
1.	What	do	you	mean	by	a	Database	Management	System?

Ans-	Database	Management	is	a	collection	of	programs	and	files	that	allow	a	user	to	define

structure	of	a	database,	store	data	into	it,	modify	the	structure	and	manipulate	the	data.

2.	What	do	you	mean	by	Relational	database?

Ans.	Relational	Database	is	a	type	of	database	in	which	relation	is	used	as	its	basic

element.Row	and	columns	are	used	to	store	data.

3.	What	is	a	foreign	key?

Ans	If	a	key	is	available	in	a	table	as	a	primary	key	then	this	key	is	called	foreign	key	in

another	table.

4.	What	is	primary	key?

Ans-Primary	key	is	a	unique	key	in	a	relation	which	can	uniquely	identifies	a	tuple	(row)	in	a

given	relation.

5.	What	is	SQL?

Ans-	SQL	is	stands	for	structured	query	language.	This	language	is	used	to	manipulate	data

stored	in	a	table.

6.	What	is	referential	integrity?

Ans-	This	is	a	rule	which	ensures	that	in	DBMS	relationships	between	records	in	related

tables	are	valid.	And	that	user	don’t	accidently	delete	or	change	related	data.

7.	What	is	MySql?

Ans-	Mysql	is	an	open	source	RDBMS	which	uses	SQL.

8.	What	is	DDL?

Ans-		DDL	provides	commands	to	define	or	redefine	the	schema	of	a	table.Table	is

created,altered	and	dropped	using	DDL.

9.	What	are	DML	commands?

Important Questions Part-1

MYSQL REVISION TOUR



Ans-		DML	commands	are	used	to	manipulate	data	stored	in	a	table.Insertion,	deletion	and

modifications	are	possible	using	DML	commands.

10.	Maximum	how	many	characters	can	be	stored	in	a	(i)	text	literals	(ii)	numeric

literal

Ans-	(i)	Text	literals	can	have	4000	bytes	(ii)	A	numeric	literals	can	store	53	digits.

11.	What	is	null	value	in	MySql?

Ans-	If	a	column	in	a	row	has	no	value,	then	column	is	said	to	be	null.

12.	Which	keyword	eliminates	redundant	data	in	from	a	query	result?

Ans-	DISTINCT

13.	How	would	you	display	system	date	as	the	result	of	a	query?

Ans-	CURDATE()

14.	What	is	NOW()	function	in	MySql?

Ans-	It	returns	the	current	date	and	time.

15.	What	is	NOT	NULL	constraint?

Ans-	NOT	NULL	constraints	impose	a	condition	that	value	of	a	row	cannot	be	left	blank.

16.	What	is	error	in	following	statement?

UPDATE	EMPL;

Ans-	WHERE	clause	is	missing	in	given	query.

17.	Identify	the	error?

DELETE	ALL	FROM	TABLE	EMP;

Ans-There	is	no	need	to	write	ALL	and	TABLE	word	in	above	query.

Correct	form	is-DELETE	FROM	EMP;

18.	Differeniate	WHERE	and	HAVING	clause?

Ans-	Where	clause	is	used	to	select	particular	rows	that	satisfy	condition	whereas	having

clause	is	used	in	connection	with	aggregate	function,	group	by	clause.

19.	How	SQL	commands	are	are	classified?

Ans-SQL	Commands	are	classified	into	three	categories

(i)	Data	Definition	Language	(DDL)-Commands	that	allow	us	to	perform	tasks	related	to



data	definition.	E.g.	creating,	altering	and	dropping

(ii)	Data	Manipulation	Language	(DML)	-	Commands	that	allows	us	to	perform	data

manipulation	e.g	retrieval,	insertion,	and	modification	of	data	stored	in	a	database.

(iii)	Transaction	Control	Language	(TCL)-Commands	that	allow	us	to	manage	and	control	the

transactions.

20.	What	is	difference	between	char	and	varchar?

Ans-The	difference	between	char	and	varchar	is	that	of	fixed	length	and	variable	length.The

CHAR	datatypes	specifies	a	fixed	length	character	string.When	a	column	is	given	datatype	as

CHAR(n)	then	MySQL	ensures	that	all	values	stored	in	that	column	have	this	length.But	on

other	hand	when	a	column	is	given	datatype	as	VARCHAR(n)	,then	the	maximum	size	of	a

value	in	this	column	stores	exactly	what	we	specify.

21.	What	do	you	understand	by	the	terms	primary	key	and	degree	of	a	relation	in

relational	data	base?

Ans:	Primary	Key:	A	primary	key	is	a	set	of	one	or	more	attributes	that	can	uniquely	identify

tuples	within	the	relations.	The	number	of	attributes	in	a	relation	is	called	Degree	of

arelation	in	relational	data	base.

22.	What	do	you	understand	by	the	candidate	key	and	cardinality	of	a	relation	in

relational	data	base?

Ans.	Candidate	Key:	All	attribute	combinations	inside	a	relation	that	can	serve	as	primary

key	(uniquely	identifies	a	row	in	a	relation)	are	Candidate	Keys	as	they	are	candidates	for	the

primary	key	position.	The	number	of	rows	in	a	relation	is	known	as	cardinality	of	a	relation.

23.	Consider	the	following	tables	Item	and	Customer.	Write	SQL	commands	for	the

statement	(i)	to	(iv)	and	give	outputs	for	SQL	queries	(v)	to	(viii)

Table:	ITEM

S.no I_ID Item	Name Manufacturer	Price

01 PC01 Personal	Computer ABC	35000

02 LC05 Laptop ABC	55000

03 PC03 Personal	Computer XYZ	32000



04 PC06 Personal	Computer COMP	37000

05 LC03 Laptop PQR	57000

Table:	CUSTOMER	C_ID	Customer	Name	City	I_ID

S.no CUSTOMER	C_ID Customer	Name City I_ID

01 01 N.Roy Delhi LC03

02 06 H.Singh Mumbai PC03

03 12 R.Pandey Delhi PC06

04 15 C.Sharma Delhi LC03

05 16 K.Agrawal Bangalore PC01

(i)	To	display	the	details	of	those	Customers	whose	city	is	Delhi

Ans:	Select	all	from	Customer	Where	City=”Delhi”

(ii)	To	display	the	details	of	Item	whose	Price	is	in	the	range	of	35000	to	55000	(Both

values	included).

Ans:	Select	all	from	Item	Where	Price>=35000	and	Price	<=55000

(iii)	To	display	the	Customer	Name,	City	from	table	Customer,	and	Item	Name	and	Price

from	table	Item,	with	their	correspondingmatching	I_ID.

Ans:	Select	Customer	Name,	City,	ItemName,	Price	from	Item,	Customer	where

Item.I_ID=Customer.I_ID.

(iv)	To	increase	the	Price	of	all	Items	by	1000	in	the	table	Item.

Ans:	Update	Item	set	Price=Price+1000

(v)	SELECT	DISTINCT	City	FROM	Customer.

Ans:	City	Delhi,	Mumbai,	Bangalore

(vi)	SELECT	Item	Name,	MAX(Price),	Count(*)	FROM	Item	GROUP	BY	Item	Name;

Ans:	Item	Name	Max(Price)	Count(*)	Personal	Computer	37000	3	Laptop	57000	2



(vii)	SELECT	Customer	Name,	Manufacturer	FROM	Item,	Customer	WHERE

Item.Item_Id=Customer.Item_Id;

Ans:	Customer	Name	Manufacturer	Name

N.Roy	PQR

H.Singh	XYZ

R.Pandey	COMP

C.Sharma	PQR

K.Agarwal	ABC

(viii)	SELECT	Item	Name,	Price	*	100	FROM	Item	WHERE

Manufacturer	=	‘ABC’;

Ans:	Item	Name	Price*100

Personal	Computer	3500000

Laptop	5500000



1.	Define	a	transaction.

Ans.	A	transaction	is	a	logical	unit	of	a	work	that	must	succeed	or	fail	in	its	entirely.	It	is	an

atomic	operation	which	can	be	divided	unto	smaller	operations.

2.	What	are	the	two	ways	in	which	multiple	transactions	can	be	executed?

Ans.		Multiple	transactions	can	be	executed	in	one	of	the	following	two	ways:

(i)	Serially	(ii)	Concurrently

3.	What	is	a	savepoint?

Ans.	Savepoints	are	special	operations	that	allow	you	to	divide	the	work	of	a

transaction	into	different	segments.	In	case	of	a	failure,	you	can	execute	rollbacks	to

the	savepoint	only,	leaving	prior	changes	intact.

4.	What	to	you	understand	by	a	database	transaction?

Ans.	A	database	transaction	is	a	logical	unit	of	work	that	must	succeed	or	fail	in	its	entirely.

5.	Why	do	understand	by	transaction	COMMIT	and	ROLLBACK?

Ans-COMMITing	a	transaction	means	all	the	steps	of	a	transaction	are	carried	out

successfully	and	all	data	changes	are	made	permanent	in	the	database.	Transaction

ROLLBACK	means	transaction	has	not	been	finished	completely	and	hence	all	data	changes

made	by	the	transaction	in	the	database	if	any,	are	undone	and	the	database	returns	to	the

state	as	it	was	before	this	transaction	execution	started.

6.	What	do	you	understand	by	ACID	properties	of	database	transaction?

Ans.	To	ensure	the	data-integrity,	the	database	system	maintains	the	following	properties	of

transaction.	The	properties	given	below	are	termed	as	ACID	properties-an	acronym	derived

from	the	first	letter	of	each	of	the	properties.

(i)	Atomicity-This	property	ensures	that	either	all	operations	of	the	transactions	are

reflected	properly	in	the	database,	none	are.	Atomicity	ensures	either	al-or-none

operations	of	a	transaction	are	carried	out.

(ii)	Consistency-This	property	ensures	that	database	remains	in	a	consistent	state	before	the

Important Questions Part-2

DATABASE TRANSACTIONS



start	of	transaction	and	after	the	transaction	is	over.

(iii)	Isolation-Isolation	ensures	that	executing	transaction	execution	in	isolation	i.e.	is

unaware	of	other	transactions	executing	concurrently	in	the	system.

(iv)	Durability-This	property	ensures	that	after	the	successful	completion	of	a	transaction	i.e

when	a	transaction	COMMITs,	the	changes	made	by	it	to	the	database	persist	i.	e	remain	in

the	database	irrespective	of	other	failures.

7.	What	the	function	is	of	redo	and	undo	logs?

Ans.	Every	database	has	a	set	of	redo	log	files.	It	records	all	change	in	data	including	both

committed	and	uncommitted	changes.	Undo	logs	stored	roll	backed	data.

8.	What	TCL	commands	are	supported	by	SQL?

Ans.	SQL	supports	following	TCL	commands

BEGIN	|START	TRANSACTION-Marks	the	beginning	of	a	transaction	COMMIT-Ends	the

current	transaction	by	saving	database	changes	and	starts	a	new	transaction.

ROLLBACK-Ends	the	current	transaction	by	discarding	changes	and	starts	a	new

transaction.SAVEPOINT-Defines	breakpoints	for	the	transactions	to	allow	partial	rollbacks.

SET	AUTOCOMMIT-Enables	or	disable	the	default	autocommit	mode.

9.	Which	two	statements	complete	a	transaction?

A.	DELETE	employees;

B.	DESCRIBE	employees;

C.	ROLLBACK	TO	SAVEPOINT	C;

D.	GRANT	SELECT	ON	employees	TO	SCOTT;

E.	ALTER	TABLE	employees

MODIFY	COLUMN	sal;

F.	Select	MAX(sal)

FROM	employees

WHERE	department_id=20;

Ans.	-	C,	E



1.	Which	of	the	following	will	give	the	same	Ans	irrespective	of	the	NULL	values	in	the

specified	column:

a.	MIN()

b.	MAX()

c.	SUM()

d.	None	of	the	above

Ans-c

2.	An	aggregate	function:

a.	Takes	a	column	name	as	its	arguments

b.	May	take	an	expression	as	its	argument

c.	Both	(a)	and	(b)

d.	None	of	(a)	and	(b)

Ans-c

3.	HAVING	is	used	in	conjunction	with

a.	WHERE

b.	GROUP	BY	clause

c.	Aggregate	functions

d.	None	of	the	above

Ans-b

4.	In	the	FROM	clause	of	

a.	SELECTatement

b.	Multiple	table	names	are	specified.

c.	Multiple	Column	Names	may	be	specified.

d.	Multiple	table	names	may	be	specified.

Ans-a

5.	JOIN	in	RDBMS	refers	to

Important Questions Part-3

More on SQL-Grouping Records and Table Joins



a.	Combination	of	multiple	columns

b.	Combination	of	multiple	rows

c.	Combination	of	multiple	tables

d.	Combination	of	multiple	databases

Ans-c

6.	Equi-join	is	formed	by	equating	Equi-join	is	formed	by	equating

a.	Foreign	key	with	Primary	key

b.	Each	row	with	all	other	rows

c.	Primary	key	with	Primary	key

d.	Two	tables

Ans-a

7.	Referential	integrity

a.	Must	be	maintained

b.	Cannot	be	maintained

c.	Is	automatically	maintained	by	databases

d.	Should	not	be	maintained

Ans-a

8.	A	Primary	key	column

a.	Can	have	NULL	values

b.	Can	have	duplicate	values

c.	Both	(a)	and	(b)

d.	Neither	(a)	nor	(b)

Ans-d

9.	Primary	Key	of	a	table	can	be

a.	Defined	at	the	time	of	table	creation	only.

b.	Defined	after	table	creation	only.

c.	Can	be	changed	after	table	creation

d.	Cannot	be	changed	after	table	creation

Ans-a

10.	Two	SELECT	commands	in	a	UNION



a.	Should	select	same	number	of	columns.

b.	Should	have	different	number	of	columns

c.	Both	(a)	and	(b)

d.	Neither	(a)	nor	(b)

Ans-c

Very	Short	Question	Ans

1.	Why	is	it	not	allowed	to	givering	and	Date	type	arguments	for	SUM()	and	AVG()

functions?	Can	we	give	these	type	of	arguments	for	other	functions?

Ans	:ring	and	dates	are	not	real	numbers	that	we	calculate	so	sum	or	avg	functions	are	not

valid	for	them.

2.	What	is	default,	Autocommit	mode	in	MySQL	?

Ans	:	By	default,	Autocommit	mode	is	on	in	MySQL.

3.	Can	where	be	added	a	savepoint	in	a	transaction	?

Ans	:	We	can	add	a	savepoint	anywhere	in	a	transaction.

4.	How	are	NULL	values	treated	by	aggregate	functions?

Ans	:	None	of	the	aggregate	functions	takes	NULL	into	consideration.	NULL	is	simply

ignored	by	all	the	aggregate	functions.

5.	There	is	a	column	C1	in	a	table	T1.	The	following	twoatements:	SELECT

COUNT(*)FROM	T1;	and	SELECT	COUNT(C1)	from	T1;	are	giving	different	outputs.	What

may	be	the	possible	reason?

Ans	:	There	may	be	a	null	value.

6.	What	is	the	purpose	of	GROUP	BY	clause?

Ans	:	GROUP	BY:	GROUP	BY	clause	is	used	in	a	SELECTatement	in	conjunction	with

aggregate	functions	to	group	the	result	based	on	distinct	values	in	a	column.

7.	What	is	the	difference	between	HAVING	and	WHERE	clauses?	Explain	with	the	help

of	an	example.

Ans	:	WHERE	Vs	HAVING:	WHERE	is	used	to	put	a	condition	on	individual	row	of	a	table

whereas	HAVING	is	used	to	put	condition	on	individual	group	formed	by	GROUP	BY	clause	in



a	SELECTatement.

8.	What	is	a	Foreign	key?	What	is	its	importance?

Ans	:	Foreign	Key:	It	is	a	column	of	a	table	which	is	the	primary	key	of	another	table	in	the

same	database.	It	is	used	to	enforce	referential	integrity	of	the	data.

9.	What	are	constraints?	Are	constraints	useful	or	are	they	hindrances	to	effective

management	of	databases?

Ans	:	These	are	the	rules	which	are	applied	on	the	columns	of	tables	to	ensure	data	integrity

and	consistency.	These	play	very	important	role	for	tables	so	are	not	hindrances.

10.	In	a	database	there	is	a	table	Cabinet.	The	data	entry	operator	is	not	able	to	put

NULL	in	a	column	of	Cabinet?	What	may	be	the	possible	reason(s)?

Ans	:	Not	NULL	or	Primary	key	constraints	used.

11.	In	a	database	there	is	a	table	Cabinet.	The	data	entry	operator	is	not	able	to	put

duplicate	values	in	a	column	of	Cabinet?	What	may	be	the	possible	reason(s)?

	Ans	:	Primary	key	constraint	used.

12.	Do	Primary	Key	column(s)	of	a	table	accept	NULL	values?

Ans	:No.

13.	There	is	a	table	T1	with	combination	of	columns	C1,	C2,	and	C3	as	its	primary	key?	Is

it	possible	to	enter:

a.	NULL	values	in	any	of	these	columns?

b.	Duplicate	values	in	any	of	these	columns?

Ans	:	No.

14.	What	are	the	differences	between	DELETE	and	DROP	commands	of	SQL?

Ans	:	Delete	is	used	for	row	removing	while	drop	is	used	for	removing	complete	table.

15.	What	are	Aggregate	Functions	?

Ans	:	A	multiple	row	function	works	on	multiple	values.	These	functions	are	called

aggregate	functions	or	group	functions.

16.	for	what	Data	Types	aggregate	functions	:	MIN(),	MAX(),	and	COUNT()	work?

Ans	:	on	any	type	of	values	-	Numeric,	Date,	orring.	AVG(),	and	SUM()	work	on	only



Numeric	values	(INT	and	DECIMAL).

17.	What	is	HAVING	clause	?

Ans	:	HAVING	clause	is	used	in	conjunction	with	GROUP	BY	clause	in	a	SELECTatement	to

put	condition	on	groups.

18.	What	is	Referential	Integrity	?

Ans	:	The	property	of	a	relational	database	which	ensures	that	no	entry	in	a	foreign	key

column	of	a	table	can	be	made	unless	it	matches	a	primary	key	value	in	the	corresponding

column	of	the	related	table.

19.	What	is	Union	used	for	?

Ans	:	Union	is	an	operation	of	combining	the	output	of	two	SELECTatements.

20.	What	is	ALTER	TABLE	?

Ans	:	ALTER	TABLE	command	can	be	used	to	Add,	Remove,	and	Modify	columns	of	a	table.	It

can	also	be	used	to	Add	and	Remove	constraints.

21.	What	is	DROP	TABLE	?

Ans	:	DROP	TABLE	command	is	used	to	delete	tables.

22.	What	function	is	used	whenever	a	condition	involves	an	aggregate	function	?

Ans	:	whenever	a	condition	involves	an	aggregate	function,	then	we	use	HAVING	clause	in

conjunction	with	GROUP	BY	clause.

23.	What	is	Difference	between	GROUP	BY’	and	Having	functions	?

Ans	:	WHERE	function	is	used	for	individual	records	and	HAVING	for	groups	.	GROUP	BY

function	is	used	for	getting	results	based	on	some	groups	of	data	while	a	condition	on	groups

is	applied	by	HAVING	clause.

Short	Questoins	Ans

1.	Why	are	aggregate	functions	called	so?	Name	some	aggregate	functions.

Ans	:	A	multiple	row	function	works	on	multiple	values.	These	functions	are	called	aggregate

functions	or	group	functions.	Some	of	the	most	frequently	used.	Aggregate	functions	in

MySQL	are



:	MIN(),	MAX(),	AVG(),	SUM(),	COUNT().

Q2.	What	is	ALTER	TABLE	command	?Write	all	the	commands	that	can	be	applied	using

alter	table.

Ans	:	a	new	column	can	be	added	to	a	table	using	ALTER	TABLE	command.	ALTER	TABLE

can	be	used:

•	to	add	a	constraint

•	to	remove	a	constraint

•	to	remove	a	column	from	a	table

•	to	modify	a	table	column

Q3.	What	is	the	Cartesian	product	of	two	table?	Is	it	same	as	an	Equi-join?

Ans	:	Cartesian	Product	(or	Cross	Join):	Cartesian	product	of	two	tables	is	a	table	obtained	by

pairing	each	row	of	one	table	with	each	row	of	the	other.	A	cartesian	product	of	two	tables

contains	all	the	columns	of	both	the	tables.

Equi-Join:	An	equi	join	of	two	tables	is	obtained	by	putting	an	equality	condition	on	the

Cartesian	product	of	two	tables.	This	equality	condition	is	put	on	the	common	column	of	the

tables.	This	common	column	is,	generally,	primary	key	of	one	table	and	foreign	key	of	the

other.

LONG	QUESTION-Ans

1.	Does	Union	display	any	duplicate	rows	?

Ans	:Union	does	not	display	any	duplicate	rows	unless	ALL	is	specified	with	it.

2.	Name	the	Aggregate	Functions.

Ans	:	These	functions	are:

S.

No.

Name	of	the

Function
Purpose

1 MAX()
Returns	the	MAXIMUM	of	the	values	under	the	specified

column/expression.

2 MIN()
Returns	the	MINIMUM	of	the	values	under	the	specified

column/expression.



3 AVG()
Returns	the	AVERAGE	of	the	values	under	the	specified

column/expression.

4 SUM()
Returns	the	SUM	of	the	values	under	the	specified

column/expression.

5 COUNT()
Returns	the	COUNT	of	the	number	of	values	under	the	specified

column/expression.

2.	What	is	Max	Function	?	Give	few	Examples.

Ans.	MAX()	function	is	used	to	find	the	highest	value	of	any	column	or	any	expression	based

on	a	column.	MAX()	takes	one	argument	which	can	be	any	column	name	or	a	valid

expression.

involving	a	column	name.	e.g.,

To	find	the	highest	cost	of	any	type	of	shoe	in	the	factory.

SELECT	MAX(cost)	FROM	shoes;

MAX(cost)

843.00

To	find	the	highest	cost	of	any	shoe	of	type	'School'.

SELECT	MAX(cost)	FROM	shoes	WHERE	type	='School';

MAX(cost)	320.75	To	find	the	highest	selling	price	of	any	type	of	shoe.

SELECT	MAX(cost+cost*margin/	100)	FROM	shoes;

MAX(cost+cost*margin/100)

828.517500000

To	find	the	highest	selling	price	of	any	type	of	shoe	rounded	to	2	decimal	places.

SELECT	ROUND(MAX(cost+cost*mar	gin/100),2)	AS	"Max.	SP"	FROM	shoes;

Max.	SP

733.36

To	find	the	highest	selling	price	of	any	type	of	shoe	rounded	to	2	decimal	places.

SELECT	ROUND(MAX(cost+cost*mar	gin/100),2)	AS	"Max.	SP"	FROM	shoes;

Max.	SP	733.36

3.	What	is	min()	Function	?	Give	Some	Examples.

Ans	MIN()	:

MIN()	function	is	used	to	find	the	lowest	value	of	any	column	or	an	expression	based	on	a



column.	MIN()	takes	one	argument	which	can	be	any	column	name	or	a	valid	expression

involving	a

column	name.	e.g.,

To	find	the	lowest	cost	of	any	type	of	shoe	in	the	factory.

SELECT	MIN(cost)	FROM	shoes;

MIN(cost)	43.00	To	find	the	lowest	cost	of	any	shoe	of	type	'School'.

SELECT	MIN(cost)	FROM	shoes	WHERE	type	='School';

MIN(cost)	320.75To	find	the	lowest	selling	price	of	any	type	of	shoe	rounded	to	2	decimal

places.	SELECT	ROUND(MIN(cost+cost*mar	gin/100),2)

AS	"Min.	SP"	FROM	shoes;

Min.	SP	135.15

4	.	What	is	AVG()	Function	?	Give	Some	Examples.

Ans	:	AVG()	function	is	used	to	find	the	average	value	of	any	column	or	an	expression	based

on	a	column.	AVG()	takes	one	argument	which	can	be	any	column	name	or	a	valid

expression	involving	a	column	name.	Here	we	have	a	limitation:	the	argument	of	AVG()

function	can	be	of	numeric	(int/decimal)	type	only.	Averages	ofring	and	Date	type	data	are

not	defined.	E.g.,

To	find	the	average	margin	from	shoes	table.

SELECT	AVG(margin)	FROM	shoes;

AVG(margin)	2.600000To	find	the	average	cost	from	the	shoes	table.

SELECT	AVG(cost)	FROM	shoes;

AVG(cost)	491.750000	To	find	the	average	quantity	inock	for	the	shoes	of	type	Sports.

SELECT	AVG(qty)	FROM	shoes	WHERE	type	='Sports';

AVG(qty)	580.0000

5.	What	is	Sum()	Function	?	Give	Some	Examples.

Ans.SUM()	function	is	used	to	find	the	total	value	of	any	column	or	an	expression	based	on	a

column.	SUM()	also	takes	one	argument	which	can	be	any	column	name	or	a	valid

expression	involving	a	column	name.	Like	AVG(),	the	argument	of	SUM()	function	can	be	of

numeric	(int/decimal)	type	only.	Sums	ofring	and	Date	type	data	are	not	defined.	e.g.,

To	find	the	total	quantity	present	in	theock

SELECT	SUM(Qty)	FROM	Shoes;

SUM(Qty)	10020



To	find	the	total	order	quantity

SELECT	SUM(order_qty)	FROM	orders;

SUM(order_qty)	2475

To	find	the	the	total	value	(Quanitity	x	Cost)	of	Shoes	of	type	'Office'	present	in	the	inventory

SELECT	SUM(cost*qty)	FROM	shoes	WHERE	type	=	'Office';

SUM(cost*qty)	772000.00

6.	What	is	COUNT()	Function	?	Give	Some	Examples.

Ans	.	COUNT()	function	is	used	to	count	the	number	of	values	in	a	column.	COUNT()	takes

one	argument	which	can	be	any	column	name,	an	expression	based	on	a	column,	or	an

asterisk	(*).	When	the	argument	is	a	column	name	or	an	expression	based	on	a	column,

COUNT()	returns	the	number	of	non-NULL	values	in	that	column.	If	the	argument	is	a	*,	then

COUNT()	counts	the	total	number	of	rows	satisfying	the	condition,	if	any,	in	the	table.	e.g.,

To	count	the	total	number	of	records	in	the	table	Shoes.

SELECT	COUNT(*)	FROM	shoes;

COUNT(*)13

To	count	the	different	types	of	shoes	that	the	factory	produces

SELECT	COUNT(distinct	type)	FROM	shoes;

COUNT(distinct	type)	3

To	count	the	records	for	which	the	margin	is	greater	than	2.00

SELECT	COUNT(margin)	FROM	shoes	WHERE	margin	>	2;

COUNT(margin)

To	count	the	number	of	customers	in	'A'	category

SELECT	COUNT(*)	FROM	customers	WHERE	category	='A';

COUNT(*)

To	count	the	number	of	orders	of	quantity	more	than	300

SELECT	COUNT(*)	FROM	orders	WHERE	order_qty	>300;

COUNT(*)

7.	Does	aggregate	Functions	consider	Null	values.Does	NULLs	play	any	role	in	actual

calculations	?

Ans	:	None	of	the	aggregate	functions	takes	NULL	into	consideration.	NULL	is	simply	ignored

by	all	the	aggregate	functions.	For	example,	theatement:



SELECT	COUNT(*)	FROM	shoes;

Produces	the	following	output:

COUNT(*)

Indicating	that	there	are	13	records	in	the	Shoes	table.	Whereas	the	query:

SELECT	COUNT(margin)	FROM	shoes;

produces	the	output:

COUNT(margin)

This	output	indicates	that	there	are	10	values	in	the	margin	column	of	Shoes	table.	This

means	there	are	3	(13-10)	NULLs	in	the	margin	column.

This	feature	of	aggregate	functions	ensures	that	NULLs	don't	play	any	role	in	actual

calculations.	the	followingatement:

SELECT	AVG(margin)	FROM	shoes;

8.	What	is	AVG()	Function	?	Give	Some	Examples.	Does	NULLs	play	any	role	in	Average

calculations	?

Ans	This	Function	is	used	to	get	the	Average	Value.

produces	the	output:

AVG(margin)

2.600000

The	average	margin	has	been	calculated	by	adding	all	the	10	non	NULL	values	from

themargin	column	and	dividing	the	sum	by	10	and	not	by	13.

9.	What	is	‘GROUP	BY’	?	Give	Examples.

Ans:	GROUP	BY	function	is	used	for	getting	results	based	on	some	groups	of	data.

For	example,	o	The	management	of	the	shoe	factory	may	want	to	know	what	is	the	total

quantity	of	shoes	of	various	types.	i.e.,	what	is	the	total	quantity	of	shoes	of	type	School,

Office,	and	Sports	each.The	management	may	also	want	to	know	what	is	the	maximum,

minimum,	and	average	margin	of	each	type	of	shoes.	o	It	may	also	be	required	to	find	the

total	number	of	customers	in	each	category.	There	are	many	such	requirements.	SQL

provides	GROUP	BY	clause	to	handle	all	such	requirements.	For	the	above	three	situations,

theatements	with	GROUP	BY	clause	are	given	below:	In	the	first	situation	we	want	MySQL	to

divide	all	the	records	of	shoes	table	into	different	groups	based	on	their	type	(GROUP	BY

type)	and	for	each	group	it	should	display	the	type	and	the	corresponding	total	quantity

(SELECT	type,	SUM(qty)).	So	the	completeatement	to	do	this	is:	SELECT	type,	SUM(qty)	FROM



shoes	GROUP	BY	type;

G1	and	the	corresponding	output	is:

Type SUM(qty)

Office 1100

School 7180

Sports 1740

Similarly,	for	the	second	situation	theatement	is:

SELECT	type,	MIN(margin),	MAX(margin),	AVG(margin)

FROM	shoes	GROUP	BY	type;	G2	and	the	corresponding	output	is:

Type MIN(margin) MAX(margin) AVG(margin)

Office 3.00 3.00 3.000000

School 2.00 2.00 2.000000

Sports 3.50 3.50 3.500000

category COUNT(*)

A 2

B 2

C 1

In	the	third	situation	we	want	MySQL	to	divide	all	the	records	of	Customers	table	into

different

groups	based	on	the	their	Category	(GROUP	BY	Category)	and	for	each	group	it	should

display	the	Category	and	the	corresponding	number	of	records	(SELECT	Category,	COUNT(*)).

So	the	completeatement	to	do	this	is:

SELECT	category,	COUNT(*)	FROM	customers	GROUP	BY	category;

G3	Let	us	have	some	more	examples.	Consider	the	followingatement:

SELECT	cust_code,	SUM(order_qty)

FROM	orders	GROUP	BY	cust_code;

This	satement	produces	the	following	output.	Try	to	explain	this	this	output.



Cust_code SUM(order_qty)

C001 1025

C002 750

C003 150

C004 200

C005 350

Do	the	same	for	the	followingatement	also:

SELECT	shoe_code,	SUM(order_qty)	FROM	orders	GROUP	BY	shoe_code;

Sho_code SUM(order_qty)

1001 200

1002 200

1011 550

1012 250

1101 300

1102 350

1103 225

1201 200

1203 200

If	you	carefully	observe	these	examples,	you	will	find	that	GROUP	BY	is	always	used	in

conjunction	with	some	aggregate	function(s).	A	SELECT	command	with	GROUP	BY	clause	has

a	column	name	and	one	or	more	aggregate	functions	which	are	applied	on	that	column	and

grouping	is	also	done	on	this	column	only.

10.	What	is	Role	of	HAVING	in	SQL.	Give	Examples.	How	it	is	related	with	Group	by	?

Ans	.Sometimes	we	do	not	want	to	see	the	whole	output	produced	by	aatement	with	GROUP

BY	clause.	We	want	to	see	the	output	only	for	those	groups	which	satisfy	some	condition.	It

means	we	want	to	put	some	condition	on	individual	groups	(and	not	on	individual	records).

A	condition	on	groups	is	applied	by	HAVING	clause.	As	an	example	reconsider	the



statement	G1	discussed	above.	Theatement	produced	three	records	in	the	output	-	one	for

each	group.	Suppose,	we	are	interested	in	viewing	only	those	groups'	output	for	which	the

total	quantity	is	more	than	1500	(SUM(Qty)	>	1500).	As	this	condition	is	applicable	to	groups

and	not	to	individual	rows,	we	use	HAVING	clause	as	shown	below:

SELECT	type,	SUM(qty)	FROM	shoes	GROUP	BY	type	HAVING	SUM(qty)	>	1500;

type SUM(qty)

School 7180

Sports 1740

Now	suppose	for	G2	we	want	the	report	only	for	those	types	for	which	the	average	margin	is

more	than	2.	For	this,	following	is	theatement	and	the	corresponding	output:

SELECT	type,	SUM(qty)	FROM	shoes	GROUP	BY	type	HAVING	AVG(margin)	>2;

type SUM(qty)

Office 1100

Sports 1740

In	theseatements	if	we	try	to	put	the	condition	using	WHERE	instead	of	HAVING,	we	shall	get

an	error.	Another	way	of	remembering	this	is	that	whenever	a	condition	involves	an

aggregate

function,	then	we	use	HAVING	clause	in	conjunction	with	GROUP	BY	clause.

11.	What	Functions	are	used	for	conditions	on	individual	records	as	well	as	on	groups.

Give	Examples.

Ans	:	Situations	may	also	arise	when	we	want	to	put	the	conditions	on	individual	records	as

well	as	on	groups.	In	such	situations	we	use	both	WHERE	(for	individual	records)	and

HAVING	(for	groups)	clauses.	This	can	be	explained	with	the	help	of	the	following	examples:

•	The	management	of	the	shoe	factory	may	want	to	know	what	is	the	total	quantity	of

shoes,	of	sizes	other	than	6,	of	various	types.	i.e.,	what	is	the	total

quantity	of	shoes	(of	sizes	other	than	6)	of	type	School,	Office,	and	Sports	each.

Moreover,	the	report	is	required	only	for	those	groups	for	which	the	total	quantity	is

more	than	1500.



•	The	management	may	also	want	to	know	what	is	the	maximum,	minimum,	and	average

margin	of	each	type	of	shoes.	But	in	this	reports	shoes	of	sizes	6	and	7	only	should	be

included.	Report	is	required	only	for	those	groups	for	which	the

minimum	margin	is	more	than	2.	Theatements	and	their	outputs	corresponding	to	above

requirements	are	given	below:

SELECT	type,	SUM(qty)	FROM	shoes

WHERE	size	<>	6	Checks	individual	row

GROUP	BY	type	HAVING	sum	(qty)	>	1500;	Checks	individual	group

type SUM(qty)

School 3780

SELECT	type,	MIN(margin),	MAX(margin),	AVG(margin)	FROM	shoes	WHERE	size	in

(6,7)

GROUP	BY	type	having	MIN(margin)	>	2;

Type MIN(margin) MAX(margin) AVG(margin)

Office 3.00 3.00 3.000000

Sports 3.50 3.50 3.500000

12.	How	Will	you	Display	Data	from	Multiple	Tables	?	

Ans:	To	understand	this	consider	the	following	situations:

•	The	management	of	the	shoe	factory	wants	a	report	of	orders	which	lists	three	columns:

Order_No,

corresponding	customer	name,	and	phone	number.	-	(MT-1)

In	this	case	order	number	will	be	taken	from	Orders	table	and	corresponding	customer

name	from	Customers	table.

•	The	management	wants	a	four-column	report	containing	order_no,	order_qty,	name	of

the	corresponding	shoe	and	its	cost.	-	(MT-2)

In	this	case	order	number	and	order	quantity	will	b+e	taken	from	Orders	table	and

corresponding	shoe	name	and	cost	from	Shoes	table.

•	The	management	wants	the	names	of	customers	who	have	placed	any	order	of	quantity

more	than	300.	-	(MT-3)



In	this	case	Order	quantity	will	be	checked	in	Orders	table	and	for	each	record	with

quantity	more	than	300,	corresponding	Customer	name	will	be	taken	from	Customers

table.

•	The	management	wants	a	report	in	which	with	each	Order_No	management	needs

name	of	the	corresponding	customer	and	also	the	total	cost	(Order	quantity	x	Cost	of	the

shoe)	of	the	order	are	shown.	-	(MT-4)	In	this	case	order	number	will	be	taken	from	Orders

table	and	corresponding	customer	name	from	Customers	table.	For	the	cost	of	each	order	the

quantity	will	be	taken	from	Orders	table	and	the	Cost	from	Shoes	table.

In	all	these	cases,	the	data	is	to	be	retrieved	from	multiple	tables.	SQL	allows	us	to

writeatements	which	retrieve	data	from	multiple	tables.

To	understand	how	this	is	done,	consider	the	following	tables	of	a	database.Product

Code Name

P001 Toothpaste

P002 Shampoo

P003 Conditioner

Supplier

Sup_Code Name Address

S001 DC	&	Company Uttam	Nagar

S0002 SURY	Traders Model	Town

Order_table

Order_No P_Code Sup_Code

1 P001 S002

2 P002 S002

These	tables	are	taken	just	to	explain	the	current	concept.

13.	What	do	you	understand	by	Cartesian	Product	or	Cross	Join	of	tables	.Give	Example.

Ans	Cartesian	product	(also	called	Cross	Join)	of	two	tables	is	a	table	obtained	by	pairing	up

each	row	of	one	table	with	each	row	of	the	other	table.	This	way	if	two	tables	contain	3	rows



and	2	rows	respectively,	then	their	Cartesian	product	will	contain	6	(=3x2)	rows.	This	can	be

illustrated	as	follows:

Notice	that	the	arrows	indicate	the	'ordered	pairing'.	The	number	of	columns	in	the

Cartesian	product	is	the	sum	of	the	number	of	columns	in	both	the	tables.	In	SQL,	Cartesian

product	of	two	rows	is	obtained	by	giving	the	names	of	both	tables	in	FROM	clause.	An

example	of	Cartesian	product	is	shown	below:	SELECT	*	FROM	order_table,	product;

To	give	the	output	of	this	query,	MySQL	will	pair	the	rows	of	the	mentioned	tables	as	follows:

Order	No. p_code Sup_code Code Name

1 P001 S002 P001 Toothpaste

2 P002 S002 P001 Toothpaste

1 P001 S002 P002 Shampoo

2 P002 S002 P002 Shampoo

1 P001 S002 P003 Conditioner

2 P002 S002 P003 Conditioner



Here	we	observe	that	the	Cartesian	product	contains	all	the	columns	from	both	tables.	Each

row	of	the	first	table	(Order_table)	is	paired	with	each	row	of	the	second	table	(Product).B

If	we	change	the	sequence	of	table	names	in	the	FROM	clause,	the	result	will	remain	the

same	but	the	sequence	of	rows	and	columns	will	change.	This	can	be	observed	in	the

followingatement	and	the	corresponding	output.

SELECT	*	FROM	product,	order_table;

Code Name Order_No P_Code Sup_Code

P001 Toothpaste 1 P001 S002

P001 Toothpaste 2 P002 S002

P002 Shampoo 1 P001 S002

P002 Shampoo 2 P002 S002

P003 Conditioner 1 P001 S002

P003 Conditioner 2 P002 S002

Q14.	Show	the	Cartesian	product	of	three	tables(more	than	two	tables.

Ans	:	We	can	have	Cartesian	product	of	more	than	two	tables	also.	Following	is	the	Cartesian

Product	of	three	tables:

SELECT	*	FROM	order_table,	supplier,	product;	-(CP-3)

Order_No P_Code Sup_Code Sup_Code Name Address Code Name

1 P001 S002 S001
DC	&

Company

Uttam

nagar
P001 Toothpaste

2 P002 S002 S00
DC	&

Company

Uttam

nagar
P001 Toothpaste

1 P001 S002 S002
SURY

traders

Model

town
P001 Toothpaste

SURY Model



2 P002 S002 S002 traders town P001 Toothpaste

1 P001 S002 S001
DC	&

Company

Uttam

nagar
P002 Shampoo

2 P002 S002 S001
DC	&

Company

Uttam

nagar
P002 Shampoo

1 P001 S002 S002
SURY

traders

Model

town
P002 Shampoo

2 P002 S002 S002
SURY

traders

Model

town
P002 Shampoo

1 P001 S002 S001
DC	&

Company

Uttam

nagar
P003 Conditioner

2 P002 S002 S001
DC	&

Company

Uttam

nagar
P003 Conditioner

1 P001 S002 S002
SURY

traders

Model

town
P003 Conditioner

2 P002 S002 S002
SURY

traders

Model

town
P003 Conditioner

The	complete	Cartesian	product	of	two	or	more	tables	is,	generally,	not	used	directly.

But,sometimes	it	is	required.	Suppose	the	company	with	the	above	database	wants	to	send

information	of	each	of	its	products	to	each	of	its	suppliers.	For	follow-up,	the	management

wants	a	complete	list	in	which	each	Supplier's	detail	is	paired	with	each	Product's	detail.	For

this,	the	computer	department	can	produce	a	list	which	is	the	Cartesian	product	of	Product

and	Supplier	tables,	as	follows:

SELECT	*,	'	'	AS	Remarks	FROM	Product,	Supplier;

to	get	the	following	report:

Code Name Sup_code Name Address Remarks



P001 Toothpaste S001 Dc	&	company Uttam	nagar 	

P001 Toothpaste S002 Sury	traders Model	town 	

P002 Shampoo S001 Dc	&	company Uttam	nagar 	

P002 Shampoo S002 Sury	traders Model	town 	

P003 Conditioner S001 Dc	&	company Uttam	nagar 	

P003 Conditioner S002 Sury	traders Model	town 	

Q15.	What	is	Equi-	Join	of	tables	.Show	by	examples.

Ans.	The	complete	Cartesian	product	of	two	or	more	tables	is,	generally,	not	used	directly.

Sometimes	the	complete	Cartesian	product	of	two	tables	may	give	some	confusing

information	also.	For	example,	the	first	Cartesian	product	(CP-1)	indicates	that	each	order

(Order	Numbers	1	and	2)	is	placed	for	each	Product	(Code	'P001',	'P002',	'P003').	But	this	is

incorrect!	Similar	is	the	case	with	CP-2	and	CP-3	also.	But	we	can	extract	meaningful

information	from	the	Cartesian	product	by	placing	someconditions	in	theatement.	For

example,	to	find	out	the	product	details	corresponding	to	each	Order	details,we	can	enter	the

following	statement:

SELECT	*	FROM	order_table,	product	WHERE	p_code	=	code;

Order_no

IP_Code
Sup_code Code Name

1	P001 S002 P001 Toothpaste

2	P002 S002 P002 Shampoo

Two	table	names	are	specified	in	the	FROM	clause	of	thisatement,	therefore	MySQL	creates	a

Cartesian	product	of	the	tables.	From	this	Cartesian	product	MySQL	selects	only	those

records	for	which	P_Code	(Product	code	specified	in	the	Order_table	table)	matches	Code

(Product	code	in	the	Product	table).	These	selected	records	are	then	displayed.

It	always	happens	that	whenever	we	have	to	get	the	data	from	more	than	one	tables,	there	is

some	common	column	based	on	which	the	meaningful	data	is	extracted	from	the	tables.	We

specify	table	names	in	the	FROM	clause	of	SELECT	command.	We	also	give	the	condition



specifying	the	matching	of	common	column.	(When	we	say	common	column,	it	does	not

mean	that	the	column	names	have	to	be	the	same.	It	means	that	the	columns	should

represent	the	same	data	with	the	same	data	types.)	Corresponding	to	thisatement,	internally

the	Cartesian	product	of	the	tables	is	made.	Then	based	on	the	specified	condition	the

meaningful	data	is	extracted	from	this	Cartesian	product	and	displayed.	Let	us	take	another

example	of	producing	a	report	which	displays	the	supplier	name	and	address	corresponding

to	each	order.

SELECT	Order_No,	Order_table.Sup_Code,	Name,	Address	FROM

order_table,	supplier

WHERE	order_table.sup_code	=	supplier.sup_code;

Order_No Sup_Code Name Address

1 S002 SURY	Traders Model	Town

2 S002 SURY	Traders Model	Town

In	thisatement	the	tables	referred	are	Order_table	and	Supplier.	In	these	tables	sup_code	is

the	common	column.	This	column	exists	with	same	name	in	both	the	tables.	Therefore

whenever	wemention	it,	we	have	to	specify	the	table	from	which	we	want	to	extract	this

column.	This	is	known	as	qualifying	the	column	name.	If	we	don't	qualify	the	common

column	name,	theatement	would	result	into	an	error	due	to	the	ambiguous	the	column

names.

Following	is	another	example	of	equi-join.	This	time	with	three	tables.

Select	Order_no,	Product.name	as	Product,	Supplier.Name	as	Supplier	From	order_table,

Product,

Supplier

WHERE	order_table.Sup_Code	=	Supplier.Sup_Code	and	P_Code	=	Code;

The	output	produced	by	thisatement	is:

Order_no	Product	Supplier

1	Toothpaste	SURY	Traders

2	Shampoo	SURY	Traders

Let	us	now	get	back	to	our	original	Shoe	database	and	see	how	Ms.	Akhtar	uses	the	concept

of	joins	to	extract	data	from	multiple	tables.

For	the	situation	MT-1,	she	writes	the	query:

SELECT	order_no	,	name,	phone	FROM	orders,	customers	WHERE	orders.cust_code	=



customers.cust_code;

and	get	the	following	required	output:

Order_no Name Phone

1 Novelty	Shoes 4543556,	97878989

2 Novelty	Shoes 4543556,	97878989

5 Novelty	Shoes 4543556,	97878989

9 Novelty	Shoes 4543556,	97878989

4 Aaram	Footwear NULL

6 Aaram	Footwear NULL

10 Aaram	Footwear NULL

3 Foot	Comfort 51917142,	76877888

7 Pooja	Shoes 61345432,	98178989

8 Dev	Shoes NULL

Following	are	the	queries	and	corresponding	outputs	for	the	situations	MT-2,	MT-3,	and	MT-4

respectively:

SELECT	order_no	,	Order_Qty,	name,	cost

FROM	orders,	shoes	WHERE	Shoe_Code	=	code;

order_no Order_Qty Name Cost

1 200 School	Canvas 132.50

2 200 School	Canvas 135.50

3 150 School	Leather 232.50

4 250 School	Leather 270.00

5 400 School	Leather 232.50



6 300 Galaxy 640.00

7 200 Tracker 700.00

8 350 Galaxy 712.00

9 225 Galaxy 720.00

10 200 Tracker 800.50

SELECT	name,	address	FROM	orders,	customers	WHERE

orders.cust_code	=	customers.cust_code	and	order_qty	>	300;

name	address

Name Address

Novelty	Shoes Raja	nagar

Dev	shoes Bhopal

Dev	Shoes	Mohan	Nagar,	Ghaziabad

SELECT	order_no,	Order_Qty,	customers.name,cost*order_qty	as	'Order	Cost'	FROM	orders,

shoes,

Customers	WHERE	Shoe_Code	=	code	and	Orders.Cust_Code	=	Customers.Cust_Code	order	by

order_no;

order_no order_no Name Order_cost

1 200 Novelty	Shoes 26500.00

2 200 Novelty	Shoes 27100.00

3 150 Foot	Comfort 34875.00

4 250 Aaram	Footwear 67500.00

5 400 Novelty	Shoes 93000.00

6 300 Aaram	Footwear 192000.00



7 200 Pooja	Shoes 140000.00

8 350 Dev	Shoes 249200.00

9 225 Novelty	Shoes 162000.00

10 200 Aaram	Footwear 160100.00

Here	is	anotheratement	extracting	data	from	multiple	tables.	Try	to	find	out	what	will	be	its

output	and	then	try	thisatement	on	computer	and	check	whether	you	thought	of	the	correct

output.	SELECT	order_no	,	Order_Qty,	name,	cost	FROM	orders,	shoes	WHERE	Shoe_Code	=

code	and	order_qty	>	200;

Q16.	Explain	the	Foreign	Key	.

As	we	have	just	seen,	in	a	join	the	data	is	retrieved	from	the	Cartesian	product	of	two	tables

by	giving	a	condition	of	equality	of	two	corresponding	columns	-	one	from	each	table.

Generally,	this	column	is	the	Primary	Key	of	one	table.	In	the	other	table	this	column	is	the

Foreign	key.	Such	a	join	which	is	obtained	by	putting	a	condition	of	equality	on	cross	join	is

called	an	'equi-join'.	As	an	example,	once	again	consider	the	Product,	Supplier,	and	Order

tables	referenced	earlier.	For	quick	reference	these	tables	are	shown	once	again:

Product

Code Name

P001 Toothpaste

P002 Shampoo

P003 Conditioner

Supplier

Sup_Code Name Address

S001 DC	&	Company Uttam	Nagar

S002 SURY	Traders Model	Town



1 P001 S002

2 P002 S002

In	these	tables	there	is	a	common	column	between	Product	and	Order_table	tables	(Code	and

P_Code	respectively)	which	is	used	to	get	the	Equi-Join	of	these	two	tables.	Code	is	the

Primary	Key	of	Product	table	and	in	Order_table	table	it	is	not	so	(we	can	place	more	than

one	orders	for	the	same	product).	In	the	order_table,	P_Code	is	a	Foreign	Key.	Similarly,

Sup_Code	is	the	primary	key	in	Supplier	table	whereas	it	is	a	Foreign	Key	is	Order_table

table.	A	foreign	key	in	a	table	is	used	to	ensure	referential	integrity	and	to	get	Equi-Join	of

two	tables.

Q17.	What	do	you	understand	by	Referential	Integrity	?

Ans	:	Suppose	while	eering	data	in	Order_table	we	enter	a	P_Code	that	does	not	exist	in	the

Product	table.	It	means	we	have	placed	an	order	for	an	item	that	does	not	exist!	We	should

and	can	always	avoid	such	human	errors.	Such	errors	are	avoided	by	explicitly	making

P_Code	a	foreign	key	of	Order_table	table	which	always	references	the	Product	table	to	make

sure	that	a	non-existing	product	code	is	not	entered	in	the	Order_table	table.	Similarly,	we

can	also	make	Sup_Code	a	Foreign	key	in	Order_table	table	which	always	references

Customer	table	to	check	validity	of	Cust_code.	This	property	of	a	relational	database	which

ensures	that	no	entry	in	a	foreign	key	column	of	a	table	can	be	made	unless	it	matches	a

primary	key	value	in	the	corresponding	related	table	is	called	Referential	Integrity.

Q18.	Describe	Union	operation	by	giving	examples.

Ans	Union	is	an	operation	of	combining	the	output	of	two	SELECTatements.	Union	of	two

SELECT	statements	can	be	performed	only	if	their	outputs	contain	same	number	of	columns

and	data	types	of	corresponding	columns	are	also	the	same.	The	syntax	of	UNION	in	its

simplest	form	is:

SELECT	<select_list>	FROM

<tablename>	[WHERE

<condition>	]

UNION	[ALL]

SELECT	<select_list>	FROM

<tablename>	[WHERE

<condition>	];



Union	does	not	display	any	duplicate	rows	unless	ALL	is	specified	with	it.

Example:

Suppose	a	company	deals	in	two	different	categories	of	items.	Each	category	contains	a

number	of	items	and	for	each	category	there	are	different	customers.	In	the	database	there

are	two	customer	tables:	Customer_Cat_1	and	Customer_Cat_2.	If	it	is	required	to	produce	a

combined	list	of	all	the

customers,	then	it	can	be	done	as	follows:

SELECT	Cust_Code	from	Customer_Cat_1

UNION

SELECT	Cust_Code	from	Customer_Cat_2;

If	a	customer	exists	with	same	customer	code	in	both	the	tables,	its	code	will	be	displayed

only	once	-	because	Union	does	display	duplicate	rows.	If	we	explicitly	want	the	duplicate

rows,	then	we	can	enter	theatement:

SELECT	Cust_Code	from	Customer_Cat_1

UNION	ALL

SELECT	Cust_Code	from	Customer_Cat_2;

Q19.	What	are	Constraints	for	a	table	?	List	all	the	constraints	with	their	purpose.	How

these	are	applied?

Ans	Many	times	it	is	not	possible	to	keep	a	manual	check	on	the	data	that	is	going	into	the

tables	using	INSERT	or	UPDATE	commands.	The	data	entered	may	be	invalid.	MySQL

provides	some	rules,	called	Constraints,	which	help	us,	to	some	extent,	ensure	validity	of	the

data.	These	constraints	are:	S.No.	Constraint	Purpose

2.	PRIMARY	KEY	Sets	a	column	or	a	group	of	columns	as	the	Primary	Key	of	a

table.	Therefore,	NULLs	and	Duplicate	values	in	this	column	are	not	accepted.

3.	NOT	NULL	Makes	sure	that	NULLs	are	not	accepted	in	the	specified	column.

4.	FOREIGN	KEY	Data	will	be	accepted	in	this	column,	if	same	data	value	exists	in	a	column

in	another	related	table.	This	other	related	table	name	and	column	name	are	specified	while

creating	the	foreign	key	constraint.

5.	UNIQUE	Makes	sure	that	duplicate	values	in	the	specified	column	are	not	accepted.

6.	ENUM	Defines	a	set	of	values	as	the	column	domain.	So	any	value	in	this

column	will	be	from	the	specified	values	only.

7.	SET	Defines	a	set	of	values	as	the	column	domain.	Any	value	in	this	column	will	be	a

seubset	of	the	specied	set	only.	We	shall	discuss	only	the	PRIMARY	KEY	and	NOT	NULL



constraints	in	this	book.	Other	constraints	are	beyond	the	scope	of	this	book.

Q20.	What	is	PRIMARY	KEY	?	Give	Examples.

Ans	:	Primary	key	of	a	table	is	a	column	or	a	group	of	columns	that	uniquely	identifies	a	row

of	the	table.	Therefore	no	two	rows	of	a	table	can	have	the	same	primary	key	value.	Now

suppose	that	the	table	Shoes	is	created	with	the	followingatement:

CREATE	TABLE	Shoes

(Code	CHAR(4),	Name	VARCHAR(20),	type	VARCHAR(10),	size	INT(2),

cost	DECIMAL(6,2),	margin	DECIMAL(4,2),	Qty	INT(4));

We	know	that	in	this	table	Code	is	the	Primary	key.	But,	MySQL	does	not	know	that.

Therefore	it	is	possible	to	enter	duplicate	values	in	this	column	or	to	enter	NULLs	in	this

column.	Both	these	situations	are	unacceptable.	To	make	sure	that	such	data	is	not	accepted

by	MySQL,	we	can	set	Code	as	the	primary	key	of	Shoes	table.	It	can	be	done	by	using	the

PRIMARY	KEY	clause	at	the	time	of	table	creation	as

follows:

CREATE	TABLE	Shoes

(Code	CHAR(4)	PRIMARY	KEY,	Name	VARCHAR(20),type	VARCHAR(10),	size

INT(2),	cost	DECIMAL(6,2),	margin	DECIMAL(4,2),	Qty	INT(4));

or	as	follows:

CREATE	TABLE	Shoes

(Code	CHAR(4),	Name	VARCHAR(20),	type	VARCHAR(10),	size	INT(2),

cost	DECIMAL(6,2),	margin	DECIMAL(4,2),	Qty	INT(4),	PRIMARY

KEY	(Code));

To	create	a	table	Bills	with	the	combination	of	columns	Order_No	and	Cust_Code	as	the

primary	key,	we	enter	theatement:

CREATE	TABLE	bills

(Order_Num	INT(4)	PRIMARY	KEY,	cust_code

VARCHAR(4)	PRIMARY	KEY,	bill_Date	DATE,

Bill_Amt	DECIMAL(8,2));

Contrary	to	our	expectation,	we	get	an	error	(Multiple	primary	key	defined)	with

thisatement.

The	reason	is	that	MySQL	interprets	thisatement	as	if	we	are	trying	to	create	two	primary

keys	of	the	table	-	Order_Num,	and	Cust_code.	But	a	table	can	have	at	most	one	primary	key.

To	set	this	combination	of	columns	a	primary	key	we	have	to	enter	theatement	as



follows:CREATE	TABLE	bills

(Order_Num	INT(4),	cust_code	VARCHAR(4),	bill_Date

date,	Bill_Amt	DECIMAL(8,2),	PRIMARY

KEY(Order_Num,	cust_code));

Q21.	How	‘Dese’	is	used	for	showingructure	of	the	table	?

Ans	:	We	may	check	the	tableructure	with	the	command:	DESC	bills;

The	tableructure	is	as	shown	below:

Field	Type	Null	Key	Default	Extra

Field type null key default Extra

Order_Num INT(4) NO PRI 0 	

cust_code VARCHAR(4) NO PRI 	 	

bill_Date date YES 	 NULL 	

Bill_Amt DECIMAL(8,2) YES 	 NULL 	

These	columns	constitute	the	primary	key	of	the	table.	NULLs	cannot	be	accepted	in	these

columns.

Q22.	How	will	you	a	create	table	in	which	NULL	values	should	not	be	accepted	?

Ans	:	Many	times	there	are	some	columns	of	a	table	in	which	NULL	values	should	not	be

accepted.	We	always	want	some	known	valid	data	values	in	these	columns.	For	example,	we

cannot	have	an	order	for	which	the	customer	code	is	not	known.	It	means	whenever	we

enter	a	row	in	the	orders	table,	corresponding	customer	code	cannot	be	NULL.	Similarly

while	entering	records	in	the	Shoes	table,	we	have	to	mention	the	Shoe	size,	it	cannot	be	set

NULL.	There	may	be	any	number	of	such	situations.	While	creating	a	table	we	can	specify	in

which	columns	NULLs	should	not	be	accepted	as	follows:

CREATE	TABLE	Shoes

(Code	CHAR(4)	PRIMARY	KEY,	Name	VARCHAR(20),	type

VARCHAR(10),	size	INT(2)	NOT	NULL,

cost	DECIMAL(6,2),	margin	DECIMAL(4,2),	Qty	INT(4));	CREATE	TABLE	bills

(Order_Num	INT(4),	cust_code	VARCHAR(4),	bill_Date	DATE,



Bill_Amt	DECIMAL(8,2)	NOT	NULL,	PRIMARY	KEY

(Order_Num,	cust_code));

Now	if	we	try	to	enter	a	NULL	in	the	specified	column,	MySQL	will	reject	the	entry	and	give

an

error.

Q23.	How	can	we	view	the	Columns	Associated	with	Constraints	?

Ans.	After	creating	a	table,	we	can	view	itsructure	using	DESC	command.	The	tableructure

also

includes	the	constraints,	if	any.	Therefore,	when	we	use	DESC	command,	we	are	shown	the

table	structure	as	well	as	constraints,	if	any.	A	constraint	is	shown	beside	the	column	name

on	which	it	is

applicable.	E.g.,	theatement:

DESC	Shoes;

displays	the	tableructure	as	follows:

Field	Type	Null	Key	Default	Extra

Field type null key default Extra

Code CHAR(4) NO PRI NULL 	

Name VARCHAR(20) YES 	 	 	

type VARCHAR(10) YES 	 NULL 	

size INT(2) NO 	 0 	

cost DECIMAL(6,2)	YES 	 NULL 	 	

margin DECIMAL(4,2)	YES 	 NULL 	 	

Qty INT(4) YES 	 NULL 	

Q24.	Show	Add,	Modify,	and	Remove	constraints	for	altering	a	table.

Ans.	If	we	create	a	table	without	specifying	any	primary	key,	we	canill	specify	its	primary

key	by	ALTER	TABLE	command.	Suppose	we	have	created	the	Shoes	table	without	specifying

any	Primary	key,	then	later	we	can	enter	theatement	as	follows:



ALTER	TABLE	Shoe	ADD	PRIMARY	KEY(code);

This	will	set	Code	as	the	primary	key	of	the	table.	But	if	the	Code	column	already	contains

some	duplicate	values,	then	thisatement	will	give	an	error.	In	MySQL,	it	is	also	possible	to

change	the	primary	key	column(s)	of	a	table.	Suppose,	in	the	Shoes	table,	istread	of	Code,	we

want	to	set	the	combination	of	'Name'	and	'Size'	as	the	primary	key.	For	this	first	we	have	to

DROP	the	already	existing	primary	key	(i.e.,	Code)	and	then	add	the	new	primary	key	(i.e.,

Name	and	Size).	The	correspondingatements	are	as	follows:

ALTER	TABLE	Shoes	DROP	PRIMARY	KEY;

After	thisatement,	there	is	no	primary	key	of	Shoe	table.	Now	we	can	add	the	new	primary

key	as	follows:

ALTER	TABLE	Shoe	ADD	PRIMARY	KEY	(Name,	Size);

Now	if	we	see	the	tableructure	by	DESC	Shoes;atement,	it	will	be	shown	as	follows:

Field Type Null Key Default Extra

Code CHAR(4) NO 	 NULL 	

Name VARCHAR(20) NO PRI 	 	

type VARCHAR(10) YES 	 Null 	

size INT(2) NO 	 0 	

cost DECIMAL(6,2) YES 	 Null 	

Margin DECIMAL(4,2) YES 	 NULL 	

Qty INT(4) YES 	 NULL 	

In	MySQL,	it	is	not	possible	to	add	or	drop	NOT	NULL	constraint	explicitly	after	the	table

creation.	But	it	can	be	done	using	MODIFY	clause	of	ALTER	TABLE	command.	As	an	example,

suppose	we	don't	want	to	accept	NULL	values	in	bill_date	column	of	bills	table,	we	can	issue

the	statement:

ALTER	TABLE	bills	MODIFY	bill_date	DATE	NOT	NULL;

Later	on	if	we	wish	to	change	thisatus	again,	we	can	do	so	by	entering	the	command:

ALTER	TABLE	bills	MODIFY	bill_date	DATE	NULL;

Remove	and	Modify	columns	:

ALTER	TABLE	can	be	used	to	remove	a	column	from	a	table.	This	is	done	using	DROP	clause

in

ALTER	TABLE	command.	The	syntax	is	as	follws:

ALTER	TABLE	<tablename>	DROP	<columnname>



[,	DROP	<columnname>	[,	DROP	<columnname>	[,	.	.	.	]]];

Following	are	some	self-explanatory	examples	of	SQLatemenets	to	remove	columns	from

tables:

ALTER	TABLE	Shoes	DROP	Qty;

ALTER	TABLE	Orders	DROP	Cust_Code;

ALTER	TABLEudent	DROP	Class,	DROP	RNo,	DROP	Section;

Although	any	column	of	a	table	can	be	removed,	MySQL	puts	the	restriction	that	a	primary

key	column	can	be	removed	only	if	the	remaining,	primary	key	columns,	if	any,	do	not

contain	any	duplicate	entry.	This	can	be	understood	more	clearly	with	the	help	of	following

example:

The	Name	and	Size	columns	of	the	Shoe	table	constitute	its	primary	key.	Now	if	we	drop	the

Name	column	from	the	table,	Size	will	be	the	remaining	Primary	Key	column	of	the	table.

Therefore,	duplicate	entries	in	the	Size	column	should	not	be	allowed.	To	ensure	this,	before

removing	Name	column	from	the	table,	MySQL	checks	that	there	are	no	duplicate	entries

present	in	the	Size	column	of	the	table.	If	there	are	any,	then	theatement	trying	to	remove

Name	column	from	the	table	will	result	in	an	error	and	the	Name	column	will	not	be

removed.	If	there	are	no	duplicate	enteries	in	the	Size	column,	then	Name	column	will	be

removed.	Similar	will	be	the	case	with	the	Name	column	if	we	try	to	remove	Size	column.

But	there	won't	be	any	problem	if	we	try	to	remove	both	the	primary	key	columns

simultaneously	with	one	ALTER	TABLEatement	as	follows:

ALTER	TABLE	Shoes	DROP	name,	DROP	size;

ALTER	TABLE	can	also	be	used	to	change	the	data	type	of	a	table	column.	For	this	the	syntax

is	as	follows:

ALTER	TABLE	<tablename>	MODIFY	<col_name>	<new	datatype>	[,MODIFY

<col_name>	<new	datatype>

[,MODIFY	<col_name>	<new	data	type>	[,	.	.	.	]]];

e.g.,	theatement:

ALTER	TABLE	shoes	modify	code	CHAR(5),	modify	type	VARCHAR(20);

changes	the	data	type	of	column	Code	to	CHAR(5)	and	that	of	type	to	VARCHAR(20).

When	we	give	aatement	to	chage	the	data	type	of	a	column,	MySQL	executes	thatatement

correctly	only	if	the	change	in	data	type	does	not	lead	to	any	data	loss.	E.g.,	if	we	try	to

change	the	data	type	of	order_date	column	of	orders	table	from	date	to	int,	we'll	get	an	error.

This	is	because	the	data	alreadyored	in	this	column	cannot	be	converted	into	int	type.



Similarly,	if	a	column	of	VARCHAR(10)	type	contains	some	data	value	which	is	10	characters

long,	then	the	data	type	of	this	column	cannot	be	converted	to	VARCHAR(n),	where	n	is	an

integer	less	than	10.

Q25.	What	is	DROPPING	a	TABLE	?

Ans.	Sometimes	there	is	a	requirement	to	remove	a	table	from	the	database.	In	such	cases

we	don't	want	merely	to	delete	the	data	from	the	table,	but	we	want	to	delete	the	table	itself.

DROP	TABLE	command	is	used	for	this	purpose.	The	syntax	of	DROP	TABLE	command	is	as

follows:

DROP	TABLE	<tablename>;

e.g.to	remove	the	table	Orders	from	the	database	we	enter	theatement:

DROP	TABLE	Orders;

And	after	thisatement	orders	table	is	no	longer	available	in	the	database.	It	has	been

removed.Aggregate	or	Group	functions:	MySQL	provides	Aggregate	or	Group	functions

which	work	on	a	number	of	values	of	a	column/expression	and	return	a	single	value	as	the

result.



Q1.	What	do	you	mean	by	DBMS	and	Transaction	Management	?

Ans.Suppose	Raunak's	account	number	is	3246	and	his	aunt's	account	number	is	5135.	In

order	to	process	the	cheque	presented	by	Raunak,	the	following	two	SQL	commands	need	to

be	executed	on	the	database	maintained	by	the	bank:

UPDATE	Savings	SET	balance	=	balance	–	2000	WHERE	account_no	=	5135;	For	Aunt's

account	UPDATE	Savings	SET	balance	=	balance	+	2000	WHERE	account_no	=	3246;	For

Raunak's	account.	The	above	two	Updates	should	both	take	place.	If	the	first	Update	takes

place	and	there	is	a	system	failure,	the	first	updation	should	be	undone.	Either	both	the

updations	should	be	done	and	if	it	is	notpossible	for	both	the	updations	to	be	done,	then	no

updation	should	be	done.

Q2.	What	is	a	Transaction?

Ans.A	Transaction	is	a	unit	of	work	that	must	be	done	in	logical	order	and	successfully	as	a

group	or	not	done	at	all.	Unit	of	work	means	that	a	Transaction	consists	of	different	tasks	-

but	together	they	are	considered	as	one	unit.	Each	transaction	has	a	beginning	and	an	end.	If

anything	goes	wrong	in	between	the	execution	of	transaction,	the	entire	transaction	(No

matter	to	what	extent	has	been	done)	should	be	cancelled.	If	it	is	successful,	then	the	entire

transaction	should	be	saved	to	the	database.

A	transaction	is	a	unit	of	work	that	must	be	done	in	logical	order	and	successfully	as	a	group

or	not	done	at	all.	In	Raunak's	case,	both	the	updation	statements	constitute	a	transaction.

Both	are	together	treated	as	a	single	unit.

Q3.	how	transactions	are	managed	?

Ans	:	let	us	study	the	following	3	statements	of	SQL:

•	START	TRANSACTION	statement

•	COMMIT	statement

•	ROLLBACK	statement

START	TRANSACTION	Statement	:

START	TRANSACTION	statement	commits	the	current	transaction	and	starts	a	new

Important Questions Part-4
More RDBMS(Relational Database Management System)



transaction.	It	tells	MySQL	that	the	transaction	is	beginning	and	the	statements	that	follow

should	be	treated	as	a	unit,	until	the	transaction	ends.	It	is	written	like	this:

START

TRANSACTION;

The	START	TRANSACTION	statement	has	no	clauses.

COMMIT	Statement	:

The	COMMIT	statement	is	used	to	save	all	changes	made	to	the	database	during	the

transaction	to	the	database.Commit	statement	is	issued	at	a	time	when	the	transaction	is

complete-	all	the	changes	have	been	successful	and	the	changes	should	be	saved	to	the

database.	COMMIT	ends	the	current

transaction.

COMMIT	statement	is	used	like	this:

COMMIT;

Or

COMMIT	WORK;

Here	WORK	is	a	keyword	and	is	optional.

In	the	following	example,	the	table	named	savings	has	2	rows.	A	transaction	is	started	and

balance	in	Siddharth's	account	(with	account	number	1004)	is	increased	by	Rs.	2000.00	and

the	balance	in	Akriti's	account	(with	account	number	1006)	is	decreased	by	Rs.	2000.00.

COMMIT	statement	makes	the	changes	made	by	the	transaction	permanent.

Example	1:

mysql>	select	*	from	savings;

account_no Name balance

1004 Siddharth	Sehgal 87000.00

1006 Akriti	Malik 87000.00

mysql>	START	TRANSACTION;

mysql>	UPDATE	Savings

->	SET	balance	=	balance	+	2000

->	WHERE	account_no	=	1004;	mysql>



UPDATE	Savings

->	SET	balance	=	balance	-	2000

->	WHERE	account_no	=	1006;	mysql>

SELECT	*	FROM	Savings;

account_no Name Balance

1004 Siddharth	Sehgal 89000.00

1006 Akriti	Malik 85000.00

2	rows	in	set	(0.00	sec)

mysql>	COMMIT;

ROLLBACK	Statement	:

When	a	transaction	is	being	executed,	some	type	of	error	checking	is	usually	performed	to

check	whether	it	is	executing	successfully	or	not.	If	not,	the	entire	transaction	is	undone

using	the	ROLLBACK	statement.	The	ROLLBACK	statement	cancels	the	entire	transaction	i.e.

It	rolls	the	transaction	to	the	beginning.	It	aborts	any	changes	made	during	the	transaction

and	the	state	of	database	is	returned	to	what	it	was	before	the	transaction	began	to	execute

and	does	not	save	any	of	the	changes	made	to	the	database	during	the	transaction.

ROLLBACK	statement	is	used	like	this:

ROLLBACK;

Or

ROLLBACK	WORK;

Here	WORK	is	a	keyword	and	is	optional.

If	in	Example	1	shown	above	ROLLBACK	was	used	instead	of	COMMIT,	the	updation	of

incrementing	Siddharth's	account	by	`	2000.00	and	decrementing	Akriti's	account	by	2000

wouldn't	have	taken	place.	Let	us	now	initiate	a	transaction,	increase	Akriti's	account	by	`

3000.00,	then	Rollback	the	transaction	and	see	what	happens	to	the	updation	done	on	Akriti's

account.



mysql>	START	TRANSACTION;

mysql>	UPDATE	Savings

•	After	the	ROLLBACK	command	is	issued	to	the	database,	the	database	itself	starts	a	new

transaction;	though	no	explicit	command	of	starting	a	transaction	like	START	TRANSACTION

is	issued.

Example	2:

Let	us	try	out	some	more	SQL	statements	on	Savings	table	to	understand	transactions	well.

mysql>	SELECT	*	FROM	savings;

account_no Name Balance

1004 Siddharth	Sehgal 84000.00

1006 Akriti	Malik 92000.00

1008 Chavi	Mehra 67000.00

1009 Raunak	Singh 56000.00



Q4.	What	are	SavePoints.	What	is	benefit	for	inserting	save	points	in	a	transaction	?

Give	Examples.

Ans	The	SAVEPOINT	statement	defines	a	marker	in	a	transaction.	These	markers	are	useful

in	rolling

back	a	transaction	till	the	marker.

We	can	add	a	savepoint	anywhere	in	a	transaction.	When	you	roll	back	to	that	savepoint,

any

changes	made	to	the	database	after	the	savepoint	are	discarded,	and	any	changes	made	prior

to	the	savepoint	are	saved.	It	is	like	semicomitting	a	transaction.

To	define	a	savepoint,	we	enter	the	SAVEPOINT	statement	like	this:

SAVEPOINT	<savepoint-name>;

Example	:	SAVEPOINT	Mark1;

In	the	above	statement	a	marker	(savepoint)	with	the	name	Mark1	is	defined.	It	becomes	a

bookmark	in	the	transaction.	Now	we	can	write	the	following	statement:

Q5.	How	we	can	rollback	any	transaction	upto	a	save	point	?

Ans	:	to	rollback	the	transaction	till	the	bookmark	named	Mark1.

ROLLBACK	TO	SAVEPOINT	Mark1;

Q6.	What	is	Autocommit	?How	can	it	be	set	?

Ans	:	By	default,	Autocommit	mode	is	on	in	MySQL.	It	means	that	MySQL	does	a	COMMIT



after	every	SQL	statement	that	does	not	return	an	error.	If	it	returns	an	error	then	either

Rollback	or	Commit	happens	depending	on	the	type	of	error.	If	we	do	not	want	individual

statements	of	SQL	to	be	automatically	committed,	we	should	set	the	autocommit	mode	to

off.When	Autocommit	is	off	then

we	have	to	issue	COMMIT	statement	explicitly	to	save	changes	made	to	the	database.	The

following

statement	sets	the	autocommit	mode	to	off.	It	also	starts	a	new	transaction

SET	AUTOCOMMIT=0;

The	following	statement	sets	the	autocommit	mode	to	ON.	It	also	commits	and	terminates	the

current	transaction.

SET	AUTOCOMMIT=1;

If	autocommit	is	set	to	ON.	we	can	still	perform	a	multiple-statement	transaction	by	starting

it	with	an	explicit	START	TRANSACTION	statement	and	ending	it	with	COMMIT	or

ROLLBACK.

Let	us	look	at	the	following	example	to	understand	it:



mysql>	ROLLBACK	WORK;

Query	OK,	0	rows	affected	(0.03	sec)

Row	with	account_no	1006	deleted	but	is	not	committed.	Deletion	of	Row	with	account_no

1006	is	cancelled.An	implicit	COMMIT	takes	place,	even	if	AUTOCOMMIT	is	set	OFF,

on	the	database	when	the	user	issues	a	Data	Definition	language	command	like	CREATE

TABLE,	ALTER	TABLE	etc



Q.1.	What	is	MySQL?

Ans:-	It	is	an	Open	Source	RDBMS	Software.	It	is	available	free	of	cost.

Q.2.	What	is	SQL?

Ans	.	SQL	is	Non-procedural	universal	data	access	language	used	to	access	and	manipulate

data	stored	in	nearly	all	the	data	bases	available	currently.	SQL	standards	are	defined	by

ANSI	(American	National	Standards	Institute).	SQL	statements	are	used	to	retrieve	and

update	data	in	a	database.	SQL	works	with	database	programs	like	MySQL,	MS	Access,	DB2,

Informix,	MS	SQL	Server,	Oracle,	Sybase,	etc.

Q.3.	Differentiate	between	DDL	and	DML?

Ans	Data	Definition	Language	(DDL):	This	is	a	category	of	SQL	commands.	All	the	commands

which	are	used	to	create,	destroy,	or	restructure	databases	and	tables	come	under	this

category.	Examples	of	DDL	commands	are	-	CREATE,	DROP,	ALTER.	Data	Manipulation

Language	(DML):	This	is	a	category	of	SQL	commands.	All	the	commands	which	are	used	to

manipulate	data	within	tables	come	under	this	category.	Examples	of	DML	commands	are	-

INSERT,	UPDATE,	DELETE.

Q.4	What	is	a	constraint?

Ans	:	A	constraints	is	a	condition	or	check	application	on	a	field	or	set	of	fields.

Example:	NOT	NULL	(ensure	that	column	con	not	have	null	value),	CHECK	(make	sure	that

all	value	satisfy	certain	criteria),	UNIQUE	(ensure	that	all	values	in	a	column	are	different)

etc.

Q5	What	are	single	row	functions?

Ans:	Single	Row	Function	work	with	a	single	row	at	a	time.	A	single	row	function	returns	a

result	for	every	row	of	a	queried	table.

Important Questions Part-5

MySQL



Examples	of	Single	row	functions	are	Sqrt(),	Concat(),	Lcase(),	Upper(),	Day(),	etc.

Q.	6	Compare	CHAR	and	VARCHAR	data	types.

Ans.	The	CHAR	data-type	stores	fixed	length	strings	such	that	strings	having	length	smaller

than	the	field	size	are	padded	on	the	right	with	spaces	before	being	stored.

The	VARCHAR	on	the	other	hand	supports	variable	length	strings	and	therefore	stores	strings

smaller	than	the	field	size	without	modification.

Q.7	What	are	the	differences	between	DELETE	and	DROP	commands	of	SQL?

Ans:	DELETE	is	DML	command	while	DROP	is	a	DDL	command.	Delete	is	used	to	delete

rows	from	a	table	while	DROP	is	used	to	remove	the	entire	table	from	the	database.

Q8	What	do	you	understand	by	MySQL	Server?

Ans:	MySQL	server	listens	for	clients	requests	coming	in	over	the	network	and	accesses

database	contents	according	to	those	requests	and	provides	that	to	the	client.

Q9	What	do	you	understand	by	MySQL	Client?

Ans:	MySQL	Clients	are	programs	that	connect	to	MySQL	Server	and	issue	queries	in

predefined	format.

Q.10	Explain	with	the	help	of	an	example	that	why	should	a	transaction	be	executed	as

a	whole	or	it	should	be	not	executed	at	all.

Ans:	Suppose	Raunak's	account	number	is	3246	and	his	aunt's	account	number	is	5135.	In

order	to	process	the	cheque	presented	by	Raunak,	the	following	two	SQL	commands	need	to

be	executed	on	the	database	maintained	by	the	bank:

UPDATE	Savings	SET	balance	=	balance	-	2000

WHERE	account_no	=	5135;

UPDATE	Savings	SET	balance	=	balance	+	2000

WHERE	account_no	=	3246;



The	above	two	Updates	should	both	take	place.	If	the	first	Update	takes	place	and	there	is

a	system	failure,	the	first	updation	should	be	undone.	Either	both	the	updations	should	be

done	and	if	it	is	not	possible	for	both	the	updations	to	be	done,	then	no	updation	should	be

done.

Query	Based	question	&	answers

1.The	Pincode	column	of	table	'Post'	is	given	below-

.Pincode

10001

120012

300048

281001

i.	SELECT	Pincode	from	Post	where	Pincode	LIKE	"	%1"	;

ii.	SELECT	Pincode	from	Post	where	Pincode	LIKE	"	0%"	;

Ans:	i)	110001	ii)	No	Output

2.	A	table	"Animals"	in	a	database	has	3	columns	and	10	records.	What	is	the	degree	and

cardinality	of	this	table?

Ans:	Degree	3	and	Cardinality=10

3.	Answer	the	question	based	on	the	table	VOTER	given	below:

																																																																										Table:	voter

Column	Name Data	type Size Constraints Description

V_id BIGINT 8 Primary	key Voter	identification

Vname VARCHAR 25 Not	null Name	of	the	voter

Age INT 3 Check>17
Age	should	not	less	than

equal	to	17



Address VARCHAR2 30 	 Address	of	voter

Phone VARCHAR 10 	 Phone	number	of	the	voter

(i)	Write	the	command	to	delete	all	the	rows	of	particular	voter	from	the	table	voter

where	voter	ID	between

10	and	20.

Ans:	Delete	from	VOTER	where	V_id	between	10	and	20;

(ii)	Delete	the	table	physically.

Ans:	Drop	table	VOTER;

4.	.	Write	MySql	command	to	create	a	furniture	table	including	all	constraint.

																																																												Table:	Furniture

ITEMNO ITEMNAME TYPE DATEOFSTOCK PRICE DISCOUNT

INT VARCHAR VARCHAR 	 INT INT

5 20 20 DATE 6 6

PRIMARY

KEY
NOT	NULL 	

DEFAULT

‘19/03/2010’
	 	

CREATE	TABLE	FURNITURE

(ITEMNO	INT(5)	PRIMARY	KEY,	ITEMNAME	VARCHAR(20)	NOT	NULL,

TYPE	VARCHAR	(20),DATE_STOCK	DATE	DEFAULT	'2012/03/19',	PRICE	INT(6),	DISCOUNT

INT(2)	);

5.	Consider	a	database	LOANS	with	the	following	table:

Table:	Loan_Accounts

AccNo Cust_Name Loan_Amount Instalments Int_Rate Start_Date

1 R.K.	Gupta 300000 36 12.00 19-07-2009

2 S.P.	Sharma 500000 48 10.00 22-03-2008

3 K.P.	Jain 300000 36 NULL 08-03-2007



4 M.P.	Yadav 800000 60 10.00 06-12-2008

5 S.P.	Sinha 200000 36 12.50 03-01-2010

6 P.	Sharma 700000 60 12.50 05-06-2008

7 K.S.	Dhall 500000 48 NULL 05-03-2008

Answer	the	following	questions.

Create	Database	and	use	it

1.	Create	the	database	LOANS.

Mysql>	Create	Database	LOANS;

2.	Use	the	database	LOANS.

Mysql>	Use	LOANS;

Create	Table	/	Insert	Into

3.	Create	the	table	Loan_Accounts	and	insert	tuples	in	it.

Mysql>Create	table	Loan_Acc	(AccNo	int	primary	key,

Cust_Name	varchar(30),	Loan_Amount	int,	Installment	int,	Int_Rate	number(5,3),

Start_Date	date,	Interest	number(7,2));

Mysql>	Insert	into	Loan_Acc	values(1,'R.K.	GUPTA',300000,36,12.0.'2009-07-19');

Simple	Select

4.	Display	the	details	of	all	the	loans.

Mysql>	Select	*	from	Loan_Acc;

5.	Display	the	AccNo,	Cust_Name,	and	Loan_Amount	of	all	the	loans.

Mysql>	Select	Acc_No,Cust_Name,Loan_Amount	from	Loan_Acc;

Conditional	Select	using	Where	Clause



6	Display	the	details	of	all	the	loans	with	less	than	40	instalments.

Mysql>	Select	*	from	Loan_Acc	where	Instalment	<40;

7.	Display	the	AccNo	and	Loan_Amount	of	all	the	loans	started	before	01-04-2009.

Mysql>	Select	AccNo,	Loan_Amount	from	Loan_Acc	where	Start_Date	<'2009-04-01';	8.	Display

the

Int_Rate	of	all	the	loans	started	after	01-04-2009.

Mysql>	Select	Int_Rate	from	Loan_Acc	where	Start_date>'2009-04-01';

Using	NULL

8.	Display	the	details	of	all	the	loans	whose	rate	of	interest	is	NULL.

Mysql>	Select	*	from	Loan_Acc	where	Int_rate	is	NULL;

9.	Display	the	details	of	all	the	loans	whose	rate	of	interest	is	not	NULL.

Mysql>	Select	*	from	Loan_Acc	where	Int_rate	is	not	NULL;

Using	DISTINCT	Clause

10.	Display	the	amounts	of	various	loans	from	the	table	Loan_Accounts.	A	loan	amount

should	appear	only	once.

Mysql>	Select	DISTINCT	Loan_Amount	from	Loan_Acc;

11.	Display	the	number	of	instalments	of	various	loans	from	the	table	Loan_Accounts.	An

instalment	should	appear	only	once..

Mysql>	Select	DISTINCT	Instalment	from	Loan_Acc;

Using	Logical	Operators	(NOT,	AND,	OR)

12.	Display	the	details	of	all	the	loans	started	after	31-12-2008	for	which	the	number	of

instalments	are	more	than	36.

Mysql>	Select	*	from	Loan_Acc	where	Start_Date>'2008-12-31'	and	Instalment>36;



13.	Display	the	Cust_Name	and	Loan_Amount	for	all	the	loans	which	do	not	have	number

of	instalments	36.

Mysql>	Select	Cust_Name,	Loan_Amount	from	Loan_Acc	where	Instalment	<>36;

14.	Display	the	Cust_Name	and	Loan_Amount	for	all	the	loans	for	which	the	loan	amount

is	less	than	500000	or	int_rate	is	more	than	12.

Mysql>	Select	Cust_Name,	Loan_Amount	from	Loan_Acc	where	Loan_Amount	<500000	or

Int_rate>12;

15.	Display	the	details	of	all	the	loans	which	started	in	the	year	2009.

Mysql>	Select	*	from	Loan_Acc	where	Year(Start_Date)=2009;

16.	Display	the	details	of	all	the	loans	whose	Loan_Amount	is	in	the	range	400000	to

500000.

Mysql>	Select	*	from	Loan_Acc	where	Loan	Amount	between	400000	and	50000;

17.	Display	the	details	of	all	the	loans	whose	rate	of	interest	is	in	the	range	11%	to	12%.

Mysql>	Select	*	from	Loan_Acc	where	Int_Rate	between	11	and	12;

Using	IN	Operator

19.	Display	the	Cust_Name	and	Loan_Amount	for	all	the	loans	for	which	the	number	of

instalments	are	24,	36,	or	48.	(Using	IN	operator)

Mysql>	Select	Cust_Name,	Loan_Amount	from	Loan_Acc	where	Instalment	IN(24,36,48);	UR

Using	LIKE	Operator

20.	Display	the	AccNo,	Cust_Name,	and	Loan_Amount	for	all	the	loans	for	which	the

Cust_Name	ends	with	'Sharma'.



Mysql>	Select	AccNo,	Cust_name	from	Loan_Acc	where

Cust_Name	like	'%Sharma';

21.	Display	the	AccNo,	Cust_Name,	and	Loan_Amount	for	all	the	loans	for	which	the

Cust_Name	ends	with	'a'.

Mysql>	Select	AccNo,	Cust_name,	Loan_Amount	from	Loan_Acc	where	Cust_Name	like	'%a';

22.	Display	the	AccNo,	Cust_Name,	and	Loan_Amount	for	all	the	loans	for	which	the

Cust_Name	contains	'a'

Mysql>	Select	AccNo,	Cust_name,Loan_Amount	from	Loan_Acc	where

Cust_Name	like	'%a%';

23.	Display	the	AccNo,	Cust_Name,	and	Loan_Amount	for	all	the	loans	for	which	the

Cust_Name	does	not	contain	'P'.

Mysql>	Select	AccNo,	Cust_name,Loan_Amount	from	Loan_Acc	where

NOT	(Cust_Name	like	'%P%');

24.	Display	the	AccNo,	Cust_Name,	and	Loan_Amount	for	all	the	loans	for	which	the

Cust_Name	contains	'a'	as	the	second	last	character.

Mysql>	Select	AccNo,	Cust_name,Loan_Amount	from	Loan_Acc	where

Cust_Name	like	'%a_';

Using	ORDER	BY	clause

25.	Display	the	details	of	all	the	loans	in	the	ascending	order	of	their	Loan_Amount.

Mysql>	Select	*	from	Loan_Acc	ORDER	BY	Loan_Amount;

28.	Display	the	details	of	all	the	loans	in	the	descending	order	of	their	Start_Date.

Mysql>	Select	*	from	Loan_Acc	ORDER	BY	Start_date	DESC;



29.	Display	the	details	of	all	the	loans	in	the	ascending	order	of	their	Loan_Amount	and

within	Loan_Amount	in	the	descending	order	of	their	Start_Date.

Mysql>	Select	*	from	Loan_Acc	ORDER	BY	Loan_Amount,	Start_Date	DESC;

Using	UPDATE,	DELETE,	ALTER	TABLE

30.	Put	the	interest	rate	11.50%	for	all	the	loans	for	which	interest	rate	is	NULL.

Mysql>	Update	Loan_Acc	SET	Int_Rate	=11.50	Where	Int_Rate	IS	NULL:

31.	Increase	the	interest	rate	by	0.5%	for	all	the	loans	for	which	the	loan	amount	is	more

than	400000.

Mysql>	Update	Loan_Acc	SET	Int_Rate=	Int_Rate+0.5

Where	Loan_Amount	>400000;

32.	For	each	loan	replace	Interest	with	(Loan_Amount*Int_Rate*Instalments)	12*100.

Mysql>	Update	Loan_Acc

SET	Interest=(Loan_Amount*Int_Rate*Instalments)	/12*100;

33.	Delete	the	records	of	all	the	loans	whose	start	date	is	before	2007.

Mysql>	Delete	From	Loan_Acc	Where	Year(Start_Date)<2007;

34.	Delete	the	records	of	all	the	loans	of	'K.P.	Jain'

Mysql>	Delete	From	Loan_Acc	Where	Cust_Name='K.P.Jain';

35.	Add	another	column	Category	of	type	CHAR(1)	in	the	Loan	table.

Mysql>	Alter	Table	Loan_Acc	ADD	(Category	CHAR(1)	);

Find	the	Output	of	the	following	queries

36.SELECT	cust_name,	LENGTH(Cust_Name),	LCASE(Cust_Name),	UCASE(Cust_Name)	FROM

Loan_Accounts	WHERE	Int_Rate	<	11.00;

Cust_Name Length(Cust_Name) LCASE(Cust_Name) UCASE(Cust_Name)

S.P.	Sharma 11 s.p.	sharma S.P.	SHARMA

M.P.	Yadav 10 m.p.	yadav M.P.	YADAV



37.SELECT	LEFT(Cust_Name,	3),	Right(Cust_Name,	3),	SUBSTR(Cust_Name,	1,	3)	FROM

Loan_Accounts	WHERE	Int_Rate	>	10.00;

LEFT(Cust_Name,3) RIGHT(Cust_Name,3) SUBSTR(Cust_Name,1,3)

R.K Pta R.K

S.P Nha S.P

P. Rma P.

SELECT	RIGHT(Cust_Name,	3),	SUBSTR(Cust_Name,	5)	FROM	Loan_Accounts;

RIGHT(Cust_Name,	3)											 SUBSTR(Cust_Name,	5)

pta																																																		 Gupta

rma Sharma

ain																																																			 Jain

dav																																																		 Yadav

nha																																																	 Sinha

rma																																																	 	harma

all																																																						 Dhal

39.	SELECT	DAYOFMONTH(Start_Date)	FROM	Loan_Accounts;

DAYOFMONTH(Start_Date)

19

22

08

06

03

05

05


	1. CBSE class-12 Important Questions Informatics Practices, MYSQL REVISION TOUR.pdf (p.1-5)
	2. CBSE class-12 Important Questions Informatics Practices, DATABASE TRANSACTIONS.pdf (p.6-7)
	3. CBSE class-12 Important Questions Informatics Practices,More on SQL- Grouping Records and Table Joins.pdf (p.8-38)
	4. CBSE class-12 Important Questions Informatics Practices More RDBMS(Relational Database Management System).pdf (p.39-45)
	5. CBSE Important Questions Ch-06 MySQL.pdf (p.46-55)

