Find the potential inside the box.
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Figure 3.23

3.3.2 Spherical Coordinates

In the examples considered so far, Cartesian coordinates were clearly appropriate, since the
boundaries were planes. For round objects spherical coordinates are more natural. In the
spherical system, Laplace’s equation reads:

13 [,V 1 9 v 1 v
2 or <r ar)Jr +2sind 96 <Sm 39)+r2 sin? 6 a2 G>3

I shall assume the problem has azimuthal symmetry, so that V is independent of ¢;" in
that case Eq. 3.53 reduces to

0 oV 1 0 A%
—(r— )4+ — —|sinoe— ) =0. (3.54)
ar or sinf 06 00

As before, we look for solutions that are products:

V(r,0) = R(rnB(@®H). (3.59)
Putting this into Eq. 3.54, and dividing by V,

1 d [ ,dR | d /. de
— = (222 — 66— ) =0. S
Rdr (r dr>+(~)sin0d0 (Sm de) 0 (3.:56)

Since the first term depends only on r, and the second only on 6, it follows that each must
be a constant:

1d (,dR 1 d d®
(P2 =10 11 — [sing— ) = —1d +1). 35
e (r dr) C+D, Ging o (Sm d@) t+h 20

Here [(I 4 1) is just a fancy way of writing the separation constant—you’ll see in a minute
why this is convenient.

TThe general case, for ¢-dependent potentials, is treated in all the graduate texts. See, for instance, J. D.
Jackson’s Classical Electrodynamics, 3rd ed., Chapter 3 (New York: John Wiley, 1999).
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As always, separation of variables has converted a partial differential equation (3.54)
into ordinary differential equations (3.57). The radial equation,

d [ ,dR
4 il 1 .
- (r dr) I( + DR, (3.58)

has the general solution

B
RO = Ar' + . (3.59)

as you can easily check; A and B are the two arbitrary constants to be expected in the
solution of a second-order differential equation. But the angular equation,

d /. d®e .
76 (sm0%> =-I(l+1)sin6 B, (3.60)

is not so simple. The solutions are Legendre polynomials in the variable cos 6
©(6) = Pi(cosb). (3.61)

P;(x) is most conveniently defined by the Rodrigues formula:

_ 1 (4Y e 1! 3.62
Pl(x)—“z—,l—! dx " =1 (3.62)
The first few Legendre polynomials are listed in Table 3.1.
Po(x) = 1
Pi(x) = «x
P(x) = (3x*-1)/2
Pyx) = (5x*=3x)/2
Py(x) = (35x* —30x>+3)/8
Ps(x) = (63x>—70x3+15x)/8

Table 3.1 Legendre Polynomials

Notice that P;(x) is (as the name suggests) an [th-order polynomial in x; it contains only
even powers, if [ is even, and odd powers, if [ is odd. The factor in front (1/ 2 1) was chosen
in order that

P =1. (3.63)

The Rodrigues formula obviously works only for nonnegative integer values of /. More-
over, it provides us with only one solution. But Eq. 3.60 is second-order, and it should pos-
sess two independent solutions, for every value of . It turns out that these “other solutions”
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blow up at 8 = 0 and/or & = 7, and are therefore unacceptable on physical grounds.® For
instance, the second solution for ! = 0 is

@®)=In (tan g) . (3.64)

You might want to check for yourself that this satisfies Eq. 3.60.

Inthe case of azimuthal symmetry, then, the most general separable solution to Laplace’s
equation, consistent with minimal physical requirements, is

B
Vr,0) = (Arl + m) Pi(cos6).

(There was no need to include an overall constant in Eq. 3.61 because it can be absorbed into
A and B at this stage.) As before, separation of variables yields an infinite set of solutions,
one for each /. The general solution is the linear combination of separable solutions:

o0

Vo)=Y <A,r’ + %) Pi(cosb). (3.65)

=0

The following examples illustrate the power of this important result.

Example 3.6

The potential V(8) is specified on the surface of a hollow sphere, of radius R. Find the
potential inside the sphere.

Solution: In this case By = 0 for all /—otherwise the potential would blow up at the origin.
Thus,

o0
V(r,0) =" Al Pi(cos). (3.66)
1=0

Atr = R this must match the specified function Vjy(8):
o0
V(R,0) =) AR P(cos0) = Vy(0). (3.67)
1=0

Can this equation be satisfied, for an appropriate choice of coefficients A;? Yes: The Legendre
polynomials (like the sines) constitute a complete set of functions, on the interval —1 < x < 1

81n rare cases where the z axis is for some reason inaccessible, these “other solutions™ may have to be considered.
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(0 < 8 < 7). How do we determine the constants? Again, by Fourier’s trick, for the Legendre
polynomials (like the sines) are orthogonal functions:?

/11 Pi(x)Pp(x)dx = /On Py(cos 0) Py (cos 6) sind db
0, ifl #1,

= 3.68
- -

Thus, multiplying Eq. 3.67 by Py (cos ) sin 0 and integrating, we have

r_2 d :
R T = /0 Vo (6) Py (cos0) sin 6 do,
or
A= 2+1 /ﬂ Vo(8) Pi(cos8) sin6 d6. (3.69)
2R Jo

Equation 3.66 is the solution to our problem, with the coefficients given by Eq. 3.69.

In can be difficuit to evaluate integrals of the form 3.69 analytically, and in practice it is often
easier to solve Eq. 3.67 “by eyeball.”10 For instance, suppose we are told that the potential on
the sphere is

Vo(6) = k sin®(6/2), (3.70)

where k is a constant. Using the half-angle formula, we rewrite this as
k k
Vo0) = 5 (1 —cosf) = E[Po(cose) — Pi(cos9)].

Putting this into Eq. 3.67, we read off immediately that Ag = k/2, A} = —k/(2R), and all
other A;’s vanish. Evidently,

NS

1
V(r,0) = g |:r0P0(c059) - %Pl(cose)] = (1 - %cos@). 371

Example 3.7

The potential V() is again specified on the surface of a sphere of radius R, but this time we
are asked to find the potential ourside, assuming there is no charge there.

Solution: In this case it’s the A;’s that must be zero (or else V would not go to zero at 00), so

o0
B
Vo)=Y ml—lP, (cos 6). (3.72)
i=0

9M. Boas, Mathematical Methods in the Physical Sciences, 2nd ed., Section 12.7 (New York: John Wiley.
1983).

10This is certainly true whenever V() can be expressed as a polynomial in cos 6. The degree of the polynomial
tells us the highest I we require, and the leading coefficient determines the corresponding A;. Subtracting off
AlRl P;(cos 8) and repeating the process, we systematically work our way down to Ag. Notice that if Vg is an
even function of cos 8, then only even terms will occur in the sum (and likewise for odd functions).
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At the surface of the sphere we require that
o0

By
V(R.6)=)" =71 Pi(eos8) = Vo(®).
=0

Multiplying by Py (cos 6) sin 6 and integrating—exploiting, again, the orthogonality relation

3.68—we have
B2 [T @) Pcos6) sind do
1= A 0(0) P/ (cos ) sin .
or
2A+1 m
B = %R’“/ Vo (8) Pi(cos 6) sin 6 d6. (3.73)
0

Equation 3.72, with the coefficients given by Eq. 3.73, is the solution to our problem.

Example 3.8

Anuncharged metal sphere of radius R is placed in an otherwise uniform electric field E = Eyz.
[The field will push positive charge to the “northern” surface of the sphere, leaving a negative
charge on the “southern” surface (Fig. 3.24). This induced charge, in turn, distorts the field in
the neighborhood of the sphere.] Find the potential in the region outside the sphere.

Selution: The sphere is an equipotential—we may as well set it to zero. Then by symmetry
the entire xy plane is at potential zero. This time, however, V does not go to zero at large z.

In fact, far from the sphere the field is EyZ, and hence

V > —E()Z+C.

Figure 3.24
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Since V = 0 in the equatorial plane, the constant C must be zero. Accordingly, the boundary
conditions for this problem are

(i) V=0 whenr=R,
(i) V — —Egrcosf  forr > R. (3.74)
We must fit these boundary conditions with a function of the form 3.65.
The first condition yields
AR + B 0
! RI+1 ’
or
By = —A R¥H, (3.75)
SO o
R2+1
Vo)=Y A <r’ - Py(cos 8).
=0
For r >» R, the second term in parentheses is negligible, and therefore condition (ii) requires
that
o0
Z AlrlPl (cos8) = —Egrcost.
=0
Evidently, only one term is present: / = 1. In fact, since Pj(cos8) = cos 6, we can read off
immediately
A} = —Eg, all other A;’s zero.
Conclusion:
R3
V(r,0) =—Eq{r — — ) cos6. (3.76)
r
The first term (— Egr cos ) is due to the external field: the contribution attributable to the
induced charge is evidently
R3
Ey —5 cos 6.
r
If you want to know the induced charge density, it can be calculated in the usual way:
v R?
0(0)=—eyg— =eEg|1+2— |cosb =3egEgcost. 3.7
or r=R r3
r=R
As expected, it is positive in the “northern” hemisphere (0 < 8 < /2) and negative in the
“southern” (/2 < 0 < m).
Example 3.9

A specified charge density og (6) is glued over the surface of a spherical shell of radius R. Find
the resulting potential inside and outside the sphere.

Selution: You could, of course, do this by direct integration:

1 09
= — ?da,
4mep 2
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but separation of variables is often easier. For the interior region we have

o0
Vr.0) =) Apr'Pcost) (r<R) (3.78)
=0

(no B terms—they blow up at the origin); in the exterior region
Vo)=Y mP[(cos 9 >R (3.79)
=0

(no Aj terms—they don’t go to zero at infinity). These two functions must be joined together
by the appropriate boundary conditions at the surface itself. First, the potential is continuous
atr = R (Eq. 2.34):

X0 X0 Bl
ZZ AjR' Pi(cos ) = ZZ T Pi(cos o). (3.80)
=0 =0

It follows that the coefficients of like Legendre polynomials are equal:
B, = A;RZTL, (3.81)

(To prove that formally, multiply both sides of Eq. 3.80 by Py (cosé) sin 6 and integrate from
0 to 7, using the orthogonality relation 3.68.) Second, the radial derivative of V suffers a
discontinuity at the surface (Eq. 2.36):

d Vout _ aVin
ar ar

& B ad 1
-+ 1)RT’r2P,(cos9) — > 1AR'T P(eos ) = ~—o0(®),
=0 1=0 0
or, using Eq. 3.81:

1
= —500(9). (3.82)
r=R

Thus

X0
1
> @1+ DART Pcos6) = — oy 6). (3.83)
€0
=0
From here, the coefficients can be determined using Fourier’s trick:

1 m
Ay = ZOR’——I/O og(0) P (cos ) sinf do. (3.84)

Equations 3.78 and 3.79 constitute the solution to our problem, with the coefficients given by
Eqgs. 3.81 and 3.84.

For instance, if
00(0) = kcos6 = kPj(cosh), (3.85)

for some constant k, then all the A;’s are zero except for / = 1, and

| 2. k
Ay = —/ [P1(cosO)]“sin6df = —.
2¢q Jo 3€0
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The potential inside the sphere is therefore

k
V(r,0) = —rcoséd (r <R), (3.86)
3¢p
whereas outside the sphere
kR3 1
V(r,0) = — — cos@ (r > R). (3.87)
3ep 12

In particular, if op(#) is the induced charge on a metal sphere in an external field EgZ, so
that k = 3¢gE( (Eq. 3.77), then the potential inside is Egr cosd = Egz, and the field is
— EgZz—exactly right to cancel off the external field, as of course it should be. Outside the
sphere the potential due to this surface charge is

R3
Ey —5 Cos 0,
r

consistent with our conclusion in Ex. 3.8.

Problem 3.16 Derive P3(x) from the Rodrigues formula, and check that P3(cos ) satisfies the
angular equation (3.60) for/ = 3. Check that P53 and P are orthogonal by explicit integration.

Problem 3.17

(a) Suppose the potential is a constant Vg over the surface of the sphere. Use the results of
Ex. 3.6 and Ex. 3.7 to find the potential inside and outside the sphere. (Of course, you know
the answers in advance—this is just a consistency check on the method.)

(b) Find the potential inside and outside a spherical shell that carries a uniform surface charge
00, using the results of Ex. 3.9.

Problem 3.18 The potential at the surface of a sphere (radius R) is given by
Vo = kcos 36,

where k is a constant. Find the potential inside and outside the sphere, as well as the surface
charge density o (9) on the sphere. (Assume there’s no charge inside or outside the sphere.)

Problem 3.19 Suppose the potential V5(6) at the surface of a sphere is specified, and there is
no charge inside or outside the sphere. Show that the charge density on the sphere is given by

o0
o (6) = 2% Y @+ 1€ Py(cos ), (3.88)
=0

where .
o)} =/ Vo(0) Pi(cos 0) sin6 db. (3.89)
0
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Problem 3.20 Find the potential outside a charged metal sphere (charge O, radius R) placed
in an otherwise uniform electric field Eg. Explain clearly where you are setting the zero of
potential.

Problem 3.21 In Prob. 2.25 you found the potential on the axis of a uniformly charged disk:

V(r,0) = i—(\/rz +R2—r).
0

(a) Use this, together with the fact that P;(1) = 1, to evaluate the first three terms in the
expansion (3.72) for the potential of the disk at points off the axis, assuming > R.

(b) Find the potential for » < R by the same method, using (3.66). [Note: You must break
the interior region up into two hemispheres, above and below the disk. Do not assume the
coefficients A; are the same in both hemispheres.]

Problem 3.22 A spherical shell of radius R carries a uniform surface charge oq on the “north-
ern” hemisphere and a uniform surface charge —og on the “southern” hemisphere. Find the
potential inside and outside the sphere, calculating the coefficients explicitly up to Ag and Bg.

Problem 3.23 Solve Laplace’s equation by separation of variables in cylindrical coordinates,
assuming there is no dependence on z (cylindrical symmetry). [Make sure you find a/l solutions
to the radial equation; in particular, your result must accommodate the case of an infinite line
charge, for which (of course) we already know the answer.)

Problem 3.24 Find the potential outside an infinitely long metal pipe, of radius R, placed at
right angles to an otherwise uniform electric field Eq. Find the surface charge induced on the
pipe. [Use your result from Prob. 3.23.]

Problem 3.25 Charge density
o(¢) = asin5¢

(where a is a constant) is glued over the surface of an infinite cylinder of radius R (Fig. 3.25).
Find the potential inside and outside the cylinder. [Use your result from Prob. 3.23.]

Figure 3.25
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3.4 Multipole Expansion

3.4.1 Approximate Potentials at Large Distances

If you are very far away from a localized charge distribution, it “looks” like a point charge.
and the potential is—to good approximation—(1/4mweq) Q/r, where Q is the total charge.
We have often used this as a check on formulas for V. But what if Q is zero? You might
reply that the potential is then approximately zero, and of course, you’re right, in a sense
(indeed, the potential at large r is pretty small even if Q is not zero). But we’re looking for
something a bit more informative than that.

Example 3.10

A (physical) electric dipole consists of two equal and opposite charges (£¢) separated by a
distance d. Find the approximate potential at points far from the dipole.

Solution: Let2_ be the distance from —g and 2 the distance from +¢ (Fig. 3.26). Then

1 (a4 4
V(r) = — -,
@ 4dmeg </L+ /L_>

and (from the law of cosines)
2 _ 2 2 2 d d?
25 =r°+(d/2)" Frdcosf =r" |1 F —cosb+ — |.
r 4r?

We're interested in the régime r >> d, so the third term is negligible, and the binomial expansion

yields
11 “r
_;_(1q:—cose) E—(li—cos@)
2+ r r
Thus
1 1 d
— — — = — cos9,
T4 2 r2
and hence 1 d 9
co
V) = 94 (3.90)
drey 12

Figure 3.26
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Monopole Dipole Quadrupole Octopole
V~1/r (V~1/rH) (V~1/r3) V~1/rh
Figure 3.27

Evidently the potential of a dipole goes like 1 /r2 at large r; as we might have anticipated,
it falls off more rapidly than the potential of a point charge. Incidentally, if we put together
a pair of equal and opposite dipoles to make a quadrupole, the potential goes like 1 / #3; for
back-to-back quadrupoles (an octopole) it goes like 1/r4; and so on. Figure 3.27 summarizes
this hierarchy; for completeness I have included the electric monopole (point charge), whose
potential, of course, goes like 1/r.

Example 3.10 pertained to a very special charge configuration. I propose now to develop
a systematic expansion for the potential of an arbitrary localized charge distribution, in
powers of 1/r. Figure 3.28 defines the appropriate variables; the potential at r is given by

V) = / %p(r’)dr’. (3.91)

4deq

Using the law of cosines,

7N 2 ’
22 =12+ (") = 2rr cos ' = r? l:l + (r_) -2 (r_) cos@’:l ,
¥ ¥

r=r+/1+¢€ (3.92)

/ /
€= (r_) (i — ZCOSG’) .
r r

For points well outside the charge distribution, € is much less than 1, and this invites a
binomial expansion:

or

where

1 1 1 5
= (1+e)‘1/2=—(1——e+—62—~63+...), (3.93)
. r

Figure 3.28
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or, in terms of r, r’, and 9’:

1 1 177\ (F , 3¢\ /r , 2
- = —|l=={=)|——2cos8" |+ {— — —2cos¥
2 r 2\r r 8§\ r r

ll: ' , r\? >
= - 1+(—> (c089)+(—> (Becos 6" — 1)/2
r r r

3

Y\
+<7) (5¢c08° 0" —3cosH)/2+... .

In the last step I have collected together like powers of (r'/r); surprisingly, their coefficients
(the terms in parentheses) are Legendre polynomials! The remarkable result!! is that

1 1< /\
o= Z(;) P, (cos8), (3.94)
n=0

where 0’ is the angle between r and r’. Substituting this back into Eq. 3.91, and noting that
r is a constant, as far as the integration is concerned, I conclude that

oo

1 1
V(r) = mzrm—w / (r)" P, (cos 8 p(r) dt’, (3.95)
n=0
or, more explicitly,
1 1 / / 1 7 7 / 7
Viry = — | p(r)dt + = [ ricos®'p(r)dr
dmeg | ¥ r
1 N2 3 Y 1 ’ ’
+ =5 D) {50870 — S Jp)dr + ... (3.96)
re 2 2

This is the desired result—the multipole expansion of V in powers of 1/r. The
first term (n = 0) is the monopole contribution (it goes like 1/r); the second (n = 1)
is the dipole (it goes like 1/r?); the third is quadrupole; the fourth octopole; and so on.
As it stands, Eq. 3.95 is exact, but it is useful primarily as an approximation scheme: the
lowest nonzero term in the expansion provides the approximate potential at large r, and the
successive terms tell us how to improve the approximation if greater precision is required.

11Incidentally, this affords a second way of obtaining the Legendre polynomials (the first being Rodrigues
formula); 1/% is called the generating function for Legendre polynomials.
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Problem 3.26 A sphere of radius R, centered at the origin, carries charge density
R .
pr,6) = k—2(R —2r)sing,
r

where k is a constant, and r, 6 are the usual spherical coordinates. Find the approximate
potential for points on the z axis, far from the sphere.

3.4.2 The Monopole and Dipole Terms

Ordinarily, the multipole expansion is dominated (at large r) by the monopole term:

g, (3.97)
dmeg r

Vinon(r) =

where Q = [ pdr is the total charge of the configuration. This is just what we expected
for the approximate potential at large distances from the charge. Incidentally, for a point
charge at the origin, Vimon represents the exact potential everywhere, not merely a first
approximation at large r; in this case all the higher multipoles vanish.

If the total charge is zero, the dominant term in the potential will be the dipole (unless,
of course, it also vanishes):

V. —_ 1 1 7 9/ 7 d ’
dip(r) = —47'[60}"—2 r'cos@ p(r)dr’.

Since ¢’ is the angle between r’ and r (Fig. 3.28),

r'cos® =11,

and the dipole potential can be written more succinctly:
Viip () = Lif' ~/r’p(r’)dt’
P dmeg r? '

This integral, which does not depend on r at all, is called dipole moment of the distribution:

pzfr’p(r’)dr’, (3.98)

and the dipole contribution to the potential simplifies to

>

1 p-
dmeq 1?2

Viip(r) = (3.99)
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The dipole moment is determined by the geometry (size, shape, and density) of the
charge distribution. Equation 3.98 translates in the usual way (Sect. 2.1.4) for point, line,
and surface charges. Thus, the dipole moment of a collection of point charges is

p=Yar. (3.100)
i=1
For the “physical” dipole (equal and opposite charges, £¢q)
p=gqr, —gr_=q@, —r)=qd, (3.101)

where d is the vector from the negative charge to the positive one (Fig. 3.29).

Is this consistent with what we got for a physical dipole, in Ex. 3.107 Yes: If you
put Eq. 3.100 into Eq. 3.99, you recover Eq. 3.90. Notice, however, that this is only
the approximate potential of the physical dipole—evidently there are higher multipole
contributions. Of course, as you go farther and farther away, Vgjp becomes a better and
better approximation, since the higher terms die off more rapidly with increasing r. By the
same token, at a fixed r the dipole approximation improves as you shrink the separation d.
To construct a “pure” dipole whose potential is given exactly by Eq. 3.99, you’d have to let d
approach zero. Unfortunately, you then lose the dipole term 00, unless you simultaneously
arrange for g to go to infinity! A physical dipole becomes a pure dipole, then, in the rather
artificial limit d — 0, ¢ — oo, with the product gd = p held fixed. (When someone uses
the word “dipole,” you can’t always tell whether they mean a physical dipole (with finite
separation between the charges) or a pure (point) dipole. If in doubt, assume that d is small
enough (compared to r) that you can safely apply Eq. 3.99.)

Dipole moments are vectors, and they add accordingly: if you have two dipoles, p; and
p2, the total dipole moment is p; + pz. For instance, with four charges at the corners of a
square, as shown in Fig. 3.30, the net dipole moment is zero. You can see this by combining
the charges in pairs (vertically, | + 1 = 0, or horizontally, — + < = 0) or by adding up
the four contributions individually, using Eq. 3.100. This is a quadrupole, as I indicated
earlier, and its potential is dominated by the quadrupole term in the multipole expansion.)

-q +q

+q -q

Figure 3.29 Figure 3.30
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z
3q
a
—2q a —2q y
X q
Figure 3.31

Problem 3.27 Four particles (one of charge g, one of charge 3¢, and two of charge —2g) are
placed as shown in Fig. 3.31, each a distance a from the origin. Find a simple approximate
formula for the potential, valid at points far from the origin. (Express your answer in spherical
coordinates.)

Problem 3.28 In Ex. 3.9 we derived the exact potential for a spherical shell of radius R, which
carries a surface charge ¢ = k cos 6.

(a) Calculate the dipole moment of this charge distribution.

(b) Find the approximate potential, at points far from the sphere, and compare the exact answer
(3.87). What can you conclude about the higher multipples?

Problem 3.29 For the dipole in Ex. 3.10, expand 1 /4. to order (d/ r)3 , and use this to determine
the quadrupole and octopole terms in the potential.

3.4.3 Origin of Coordinates in Multipole Expansions

I mentioned earlier that a point charge at the origin constitutes a “pure” monopole. If it is
not at the origin, it’s no longer a pure monopole. For instance, the charge in Fig. 3.32 has a
dipole moment p = gd¥, and a corresponding dipole term in its potential. The monopole
potential (1/4meg)q /r is not quite correct for this configuration; rather, the exact potential
is (1/4m€0)q /2. The multipole expansion is, remember, a series in inverse powers of r (the
distance to the origin), and when we expand 1/2 we get all powers, not just the first.

So moving the origin (or, what amounts to the same thing, moving the charge) can
radically alter a multipole expansion. The monopole moment Q does not change, since the
total charge is obviously independent of the coordinate system. (In Fig. 3.32 the monopole
term was unaffected when we moved ¢ away from the origin—it’s just that it was no
longer the whole story: a dipole term—and for that matter all higher poles—appeared as
well.) Ordinarily, the dipole moment does change when you shift the origin, but there is an
important exception: If the total charge is zero, then the dipole moment is independent of
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Figure 3.32 Figure 3.33

the choice of origin. For suppose we displace the origin by an amount a (Fig. 3.33). The
new dipole moment is then

b = [Fowrdr = [@-wpw)ar
= /r’p(r’)dr’ —a/p(r’)dr’ =p- Qa.
In particular, if Q = 0, then p = p. So if someone asks for the dipole moment in

Fig. 3.34(a), you can answer with confidence “gd,” but if you’re asked for the dipole
moment in Fig. 3.34(b) the appropriate response would be: “With respect to what origin?”

~q
a a
d
*~——po
—q q q 4 ¢

(a) (b)

Figure 3.34

Problem 3.30 Two point charges, 3g and —q, are separated by a distance a. For each of the
arrangements in Fig. 3.35, find (i) the monopole moment, (ii) the dipole moment, and (iii)
the approximate potential (in spherical coordinates) at large r (include both the monopole and
dipole contributions).
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Figure 3.35

3.4.4 The Electric Field of a Dipole

So far we have worked only with porentials. Now I would like to calculate the electric field
of a (pure) dipole. If we choose coordinates so that p lies at the origin and points in the z
direction (Fig. 3.36), then the potential at r, 6 is (Eq. 3.99):

r-p pcosh
Viaip(r, 0) = = . 3.102
dip(r. ) dreor?  4dmepr? ( )
To get the field, we take the negative gradient of V:
avV  2pcosé
Er = - = 7’
ar dmegr3
19V psind
EO = TS A T . A
r 80  4dmegr?
1 av
rsinf d¢
Thus
Egip(r, 0) = —L— (2 cos 6 F + sin 6 §). (3.103)
4 egr
z
8 7 |
Pl |
L7~ ! y
o T
X

Figure 3.36
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This formula makes explicit reference to a particular coordinate system (spherical) and
assumes a particular orientation for p (along z). It can be recast in a coordinate-free form,
analogous to the potential in Eq. 3.99—see Prob. 3.33.

Notice that the dipole field falls off as the inverse cube of r; the monopole field
(Q/4megr?)t goes as the inverse square, of course. Quadrupole fields go like 1/r4, oc-
topole like 1/, and so on. (This merely reflects the fact that monopole potentials fall off
like 1/, dipole like 1/r2, quadrupole like 1/r3, and so on—the gradient introduces another
factorof 1/r.)

Figure 3.37(a) shows the field lines of a “pure” dipole (Eq. 3.103). For comparison.
I have also sketched the field lines for a “physical” dipole, in Fig. 3.37(b). Notice how
similar the two pictures become if you blot out the central region; up close, however, they
are entirely different. Only for points r >> d does Eq. 3.103 represent a valid approximation
to the field of a physical dipole. As I mentioned earlier, this régime can be reached either
by going to large r or by squeezing the charges very close together.!2

(a) Field of a "pure" dipole (a) Field of a "physical" dipole

Figure 3.37

Problem 3.31 A “pure” dipole p is situated at the origin, pointing in the z direction.
(a) What is the force on a point charge g at (a, 0, 0) (Cartesian coordinates)?

(b) What is the force on ¢ at (0,0, a)?

(c) How much work does it take to move ¢ from (a, 0, 0) to (0,0, a)?

12Even in the limit, there remains an infinitesimal region at the origin where the field of a physical dipole points
in the “wrong” direction, as you can see by “walking” down the z axis in Fig. 3.35(b). If you want to explore this
subtle and important point, work Prob. 3.42.
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Figure 3.38

Problem 3.32 Three point charges are located as shown in Fig. 3.38, each a distance a from the
origin. Find the approximate electric field at points far from the origin. Express your answer
in spherical coordinates, and include the two lowest orders in the multipole expansion.

Problem 3.33 Show that the electric field of a (“pure”) dipole (Eq. 3.103) can be written in
the coordinate-free form

1 1 e
Edip(r) = m 3 [3(p-o)r —pl. (3.104)

More Problems on Chapter 3

Problem 3.34 A point charge g of mass m is released from rest at a distance d from an infinite
grounded conducting plane. How long will it take for the charge to hit the plane? [Answer:

(md/q)/2meqmd.]

Problem 3.35 Two infinite parallel grounded conducting planes are held a distance a apart.
A point charge ¢ is placed in the region between them, a distance x from one plate. Find the
force on g. Check that your answer is correct for the special cases a — oo and x = a/2.
(Obtaining the induced surface is not so easy. See B. G. Dick, Am. J. Phys. 41, 1289 (1973),
M. Zahn, Am. J. Phys. 44, 1132 (1976), J. Pleines and S. Mahajan, Am. J. Phys. 45, 868
(1977), and Prob. 3.44 below.)

Problem 3.36 Two long straight wires, carrying opposite uniform line charges 44, are situated
on either side of a long conducting cylinder (Fig. 3.39). The cylinder (which carries no net
charge) has radius R, and the wires are a distance a from the axis. Find the potential at point r.
A : (s + a? + 2sa cos q))[(sa/R)2 + R — 2sacos ¢]
n
4meg (s2 4+ a2 — 2sacos p)[(sa/R)?2 + R? + 2sa cos ¢]

|:Answer.' Vs, o) =

Problem 3.37 A conducting sphere of radius a, at potential V), is surrounded by a thin con-
centric spherical shell of radius b, over which someone has glued a surface charge

o(8) = kcosé,
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G

Figure 3.39 Figure 3.40

where k is a constant, and 6 is the usual spherical coordinate.
(a) Find the potential in each region: (i) r > b, and (ii) a < r < b.
(b) Find the induced surface charge o; (6) on the conductor.

(c) What is the total charge of this system? Check that your answer is consistent with the
behavior of V at large r.

avo/r + (b3 - a3)kcos9/3r260, r>b
Answer: V(r,0) =
aVy/r + 3 - a3)kcos9/3r260, r<b

Problem 3.38 A charge +Q is distributed uniformly along the z axis from z = —a to z = +a.
Show that the electric potential at a point r is given by

RN PR VEAS Leayt
V(r,9)_4n€0r[1+3(r) P2(c0s9)+5(r) Py(cos6) + ... |,

forr > a.

Problem 3.39 A long cylindrical shell of radius R carries a uniform surface charge og on the
upper half and an opposite charge —o( on the lower half (Fig. 3.40). Find the electric potential
inside and outside the cylinder.

Problem 3.40 A thin insulating rod, running from z = —a to 7 = +a, carries the indicated
line charges. In each case, find the leading term in the multipole expansion of the potential:
(a) A = kcos(mz/2a), (b) A = ksin(wz/a), (¢) A = kcos(wz/a), where k is a constant.

Problem 3.41 Show that the average field inside a sphere of radius R, due to all the charge
within the sphere, is
1 p

Eave = —

where p is the total dipole moment. There are several ways to prove this delightfully simple
result. Here’s one method:
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(a) Show that the average field due to a single charge ¢ at point r inside the sphere is the same
as the field at r due to a uniformly charged sphere with p = —¢q /(%nR3), namely

1 1

L
4ne0(%ﬂR3) a2 ’

where % is the vector from r to dt’.

(b) The latter can be found from Gauss’s law (see Prob. 2.12). Express the answer in terms of
the dipole moment of g.

(c) Use the superposition principle to generalize to an arbitrary charge distribution.

(d) While you’re at it, show that the average field over the sphere due to all the charges outside
1s the same as the field they produce at the center.

Problem 3.42 Using Eq. 3.103, calculate the average electric field of a dipole, over a spherical
volume of radius R, centered at the origin. Do the angular intervals first. [Note: You must
express r and 6 in terms of %, ¥, and Z (see back cover) before integrating. If you don’t
understand why, reread the discussion in Sect. 1.4.1.] Compare your answer with the general
theorem Eq. 3.105. The discrepancy here is related to the fact that the field of a dipole blows
up at r = 0. The angular integral is zero, but the radial integral is infinite, so we really don’t
know what to make of the answer. To resolve this dilemma, let’s say that Eq. 3.103 applies
outside a tiny sphere of radius e—its contribution to Eaye 1s then unambiguously zero, and the
whole answer has to come from the field inside the e-sphere.

(b) What must the field inside the e-sphere be, in order for the general theorem (3.105) to hold?
[Hint: since € is arbitrarily small, we're talking about something that is infinite at » = 0 and
whose integral over an infinitesimal volume is finite.] [Answer: —(p/3eo)53(r)]

[Evidently, the true field of a dipole is

1 - 1
Egip(r) = 775 B3P - HF = pl = 3—p&'(m). (3.106)

You may well wonder how we missed the delta-function term when we calculated the field
back in Sect. 3.4.4. The answer is that the differentiation leading to Eq. 3.103 is perfectly valid
except at r = 0, but we should have known (from our experience in Sect. 1.5.1) that the point
r = 0 is problematic. See C. P. Frahm, Am. J. Phys. 51, 826 (1983), or more recently R.
Estrada and R. P. Kanwal, Am. J. Phys. 63, 278 (1995). For further details and applications,
see D. J. Griffiths, Am. J. Phys. 50, 698 (1982).]

Problem 3.43

(@) Suppose a charge distribution p| (r) produces a potential V{ (r), and some other charge dis-
tribution p; (r) produces a potential V5 (r). [The two situations may have nothing in common,
for all I care—perhaps number 1 is a uniformly charged sphere and number 2 is a parallel-plate
capacitor. Please understand that p; and p, are not present af the same time; we are talking
about two different problems, one in which only p1 is present, and another in which only p; is
present.] Prove Green’s reciprocity theorem:

p1Vadt = / o Vidr.

all space all space
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a b
Figure 3.41
[Hint: Evaluate [ E; - Ey dt two ways, first writing E; = —V v} and using integration-by-
parts to transfer the derivative to Ej, then writing E» = —V V; and transferring the derivative

to E] ]

(b) Suppose now that you have two separated conductors (Fig. 3.41). If you charge up conductor
a by amount @ (leaving b uncharged) the resulting potential of 4 is, say, V5. On the other
hand, if you put that same charge Q on conductor & (leaving a uncharged) the potential of
a would be V,,. Use Green’s reciprocity theorem to show that V,; = Vj, (an astonishing
result, since we assumed nothing about the shapes or placement of the conductors).

Problem 3.44 Use Green’s reciprocity theorem (Prob. 3.43) to solve the following two prob-
lems. [Hinz: for distribution 1, use the actual situation; for distribution 2, remove ¢, and set
one of the conducters at potential Vj.]

(a) Both plates of a parallel-plate capacitor are grounded, and a point charge g is placed between
them at a distance x from plate 1. The plate separation is d. Find the induced charge on each
plate. [Answer: Q1 = q(x/d — 1); Q2 = —qgx/d]

(b) Two concentric spherical conducting shells (radii a and b) are grounded, and a point charge
q is placed between them (at radius ). Find the induced charge on each sphere.

Problem 3.45

(a) Show that the quadrupole term in the multipole expansion can be written

3
11 "
Vquad (1) = pr—w i;] 7 Qi

where
Qi = /[3r,-/r} — (")28;j1p()d.
Here
1 ifi=j
51']' =
0 ifi#£j

is the Kronecker delta, and Q; ; is the quadrupole moment of the charge distribution. Notice
the hierarchy:

~ 1 AA
1 > 7ipi 1 32 770

D Vgpad = ——— ———=
2 quad dreg 3

Voon = —— 2. Vg, =
mon_4neor’ dlp_4neo 7
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The monopole moment (Q) is a scalar, the dipole moment (p) is a vector, the quadrupole
moment (Q;;) is a second-rank tensor, and so on.

(b) Find all nine components of @;; for the configuration in Fig. 3.30 (assume the square has
side a and lies in the xy plane, centered at the origin).

(c) Show that the quadrupole moment is independent of origin if the monopole and dipole
moments both vanish. (This works all the way up the hierarchy—the lowest nonzero multipole
moment is always independent of origin.)

(d) How would you define the octopole moment? Express the octopole term in the multipole
expansion in terms of the octopole moment.

Problem 3.46 In Ex. 3.8 we determined the electric field outside a spherical conductor (radius
R) placed in a uniform external field Eq. Solve the problem now using the method of images,
and check that your answer agrees with Eq. 3.76. [Hint: Use Ex. 3.2, but put another charge,
—q, diametrically opposite g. Let a — oo, with (l/4neo)(2q/a2) = —E held constant.]

Problem 3.47For the infinite rectangular pipe in Ex. 3.4, suppose the potential on the bottom
(y = 0) and the two sides (x = =£b) is zero, but the potential on the top (y = a) is a nonzero
constant V. Find the potential inside the pipe. [Note: This is a rotated version of Prob. 3.14(b),
but set it up as in Ex. 3.4 using sinusoidal functions in y and hyperbolics in x. It is an unusual
case in which & = 0 must be included. Begin by finding the general solution to Eq. 3.26 when
k = 0. For further discussion see S. Hassani, Am. J. Phys. 59, 470 (1991).]

: —1)" cosh .
[Answer Vo (% + % p ] (Y nl) —b—zgzhgzg)‘ﬁ; sln(nny/a))]

Problem 3.48

(a) A long metal pipe of square cross-section (side a) is grounded on three sides, while the
fourth (which is insulated from the rest) is maintained at constant potential V. Find the net
charge per unit length on the side opposite to V. [Hint: Use your answer to Prob. 3.14 or
Prob. 3.47.]

(b) A long metal pipe of circular cross-section (radius R) is divided (lengthwise) into four
equal sections, three of them grounded and the fourth maintained at constant potential Vj.
Find the net charge per unit length on the section opposite to Vg. [Answer 1o both (a) and (b):
A= —¢VyIn2]3

Problem 3.49 An ideal electric dipole is situated at the origin, and points in the z direction,
as in Fig. 3.36. An electric charge is released from rest at a point in the xy plane. Show that
it swings back and forth in a semi-circular arc, as though it were a pendulum supported at the
origin. [This charming result is due to R. S. Jones, Am. J. Phys. 63, 1042 (1995).]

13These are special cases of the Thompson-Lampard theorem; see J. D. Jackson, Am. J. Phys. 67, 107 (1999).



