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Electromagnetic Waves

Earlier chapters have shown that the velocity of waves through a medium is determined by

the inertia and the elasticity of the medium. These two properties are capable of storing

wave energy in the medium, and in the absence of energy dissipation they also determine

the impedance presented by the medium to the waves. In addition, when there is no loss

mechanism a pure wave equation with a sine or cosine solution will always be obtained, but

this equation will be modified by any resistive or loss term to give an oscillatory solution

which decays with time or distance.

These physical processes describe exactly the propagation of electromagnetic waves

through a medium. The magnetic inertia of the medium, as in the case of the transmission

line, is provided by the inductive property of the medium, i.e. the permeability �, which has
the units of henries per metre. The elasticity or capacitive property of the medium is

provided by the permittivity ", with units of farads per metre. The storage of magnetic

energy arises through the permeability �; the potential or electric field energy is stored

through the permittivity ".
If the material is defined as a dielectric, only � and " are effective and a pure wave

equation for both the magnetic field vector H and the electric field vector E will result. If

the medium is a conductor, having conductivity � (the inverse of resistivity) with

dimensions of siemens per metre or (ohms m)�1, in addition to � and ", then some of the

wave energy will be dissipated and absorption will take place.

In this chapter we will consider first the propagation of electromagnetic waves in a

medium characterized by � and " only, and then treat the general case of a medium having

�, " and � properties.

Maxwell’s Equations

Electromagnetic waves arise whenever an electric charge changes its velocity. Electrons

moving from a higher to a lower energy level in an atom will radiate a wave of a particular

frequency and wavelength. A very hot ionized gas consisting of charged particles will

radiate waves over a continuous spectrum as the paths of individual particles are curved in
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mutual collisions. This radiation is called ‘Bremsstrahlung’. The radiation of electro-

magnetic waves from an aerial is due to the oscillatory motion of charges in an alternating

current flowing in the aerial.

Figure 8.1 shows the frequency spectrum of electromagnetic waves. All of these waves

exhibit the same physical characteristics.

It is quite remarkable that the whole of electromagnetic theory can be described by the

four vector relations in Maxwell’s equations. In examining these relations in detail we shall

see that two are steady state; that is, independent of time, and that two are time-varying.

The two time-varying equations are mathematically sufficient to produce separate wave

equations for the electric and magnetic field vectors, E and H, but the steady state equations

help to identify the wave nature as transverse.

The first time-varying equation relates the time variation of the magnetic induction,

�H ¼ B, with the space variation of E; that is

@

@t
ð�HÞ is connected with

@E

@z
ðsayÞ

This is nothing but a form of Lenz’s or Faraday’s Law, as we shall see.

The second time-varying equation states that the time variation of "E defines the space

variation of H, that is

@

@t
ð"EÞ is connected with

@H

@z
ðsayÞ

Again we shall see that this is really a statement of Ampere’s Law.

These equations show that the variations of E in time and space affect those of H and

vice versa. E and H cannot be considered as isolated quantities but are interdependent.

The product "E has dimensions

farads

metre
� volts

metre
¼ charge

area

This charge per unit area is called the displacement charge D ¼ "E.
Physically it appears in a dielectric when an applied electric field polarizes the

constituent atoms or molecules and charge moves across any plane in the dielectric which
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Figure 8.1 Wavelengths and frequencies in the electromagnetic spectrum
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is normal to the applied field direction. If the applied field is varying or alternating with

time we see that the dimensions of

@D

@t
¼ @

@t
ð"EÞ ¼ charge

time� area

current per unit area. This current is called the displacement current. It is comparatively

simple to visualize this current in a dielectric where physical charges may move—it is not

easy to associate a displacement current with free space in the absence of a material but it may

always be expressed as Id ¼ "ð@�E=@tÞ, where �E is the electric field flux through a surface.

Consider what happens in the electric circuit of Figure 8.2 when the switch is closed and

the battery begins to charge the condenser C to a potential V. A current I obeying Ohm’s

Law (V ¼ IR) will flow through the connecting leads as long as the condenser is charging

and a compass needle or other magnetic field detector placed near the leads will show the

presence of the magnetic field associated with that current. But suppose a magnetic field

detector (shielded from all outside effects) is placed in the region between the condenser

plates where no ohmic or conduction current is flowing. Would it detect a magnetic field?

The answer is yes; all the magnetic field effects from a current exist in this region as long

as the condenser is charging, that is, as long as the potential difference and the electric field

between the condenser plates are changing.

It was Maxwell’s major contribution to electromagnetic theory to assert that the

existence of a time-changing electric field in free space gave rise to a displacement current.

The same result follows from considering the conservation of charge. The flow of charge

into any small volume in space must equal that flowing out. If the volume includes the top

plate of the condenser the ohmic current through the leads produces the flow into the

volume, while the displacement current represents the flow out.

In future, therefore, two different kinds of current will have to be considered:

1. The familar conduction current obeying Ohm’s Law (V ¼ IR) and

2. The displacement current of density @D=@t.

Battery

Switch
closed

Magnetic
field?

R

C

I

Figure 8.2 In this circuit, when the switch is closed the conduction current charges the condenser.
Throughout charging the quantity "E in the volume of the condenser is changing and the
displacement current per unit area @=@t ("E) is associated with the magnetic field present between
the condenser plates
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In a medium of permeability � and permittivity ", but where the conductivity � ¼ 0, the

displacement current will be the only current flowing. In this case a pure wave equation for

E and H will follow and there will be no energy loss or attenuation.

When � 6¼ 0 a resistive element allows the conduction current to flow, energy loss will

follow, a diffusion term is added to the wave equation and the wave amplitude will

attenuate exponentially with distance. We shall see that the relative magnitude of these two

currents is frequency-dependent and that their ratio governs whether the medium behaves

as a conductor or as a dielectric.

Electromagnetic Waves in a Medium having Finite Permeability
l and Permittivity e but with Conductivity r ¼ 0

We shall consider a system of plane waves and choose the plane xy as that region over

which the wave properties are constant. These properties will not vary with respect to x and

y and all derivatives @=@x and @=@y will be zero.

The first time-varying equation of Maxwell is written in vector notation as

curl E ¼ r� E ¼ � @B

@t
¼ ��

@H

@t

This represents three component equations:

��
@

@t
Hx ¼ @

@y
Ez � @

@z
Ey

��
@

@t
Hy ¼ @

@z
Ex � @

@x
Ez

��
@

@t
Hz ¼ @

@x
Ey � @

@y
Ex

9>>>>>>>=
>>>>>>>;

ð8:1Þ

where the subscripts represent the component directions. Ex, Ey and Ez are, respectively, the

magnitudes of ExEy and Ez. Similarly, Hx, Hy and Hz are the magnitudes of HxHy and Hz.

The dimensions of these equations may be written

� �H

time
¼ E

length

and multiplying each side by (length)2 gives

� �H

time
� area ¼ E � length

i.e.

total magnetic flux

time
¼ volts

This is dimensionally of the form of Lenz’s or Faraday’s Law.
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The second time-varying equation of Maxwell is written in vector notation as

curl H ¼ r�H ¼ @D

@t
¼ "

@E

@t

This represents three component equations:

"
@

@t
Ex ¼ @

@y
Hz � @

@z
Hy

"
@

@t
Ey ¼ @

@z
Hx � @

@x
Hz

"
@

@t
Ez ¼ @

@x
Hy � @

@y
Hx

9>>>>>>>=
>>>>>>>;

ð8:2Þ

The dimensions of these equations may be written

current I

area
¼ H

length

and multiplying both sides by a length gives

current

length
¼ I

length
¼ H

which is dimensionally of the form of Ampere’s Law (i.e. the circular magnetic field at

radius r due to the current I flowing in a straight wire is given by H ¼ I=2�r). Maxwell’s

first steady state equation may be written

div D ¼ r � D ¼ "
@Ex

@x
þ @Ey

@y
þ @Ez

@z

� �
¼ � ð8:3Þ

where " is constant and � is the charge density. This states that over a small volume element

dx dy dz of charge density � the change of displacement depends upon the value of �.
When � ¼ 0 the equation becomes

"
@Ex

@x
þ @Ey

@y
þ @Ez

@z

� �
¼ 0 ð8:3aÞ

so that if the displacement D ¼ "E is graphically represented by flux lines which must

begin and end on electric charges, the number of flux lines entering the volume element dx

dy dz must equal the number leaving it.

The second steady state equation is written

div B ¼ r � B ¼ �
@Hx

@x
þ @Hy

@y
þ @Hz

@z

� �
¼ 0 ð8:4Þ
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Again this states that an equal number of magnetic induction lines enter and leave the

volume dx dy dz. This is a physical consequence of the non-existence of isolated magnetic

poles, i.e. a single north pole or south pole.

Whereas the charge density � in equation (8.3) can be positive, i.e. a source of flux lines

(or displacement), or negative, i.e. a sink of flux lines (or displacement), no separate source

or sink of magnetic induction can exist in isolation, every source being matched by a sink

of equal strength.

The Wave Equation for Electromagnetic Waves

Since, with these plane waves, all derivatives with respect to x and y are zero. equations

(8.1) and (8.4) give

��
@Hz

@t
¼ 0 and

@Hz

@z
¼ 0

therefore, Hz is constant in space and time and because we are considering only the

oscillatory nature of H a constant Hz can have no effect on the wave motion. We can

therefore put Hz ¼ 0. A similar consideration of equations (8.2) and (8.3a) leads to the

result that Ez ¼ 0.

The absence of variation in Hz and Ez means that the oscillations or variations in H and

E occur in directions perpendicular to the z-direction. We shall see that this leads to the

conclusion that electromagnetic waves are transverse waves.

In addition to having plane waves we shall simplify our picture by considering only

plane-polarized waves.

We can choose the electric field vibration to be in either the x or y direction. Let us

consider Ex only, with Ey ¼ 0. In this case equations (8.1) give

��
@Hy

@t
¼ @Ex

@z
ð8:1aÞ

and equations (8.2) give

"
@Ex

@t
¼ � @Hy

@z
ð8:2aÞ

Using the fact that

@ 2

@z@t
¼ @ 2

@t@z

it follows by taking @=@t of equation (8.1a) and @=@z of equation (8.2a) that

@ 2

@z2
Hy ¼ �"

@ 2

@t 2
Hy (the wave equation for HyÞ
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Similarly, by taking @=@t of (8.2a) and @=@z of (8.1a), we obtain

@ 2

@z2
Ex ¼ �"

@ 2

@t 2
Ex (the wave equation for ExÞ

Thus, the vectors Ex and Hy both obey the same wave equation, propagating in the

z-direction with the same velocity v 2 ¼ 1=�". In free space the velocity is that of light, that

is, c2 ¼ 1=�0"0, where �0 is the permeability of free space and "0 is the permittivity of

free space.

The solutions to these wave equations may be written, for plane waves, as

Ex ¼ E0 sin
2�

�
ðvt � zÞ

Hy ¼ H0 sin
2�

�
ðvt � zÞ

where E0 and H0 are the maximum amplitude values of E and H. Note that the sine (or

cosine) solutions means that no attenuation occurs: only displacement currents are involved

and there are no conductive or ohmic currents.

We can represent the electromagnetic wave (Ex, Hy) travelling in the z-direction in

Figure 8.3, and recall that because Ez and Hz are constant (or zero) the electromagnetic

wave is a transverse wave.

The direction of propagation of the waves will always be in the E�H direction; in this

case, E�H has magnitude, ExHy and is in the z-direction.

This product has the dimensions

voltage� current

length� length
¼ electrical power

area

measured in units of watts per square metre.

Hy
H 0

H 0

(E×H)Z

E 0

E 0

Ex

(Vt – Z )Ex = E 0 Sin 2π
λ

(Vt – Z )Hx = H 0 Sin 2π
λ

Figure 8.3 In a plane-polarized electromagnetic wave the electric field vector Ex and magnetic
field vector Hy are perpendicular to each other and vary sinusoidally. In a non-conducting medium
they are in phase. The vector product, E�H, gives the direction of energy flow
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The vector product, E�H gives the direction of energy flow. The energy flow per second

across unit area is given by the Poynting vector:

1

2
E�H�

(Problem 8.1)

Illustration of Poynting Vector

We can illustrate the flow of electromagnetic energy in terms of the Poynting vector by

considering the simple circuit of Figure 8.4, where the parallel plate condenser of area A

and separation d, containing a dielectric of permittivity ", is being charged to a voltage V.

Throughout the charging process current flows, and the electric and magnetic field

vectors show that the Poynting vector is always directed into the volume Ad occupied by

the dielectric.

The capacitance C of the condenser is "A=d and the total energy of the condenser at

potential V is 1
2
CV 2 joules, which is stored as electrostatic energy. But V ¼ Ed, where E is

the final value of the electric field, so that the total energy

1

2
CV 2 ¼ 1

2

"A

d

� �
E 2d 2 ¼ 1

2
ð"E 2ÞAd

where Ad is the volume of the condenser.

The electrostatic energy per unit volume stored in the condenser is therefore 1
2
"E 2 and

results from the flow of electromagnetic energy during charging.

H E

I

E × H

Area A

Plate
separation d

Dielectric
permittivity e

E × H directed to
condenser axis

Figure 8.4 During charging the vector E�H is directed into the condenser volume. At the end of
the charging the energy is totally electrostatic and equals the product of the condenser volume, Ad,
and the electrostatic energy per unit volume, 1

2 "E
2
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Impedance of a Dielectric to Electromagnetic Waves

If we put the solutions

Ex ¼ E0 sin
2�

�
ðvt � zÞ

and

Hy ¼ H0 sin
2�

�
ðvt � zÞ

in equation (8.1a) where

��
@Hy

@t
¼ @Ex

@z

then

��vHy ¼ �Ex; and since v 2 ¼ 1

�"ffiffiffi
�

p
Hy ¼

ffiffiffi
"

p
Ex

that is

Ex

Hy

¼
ffiffiffi
�

"

r
¼ E0

H0

which has the dimensions of ohms.

The value
ffiffiffiffiffiffiffiffi
�="

p
therefore represents the characteristic impedance of the medium to

electromagnetic waves (compare this with the equivalent result V=I ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
L0=C0

p ¼ Z0 for

the transmission line of the previous chapter).

In free space

Ex

Hy

¼
ffiffiffiffiffiffi
�0

"0

r
¼ 376:7�

so that free space presents an impedance of 376.7� to electromagnetic waves travelling

through it.

It follows from

Ex

Hy

¼
ffiffiffi
�

"

r
that

E 2
x

H 2
y

¼ �

"

and therefore

"E 2
x ¼ �H 2

y

Both of these quantities have the dimensions of energy per unit volume, for instance "E 2
x

has dimensions

farads

metre
� volts2

metres2
¼ joules

metres3
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as we saw in the illustration of the Poynting vector. Thus, for a dielectric the electrostatic

energy 1
2
"E 2

x per unit volume in an electromagnetic wave equals the magnetic energy per

unit volume 1
2
�H 2

y and the total energy is the sum 1
2
"E 2

x þ 1
2
�H 2

y .

This gives the instantaneous value of the energy per unit volume and we know that, in

the wave,

Ex ¼ E0 sin ð2�=�Þðvt � zÞ
and

Hy ¼ H0 sin ð2�=�Þðvt � zÞ

so that the time average value of the energy per unit volume is

1
2
"�EE 2

x þ 1
2
��HH 2

y ¼ 1
4
"E 2

0 þ 1
4
�H 2

0

¼ 1
2
"E 2

0 Jm
�3

Now the amount of energy in an electromagnetic wave which crosses unit area in unit

time is called the intensity, I, of the wave and is evidently (1
2
"E 2

0Þv where v is the velocity
of the wave.

This gives the time averaged value of the Poynting vector and, for an electromagnetic

wave in free space we have

I ¼ 1
2
c"0E

2
0 ¼ 1

2
c�0H

2
0 Wm�2

(Problems 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 8.10, 8.11)

Electromagnetic Waves in a Medium of Properties l, e and r
(where r 6¼ 0)

From a physical point of view the electric vector in electromagnetic waves plays a muchmore

significant role than the magnetic vector, e.g. most optical effects are associated with the

electric vector. We shall therefore concentrate our discussion on the electric field behaviour.

In a medium of conductivity � ¼ 0 we have obtained the wave equation

@ 2Ex

@z2
¼ �"

@ 2Ex

@t 2

where the right hand term, rewritten

�
@

@t

@

@t
ð"ExÞ

� �

shows that we are considering a term

�
@

@t

displacement current

area

� �
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When � 6¼ 0 we must also consider the conduction currents which flow. These currents are

given by Ohm’s Law as I ¼ V=R, and we define the current density; that is, the current per

unit area, as

J ¼ I

Area
¼ 1

R� Length
� V

Length
¼ �E

where � is the conductivity 1/ðR� LengthÞ and E is the electric field. J ¼ �E is another

form of Ohm’s Law.

With both displacement and conduction currents flowing, Maxwell’s second time-

varying equation reads, in vector form,

r�H ¼ @

@t
Dþ J ð8:5Þ

each term on the right hand side having dimensions of current per unit area. The presence

of the conduction current modifies the wave equation by adding a second term of the same

form to its righthand side, namely

�
@

@t

current

area

� �
which is �

@

@t
ðJÞ ¼ �

@

@t
ð�EÞ

The final equation is therefore given by

@ 2

@z2
Ex ¼ �"

@ 2

@t 2
Ex þ ��

@

@t
Ex ð8:6Þ

and this equation may be derived formally by writing the component equation of (8.5) as

"
@Ex

@t
þ �Ex ¼ � @Hy

@z
ð8:5aÞ

together with

��
@Hy

@t
¼ @Ex

@z
ð8:1aÞ

and taking @=@t of (8.5a) and @=@z of (8.1a). We see immediately that the presence of the

resistive or dissipation term, which allows conduction currents to flow, will add a diffusion

term of the type discussed in the last chapter to the pure wave equation. The product

ð��Þ�1
is called the magnetic diffusivity, and has the dimensions L2T �1, as we expect of

all diffusion coefficients.

We are now going to look for the behaviour of Ex in this new equation, with the

assumption that its time-variation is simple harmonic, so that Ex ¼ E0 e
i!t. Using this

value in equation (8.6) gives

@ 2Ex

@z2
� ði!��� !2�"ÞEx ¼ 0
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which is in the form of equation (7.5), written

@ 2Ex

@z2
� � 2Ex ¼ 0

where � 2 ¼ i!��� !2�".
We saw in Chapter 7 that this produced a solution with the term e��z or eþ�z, but we

concentrate on the Ex oscillation in the positive z-direction by writing

Ex ¼ E0 e
i!t e��z

In order to assign a suitable value to � we must go back to equation (8.6) and consider the

relative magnitudes of the two right hand side terms. If the medium is a dielectric, only

displacement currents will flow. When the medium is a conductor, the ohmic currents of

the second term on the right hand side will be dominant. The ratio of the magnitudes of the

conduction current density to the displacement current density is the ratio of the two right

hand side terms. This ratio is

J

@D=@t
¼ �Ex

@=@tð"ExÞ ¼
�Ex

@=@tð"E0 e i!tÞ ¼
�Ex

i!"Ex

¼ �

i!"

We see immediately from the presence of i that the phase of the displacement current is

90� ahead of that of the ohmic or conduction current. It is also 90� ahead of the electric

field Ex so the displacement current dissipates no power.

For a conductor, where J � @D=@t, we have � � !", and � 2 ¼ i�ð!�Þ � !"ð!�Þ
becomes

� 2 � i�!�

to a high order of accuracy.

Now

ffiffi
i

p
¼ 1þ iffiffiffi

2
p

so that

� ¼ ð1þ iÞ !��

2

� �1=2

and

Ex ¼ E0 e
i!t e��z

¼ E0 e
�ð!��=2Þ 1=2z ei½!t�ð!��=2Þ 1=2z�

210 Electromagnetic Waves



a progressive wave in the positive z-direction with an amplitude decaying with the factor

e�ð!��=2Þ1=2z.
Note that the product !�� has dimensions L�2.

(Problem 8.12)

Skin Depth

After travelling a distance

	 ¼ 2

!��

� �1=2

in the conductor the electric field vector has decayed to a value Ex ¼ E0 e
�1; this distance

is called the skin depth (Figure 8.5).

For copper, with � � �0 and � ¼ 5:8� 107 S m�1 at a frequency of 60 Hz, 	 � 9 mm;

at 1 MHz, 	 � 6:6� 10�5 m and at 30 000 MHz (radar wavelength of 1 cm),

	 � 3:8� 10�7 m.

Thus, high frequency electromagnetic waves propagate only a very small distance in a

conductor. The electric field is confined to a very small region at the surface; significant

currents will flow only at the surface and the resistance of the conductor therefore increases

with frequency. We see also why a conductor can act to ‘shield’ a region from electro-

magnetic waves.

Electromagnetic Wave Velocity in a Conductor and Anomalous
Dispersion

The phase velocity of the wave v is given by

v ¼ !

k
¼ !

ð!��=2Þ1=2
¼ !	 ¼ 2!

��

� �1=2

¼ 
�c

Free space Conductor

λc = 2 p δ

Ex

Z

λc

2
wms

1
2(        )δ =

Figure 8.5 Electromagnetic waves in a dielectric strike the plane surface of a conductor, and the
electric field vector E 0 is damped to a value E 0 e

�1 in a distance of ð2=!��Þ 1=2, the ‘skin depth’. This
explains the electrical shielding properties of a conductor. � c is the wavelength in the conductor
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When 	 is small, v is small, and the refractive index c=v of a conductor can be very large.

We shall see later that this can explain the high optical reflectivities of good conductors.

The velocity v ¼ !	 ¼ 2�
	, so that � c in the conductor is 2�	 and can be very small.

Since v is a function of the frequency an electrical conductor is a dispersive medium to

electromagnetic waves. Moreover, as the table below shows us, @v=@� is negative, so that

the conductor is anomalously dispersive and the group velocity is greater than the wave

velocity. Since c2=v 2 ¼ �"=�0"0 ¼ � r" r, where the subscript r defines non-dimensional

relative values; that is, �=�0 ¼ � r, "="0 ¼ " r, then for � r � 1

" rv
2 ¼ c2

and

@

@�
" r ¼ � 2

v
" r

@v

@�

which confirms our statement in the chapter on group velocity that for @" r=@� positive a

medium is anomalously dispersive. We see too that c2=v 2 ¼ " r ¼ n2, where n is the

refractive index, so that the curve in Figure 3.9 showing the reactive behaviour of the

oscillator impedance at displacement resonance is also showing the behaviour of n. This

relative value of the permittivity is, of course, familiarly known as the dielectric constant

when the frequency is low. This identity is lost at higher frequencies because the

permittivity is frequency-dependent.

Note that � c ¼ 2�	 is very small, and that when an electromagnetic wave strikes a

conducting surface the electric field vector will drop to about 1% of its surface value in a

distance equal to 3
4
� c ¼ 4:6 	. Effectively, therefore, the electromagnetic wave travels less

than one wavelength into the conductor.

(Problems 8.13, 8.14, 8.15)

When is a Medium a Conductor or a Dielectric?

We have already seen that in any medium having �" and � properties the magnitude of the

ratio of the conduction current density to the displacement current density

J

@D=@t
¼ �

!"

a non-dimensional quantity.

Refractive

	 v conductor ¼ !	 index

Frequency � free space (m) (m/s) (c=v conductor)

60 5000 km 9�10�3 3.2 9.5�107

106 300 m 6.6�10�5 4.1�102 7.3�105

3�1010 10�2 m 3.9�10�7 7.1�104 4.2�103
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We may therefore represent the medium by the simple circuit in Figure 8.6 where the

total current is divided between the two branches, a capacitative branch of reactance 1/!"
(ohms-metres) and a resistive branch of conductance � (siemens/metre). If � is large the

resistivity is small, and most of the current flows through the � branch and is conductive. If

the capacitative reactance 1/!" is so small that it takes most of the current, this current is

the displacement current and the medium behaves as a dielectric.

Quite arbitrarily we say that if

J

@D=@t
¼ �

!"
> 100

then conduction currents dominate and the medium is a conductor. If

@D=@t

J
¼ !"

�
> 100

then displacement currents dominate and the material behaves as a dielectric. Between

these values exist a range of quasi-conductors; some of the semi-conductors fall into this

category.

The ratio �=!" is, however, frequency dependent, and a conductor at one frequency may

be a dielectric at another.

For copper, which has � ¼ 5:8� 107 S m�1 and " � "0¼ 9� 10�12 F m�1,

�

!"
� 1018

frequency

total
J

conduction
current s E

displacement
current w e E

1
Reactance

w e
1
R

Conductivity

s ∝

Figure 8.6 A simple circuit showing the response of a conducting medium to an electromagnetic
wave. The total current density J is divided by the parallel circuit in the ratio �=!" (the ratio of the
conduction current density to the displacement current density). A large conductance � (small
resistance) gives a large conduction current while a small capacitative reactance 1/!" allows a large
displacement current to flow. For a conductor �=!"	 100; for a dielectric !"=�	 100. Note the
frequency dependence of this ratio. At ! � 1020 rad/s copper is a dielectric to X-rays
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so up to a frequency of 1016 Hz (the frequency of ultraviolet light) �=!" > 100, and

copper is a conductor. At a frequency of 1020 Hz, however (the frequency of X-rays),

!"=� > 100, and copper behaves as a dielectric. This explains why X-rays travel distances

equivalent to many wavelengths in copper.

Typically, an insulator has � � 10�15 S m�1 and " � 10�11F m�1, which gives

!"

�
� 104!

so the conduction current is negligible at all frequencies.

Why will an Electromagnetic Wave not Propagate into a
Conductor?

To answer this question we need only consider the simple circuit where a condenser C

discharges through a resistance R. The voltage equation gives

q

C
þ IR ¼ 0

and since I ¼ dq=dt, we have

dq

dt
¼ � q

RC
or q ¼ q0 e

�t=RC

where q0 is the initial charge.

We see that an electric field will exist between the plates of the condenser only for a time

t 
 RC and will disappear when the charge has had time to distribute itself uniformly

throughout the circuit. An electric field can only exist in the presence of a non-uniform

charge distribution.

If we take a slab of any medium and place a charge of density q at a point within the slab,

the medium will behave as an RC circuit and the equation

q ¼ q0 e
�t=RC

becomes

q ¼ q0 e
��=!" ! q0 e

��t=" " � C

� � 1=R

� �

The charge will distribute itself uniformly in a time t 
 "=�, and the electric field will be

maintained for that time only. The time "=� is called the relaxation time of the medium

(RC time of the electrical circuit) and it is a measure of the maximum time for which an

electric field can be maintained before the charge distribution becomes uniform.

Any electric field of a frequency 
, where 1=
 ¼ t > "=�, will not be maintained; only a

high frequency field where 1=
 ¼ t < "=� will establish itself.
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Impedance of a Conducting Medium to Electromagnetic Waves

The impedance of a lossless medium is a real quantity. For the transmission line of Chapter

7 the characteristic impedance

Z0 ¼ Vþ
Iþ

¼
ffiffiffiffiffiffi
L0

C0

r
� ;

for an electromagnetic wave in a dielectric

Z ¼ Ex

Hy

¼
ffiffiffi
�

"

r
�

with Ex and Hy in phase.

We saw in the case of the transmission line that when the loss mechanisms of a series

resistance R0 and a shunt conductance G0 were introduced the impedance became the

complex quantity

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ i!L0

G0 þ i!C0

r

We now ask what will be the impedance of a conducting medium of properties �, " and � to

electromagnetic waves? If the ratio of Ex to Hy is a complex quantity, it implies that a

phase difference exists between the two field vectors.

We have already seen that in a conductor

Ex ¼ E0 e
i!t e��z

where � ¼ ð1þ iÞ ð!��=2Þ1=2, and we shall now write Hy ¼ H0 e
ið!t��Þ e��z, suggesting

that Hy lags Ex by a phase angle �. This gives the impedance of the conductor as

Z c ¼ Ex

Hy

¼ E0

H0

e i�

Equation (8.1a) gives

@Ex

@z
¼ ��

@Hy

@t

so that

��Ex ¼ �i!�Hy

and

Zc ¼ Ex

Hy

¼ i!�

�
¼ ið!�Þ

ð1þ iÞð!��=2Þ1=2
¼ ið1� iÞ

ð1þ iÞð1� iÞ
2!�

�

� �1=2

¼ ð1þ iÞ
2

2!�

�

� �1=2

¼ 1þ iffiffiffi
2

p !�

�

� �1=2

¼ !�

�

� �1=2 1ffiffiffi
2

p þ i
1ffiffiffi
2

p
� �

¼ !�

�

� �1=2

e i�
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a vector of magnitude ð!�=�Þ1=2 and phase angle � ¼ 45�. Thus the magnitude

Zc ¼ E0

H0

¼ !�

�

� �1=2

and Hy lags Ex by 45�.
We can also express Zc by

Zc ¼ Rþ iX ¼ !�

2�

� �1=2

þ i
!�

2�

� �1=2

and also write it

Zc ¼ 1þ iffiffiffi
2

p !�

�

� �1=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0

"0

"0
"

�

�0

!"

�

r
ei�

of magnitude

jZcj ¼ 376:6�

ffiffiffiffiffi
� r

" r

r ffiffiffiffiffiffi
!"

�

r

At a wavelength � ¼ 10�1 m, i.e. at a frequency 
 ¼ 3000 MHz, the value of !"=� for

copper is 2.9�10�9 and � r � " r � 1. This gives a magnitude Zc ¼ 0:02� at this

frequency; for � ¼ 1, Zc ¼ 0, and the electric field vector Ex vanishes, so we can say that

when Zc is small or zero the conductor behaves as a short circuit to the electric field. This

sets up large conduction currents and the magnetic energy is increased.

In a dielectric, the impedance

Z ¼ Ex

Hy

¼
ffiffiffi
�

"

r

led to the equivalence of the electric and magnetic field energy densities; that is,
1
2
�H 2

y ¼ 1
2
"E 2

x . In a conductor, the magnitude of the impedance

Zc ¼ Ex

Hy

����
���� ¼ !�

�

� �1=2

so that the ratio of the magnetic to the electric field energy density in the wave is

1
2
�H 2

y

1
2
"E 2

x

¼ �

"

�

!�
¼ �

!"

We already know that this ratio is very large for a conductor for it is the ratio of

conduction to displacement currents, so that in a conductor the magnetic field energy

dominates the electric field energy and increases as the electric field energy decreases.
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Reflection and Transmission of Electromagnetic Waves at a
Boundary

Normal Incidence

An infinite plane boundary separates two media of impedances Z1 and Z2 (real or complex)

in Figure 8.7.

The electromagnetic wave normal to the boundary has the components shown where

subscripts i, r and t denote incident, reflected and transmitted, respectively. Note that the

vector direction (E r�H r) must be opposite to that of (E i�H i) to satisfy the energy flow

condition of the Poynting vector.

The boundary conditions, from electromagnetic theory, are that the components of the

field vectors E and H tangential or parallel to the boundary are continuous across the

boundary.

Thus

E i þ E r ¼ E t

and

H i þ H r ¼ H t

where

E i

H i

¼ Z1;
E r

H r

¼ �Z1 and
E t

H t

¼ Z2

Incident

External reflection

Transmitted
Internal reflection

Z 2 < Z 1

Z 1 < Z 2

Z 1 Z 2

E r

E t

E r

E i

H i

H r

H r H t

Figure 8.7 Reflection and transmission of an electromagnetic wave incident normally on a plane
between media of impedances Z1 and Z2. The Poynting vector of the reflected wave (E � H) r shows
that either E or H may be reversed in phase, depending on the relative magnitudes of Z 1 and Z2
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From these relations it is easy to show that the amplitude reflection coefficient

R ¼ E r

E i

¼ Z2 � Z1

Z2 þ Z1

and the amplitude transmission coefficient

T ¼ E t

E i

¼ 2Z2

Z2 þ Z1

in agreement with the reflection and transmission coefficients we have found for the

acoustic pressure p (Chapter 6) and voltage V (Chapter 7). If the wave is travelling in air

and strikes a perfect conductor of Z2 ¼ 0 at normal incidence then

E r

E i

¼ Z2 � Z1

Z2 þ Z1

¼ �1

giving complete reflection and

E t

E i

¼ 2Z2

Z2 þ Z1

¼ 0

Thus, good conductors are very good reflectors of electromagnetic waves, e.g. lightwaves

are well reflected from metal surfaces. (See Summary on p. 550.)

Oblique Incidence and Fresnel’s Equations for Dielectrics

When the incident wave is oblique and not normal to the infinite boundary of Figure 8.7 we

may still use the boundary conditions of the preceding section for these apply to the

tangential components of E and H at the boundary and remain valid.

In Figure 8.8(a) H is perpendicular to the plane of the paper with tangential components

H i, Hr and H t but the tangential components of E become

E i cos �; E r cos � and E t cos �; respectively:

In Figure 8.8(b) E is perpendicular to the plane of the paper with tangential components

E i, E r and E t but the tangential components of H become H i cos �, H r cos � and H t cos �.
Using these components in the expressions for the reflextion and transmission

coefficients we have, for Figure 8.8(a)

E r cos �

E i cos �
¼ E t cos �=H t � E i cos �=H i

E t cos �=H t þ E i cos �=H i

so

Rk ¼ E r

E i

¼ Z2 cos �� Z1 cos �

Z2 cos �þ Z1 cos �

where Rk is the reflection coefficient amplitude when E lies in the plane of incidence.
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For the transmission coefficient in Figure 8.8(a)

E t cos �

E i cos �
¼ 2E t cos �=H t

E i cos �=H i þ E t cos �=H t

so

Tk ¼ E t

E i

¼ 2Z2 cos �

Z1 cos �þ Z2 cos �

A similar procedure for Figure 8.8(b) where E is perpendicular to the plane of incidence

yields

R? ¼ Z2 cos �� Z1 cos �

Z2 cos �þ Z1 cos �

and

T? ¼ 2Z2 cos �

Z2 cos �þ Z1 cos �

Now the relation between the refractive index n of the dielectric and its impedance Z is

given by

n ¼ c

v
¼

ffiffiffiffiffiffiffiffiffiffi
�"

�0"0

r
¼ ffiffiffiffiffi

" r
p ¼ Zðfree spaceÞ

Z ðdielectricÞ

E r

E t

q f

q

Z 1 Z 2

E i

H r

H t

q f

q

Z 1 Z 2

H i

(a) (b)

Figure 8.8 Incident, reflected and transmitted components of a plane polarized electromagnetic
wave at oblique incidence to the plane boundary separating media of impedances Z 1 and Z 2. The
electric vector lies in the plane of incidence in (a) and is perpendicular to the plane of incidence in (b)
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where
�

�0

¼ � r � 1:

Hence we have

Z1

Z2

¼ n2

n1

¼ sin �

sin �

from Snell’s Law and we may write the reflection and transmission amplitude coef-

ficients as

Rk ¼ tan ð�� �Þ
tan ð�þ �Þ ; Tk ¼ 4 sin � cos �

sin 2�þ sin 2�

R? ¼ sin ð�� �Þ
sin ð�þ �Þ ; T? ¼ 2 sin � cos �

sin ð�þ �Þ

In this form the expressions for the coefficients are known as Fresnel’s Equations.

They are plotted in Figure 8.9 for n2=n1 ¼ 1:5 and they contain several significant

features.

When � is very small and incidence approaches the normal we have � ! 0 and � ! 0

so that

sin ð�� �Þ 
 tan ð�� �Þ 
 ð�� �Þ
and

Rk 
 R? 
 ð�� �Þ
ð�þ �Þ 


1

n2

� 1

n1

1

n2

þ 1

n1

¼ n1 � n2

n1 þ n2

Thus, the reflected intensity

R2
�!0 ¼

I r

I i
¼ n1 � n2

n1 þ n2

� �2


 0:4 at an air-glass interface.

We note also that when tan ð�þ �Þ ¼ 1 and �þ � ¼ 90� then Rk ¼ 0.

In this case only R? is finite and the reflected light is completely plane polarized with the

electric vector perpendicular to the plane of incidence. This condition defines the value of

the Brewster or polarizing angle �B for, when � and � are complementary cos �B ¼ sin � so

n1 sin �B ¼ n2 sin � ¼ n2 cos �B

and

tan �B ¼ n2=n1

which, for air to glass defines �B ¼ 56�.
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A typical modern laboratory use of the Brewster angle is the production of linearly

polarized light from a He-Ne laser. If the window at the end of the laser tube is tilted so that

the angle of incidence for the emerging light is �B and Rk ¼ 0, then the light with its

electric vector parallel to the plane of incidence is totally transmitted while some of the

light with transverse polarization (R?) is reflected back into the laser off-axis. If the light

makes multiple transits along the length of the tube before it emerges the transmitted beam

is strongly polarized in one plane.

More general but less precise uses involve the partial polarization of light reflected from

wet road and other shiny surfaces where refractive indices are in the range n ¼ 1:3� 1:6.
Polarized windscreens and spectacles are effective in reducing the glare from such

reflections.

1.0

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1.0

R⊥

T⊥

T| |

R | |

Brewster
angle

20° 40° 60° 90°q B

Figure 8.9 Amplitude coefficient R and T of reflection and transmission for n 2=n 1 ¼ 1:5. Rk and T k
refer to the case when the electric field vector E lies in the plane of incidence. R? and T? apply when
E is perpendicular to the plane of incidence. The Brewster angle �B defines �þ � ¼ 90� when Rk ¼ 0
and the reflected light is polarized with the E vector perpendicular to the plane of incidence. Rk
changes sign (phase) at �B. When � < �B, tan (�� �) is negative for n 2=n1 ¼ 1:5. When
�þ �	 90�, tan (�þ �) is also negative

Reflection and Transmission of Electromagnetic Waves at a Boundary 221



Reflection from a Conductor (Normal Incidence)

For Z2 a conductor and Z1 free space, the refractive index

n ¼ Z1

Z2

¼ �


þ i


is complex, where

� ¼
ffiffiffiffiffiffi
�0

"0

r

and


 ¼ !�

2�

� �1=2

A complex refractive index must always be interpreted in terms of absorption because a

complex impedance is determined by a complex propagation constant, e.g. here Z2 ¼
i!�=�, so that

n ¼ Z1

Z2

¼
ffiffiffiffiffiffi
�0

"0

r
1

i!�
ð1þ iÞ !��

2

� �1=2

¼ ð1� iÞ �

2!"0

� �1=2

where

ð��0Þ1=2
�

� 1

The ratio E r=E i is therefore complex (there is a phase difference between the incident and

reflected vectors) with a value

E r

E i

¼ Z2 � Z1

Z2 þ Z1

¼ 
þ i
� �


þ i
þ �
¼ 1� �=
þ i

1þ �=
þ i

where �=
 � 1.

Since E r=E i is complex, the value of the reflected intensity I r ¼ ðE r=E iÞ2 is found

by taking the ratio the squares of the moduli of the numerator and the denominator, so

that

I r ¼ jE rj2
jE ij2

¼ jZ2 � Z1j2
jZ2 þ Z1j2

¼ ð1� �=
Þ2 þ 1

ð1þ �=
Þ2 þ 1

¼ 1� 4�=


2þ 2�=
þ ð�=
Þ2 ! 1� 4


�
ðfor �=
 � 1Þ
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so that

I r ¼ 1� 4
!�

2�

� �1=2 "0
�0

� �1=2

� 1� 2

ffiffiffiffiffiffiffiffiffiffi
2!"0
�

r

For copper � ¼ 6� 107ðohmm�1Þ and ð2!"0=�Þ1=2 � 0:01 at infra-red frequencies. The

emission from an electric heater at 103K has a peak at � � 2:5� 10�6m. A metal reflector

behind the heater filament reflects � 97% of these infra-red rays with 3% entering the

metal to be lost as Joule heating between the metal surface and the skin depth. (see

Problem 8.20)

(Problems 8.16, 8.17, 8.18, 8.19, 8.20, 8.21, 8.22, 8.23, 8.24)

Electromagnetic Waves in a Plasma

We saw in Problem 1.4 that when an electron in an atom or, quantum mechanically the

charge centre of an electron cloud, moves a small distance from its equilibrium position,

the charge separation creates an electric field which acts as a linear restoring force and the

resulting motion is simple harmonic with an angular frequency !0. For a hydrogen atom

!0 � 4:5� 1016 rad s�1

When a steady electric field is applied to a dielectric, the resulting charge separation

between an electron and the rest of its atom induces a polarization field of magnitude

P ¼ n eex

"0

where P defines the dipole moment per unit volume. Here, ne is the electron number

density, x is the displacement from equilibrium and "0 is the permittivity of free space.

The value of P per unit electric field is called the susceptibility

� ¼ n eex

"0E

and the permittivity of the dielectric is given by

" ¼ "0ð1þ �Þ

The relative permittivity or dielectric constant

" r ¼ "

"0
¼ ð1þ �Þ ¼ 1þ n eex

"0E

� �
ð8:7Þ

A steady electric field E defines a static susceptibility. An alternating electric field E defines

a dynamic susceptibility in which case the relative permittivity.

" r ¼ n2

where n is the refractive index of the medium.
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There may be resistive or damping effects to the electric field within the medium and it is

here that our discussion of the forced damped oscillator on p. 66 becomes significant (see

Figure 3.9).

If the electric field is that of an electromagnetic wave of angular frequency ! we have

E ¼ E0e
i!t and the value of x in equatin (8.7) is that given by equation (3.2) on p. 67

representing curve (a) in Figure 3.9 where F0 is now the force Ee acting on each electron.

Equation (8.7) now becomes

" r ¼ 1þ � ¼ 1þ n ee
2m eð!2

0 � !2Þ
"0½m2

eð!2
0 � !2Þ2 þ !2r 2�

where m e is the electron mass, !0 is its harmonic frequency within the atom, ! is the

electromagnetic wave frequency and r is the damping constant.

This is the solution given to problem 3.10.

Note that for

! � !0

" r � 1þ n ee
2

"0m e!2
0

ð8:8Þ

and for

! � !0

" r � 1� n ee
2

"0m e!2

ð8:9Þ

The factor n ee
2="0m e in the second term of " r has a particular significance if the material

is not a solid but an ionized gas called a plasma. Such a gas consists of ions and electrons of

equal number densities n i ¼ n e with charges of opposite signs 
e and masses m i and m e

where m i � m e. Relative displacements between ions and electrons set up a restoring

electric field which returns the electrons to equilibrium. The relatively heavy ions are

considered as stationary. The result in Figure 8.10 shows a sheet of negative charge �n eex

–nex

ni = nl

Plasma

+nex

nexE = ε0

Figure 8.10 In an ionized gas with equal number densities of ions and electrons (n i ¼ n e) and
m i � m e, relative displacements between ions and electrons form thin sheaths of charge 
 nex,
which generate an electric field E ¼ nex=" 0 acting on each electron. The motion of each electron is
simple harmonic with an electron plasma frequency !p where !2

p ¼ n ee
2= " 0m e rad s�1
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per unit area on one side of the plasma slab with the stationary ions producing a sheet of

positive charge þneex on the other side (where n i ¼ ne).

This charge separation generates an electric field E in the plasma of magnitude

E ¼ n eex

"0

which produces an electric force �n ee
2x="0 acting on each electron in the direction of its

equilibrium position.

The equation of motion of each electron is therefore

m e€xxþ n ee
2x

"0
¼ 0

and the electron motion is simple harmonic with an angular frequency !p where

!2
p ¼ nee

2

"0m e

The angular frequency !p is called the electron plasma frequency and plays a significant

role in the propagation of electromagnetic waves in the plasma.

In the expression for the refractive index

" r ¼ n2 � 1þ !2
p

!2
0

ð8:8Þ

n is real for all values of ! and waves of that frequency will propagate. However, when

" r ¼ n2 � 1� !2
p

!2
ð8:9Þ

waves will propagate only when ! > !p

When !2
p=!

2 > 1

n2 ¼ c2

v 2
¼ c2k 2

!2
¼ 1� !2

p

!2

is negative and the wave number k is considered to be complex with

k ¼ k0 � i
:

In this case, electromagnetic waves incident on the plasma will be attenuated within the

plasma, or if 
 is large enough, will be reflected at the plasma surface.

The electric field of the wave E ¼ E0 e
ið!t�kzÞ becomes E ¼ E0e

�
z eið!t�k zÞ and is

reduced to E0e
�1 when z ¼ 1=
 ¼ 	 the penetration depth. When 
 � k0, the penetration
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is extremely small and

k 2 ! �
2 ¼ 1� !p

!2

� �!2

c2

so that


2 ¼ !2
p

c2
1� !2

!2
p

 !

and

	 ¼ 1



¼ c

!p

1� !2

!2
p

 !�1=2

When

! � !p; 	 � c=!p

P–Compressed plasma
B–Azumuthal including lines
l –Axial current

B
P

l

l

Figure 8.11 The pinch effect. A plasma is formed when a large electrical current I is discharged
along the axis of a cylindrical tube of gas. The azimuthal magnetic field lines compress the plasma
and when the conductivity of the plasma is very high the penetration of the field lines into the
plasma is very small
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On a laboratory scale number densities of the order ne � 10�6–10�10 m�3 are produced

with electron plasma frequencies in the range !p � 6� 1010 –6� 1012 rad s�1, several

orders below that of visible light.

For these values of !p, electromagnetic waves have a penetration depth

	 � c

!p

� 5� 10�3-- 5� 10�5 m

The analysis above provides an experimental method of measuring the electron number

density of a plasma using electromagnetic waves as a probe. The angular frequency of the

transmitted wave is varied until propagation no longer occurs and a reflected wave is

detected.

The rejection of magnetic fields by a plasma is exploited in laboratory experiments on

controlled thermonuclear fusion. In these a strong magnetic induction B is used as the

confining mechanism to keep the plasma from the walls of its containing vessel. The

magnetic energy per unit volume is given by B2=2� and this has the dimensions of a

pressure which opposes and often exceeds that of the hot ionized gas.

The well-known ‘pinch effect’, Figure 8.11, results when a large current is discharged

along the axis of gas contained in a cylindrical tube. The current ionizes the gas and its

azimuthal field compresses the plasma in the radial direction towards the axis, increasing

its temperature even further. Typical magnitudes in such an experiment are T 
 108 K and

n e 
 1021 m�3. This corresponds to a pressure of 
 14 atmospheres which requires a

discharge current 
 103R A where R m is the radius of the cylinder.

Electromagnetic Waves in the Ionosphere

The simple expression

n2 ¼ 1� !2
p

!2
ð8:9Þ

for the index of refraction of a plasma is modified by the presence of an external static

magnetic field. This situation exists in the ionosphere which consists of bands of low

density ionized gas approximately 300 km above the earth and located within the earth’s

dipole field of magnetic induction B0.

A charged particle of velocity v in such a field experiences an electric field E ¼ v� B0

and when v is in the plane perpendicular to B0 it rotates around the field line with an

angular frequency ! ¼ eB0=m, where e is the particle charge and m is its mass. This is most

easily seen by considering the force mv 2=r in a circular orbit balancing the electric force

"E ¼ e � v� B0.

From mv 2=r ¼ evB0

we have

v

r
¼ eB0

m
¼ 2�

v

2�r

� �
¼ 2�f ¼ !B

where f is the frequency of precession or the number of orbits per second made by the

particle.
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Figure 8.12 shows the direction of motion for positive and negative charges around a

magnetic field line which points upwards out of the paper.

We consider the simplest case of electromagnetic wave propagation along the direction

B0 and assume that

� The amplitude of electron motion is small.

� The value of n e is low enough to neglect collisional damping.

� The magnetic induction B0 � the magnetic induction of the electromagnetic wave.

If we consider the electric field to be that of a circularly polarized transverse

electromagnetic wave, then we may write E ¼ Eðr1 þ ir2Þ, where r1 and r2 are

orthogonal (mutually perpendicular) unit vectors and B0 is along the r3 direction.

The equation of motion for an electron of velocity v is given by

m
dv

dt
¼ E ei!t þ ev� B0

If we take the steady state electron velocity to be of the form

v ¼ vðr1 þ ir2Þ ei!t
we find that

v ¼ �ie

mð!
 !BÞE

satisfies the equation of motion

This means that the electron precessing around B0 with an angular frequency !B is

driven by a rotating electric field of effective frequency !
 !B depending on the sign of

the circular polarization.

Due to the electronic motion there is a current density in the plasma given by

J ¼ n eev ¼ �in ee
2

mð!
 !BÞE:

L i L e

+ –

B (upwards)

Figure 8.12 Charged particles of velocity v perpendicular to a magnetic field line B are bound to
the field line and orbit around it due to the Lorentz force eðv� BÞ. The radius L of the orbit, the
Larmor radius, is given by L ¼ mv=eB and the orbital Larmor frequency is !B ¼ eB=m rad s�1
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In Maxwell’s equation

r�H ¼ @

@t
Dþ J ð8:5Þ

we may write, in the absence of J, D ¼ "0E but the presence of J will modify this and the

right hand side of equation (8.5) becomes

@

@t
Dþ J ¼ @

@t
"0E e i!t � in ee

2

mð!
 !BÞE

¼ i!"0E� in ee
2

m"0ð!
 !BÞ "0E

¼ i!"0 1� !2
p

!ð!
 !BÞ

 !
E ¼ i!"E

giving

"

"0
¼ " r ¼ n2


 ¼ 1� !2
p

!ð!
 !BÞ

 !

We see that the ionosphere is birefringent with two different values of the refractive

index, nþ for the right handed circularly polarized wave and n� for the left handed incident

polarization. These waves propagate at different velocities and their reception by the

ionosphere will depend on their polarization. In its lower D layer the ionosphere has an

electron number density n e � 109 m�3 with !p � 106 rad s�1 and for the upper F2 layer,

n e � 1012 m�3 with !p � 107 rad s�1. Taking the value of the earth’s magnetic field as

3� 10�5 T; that is (0.3 G) gives an electron precession frequency !B � 6� 106 rad s�1.

Figure 8.13 shows the behaviour of n2
þ and n2

� versus !=!B give for the fixed value of

!p=!B ¼ 2. Other values of !p=!B give curves of a similar shape. In the wide frequency

intervals where n2
þ and n2

� have opposite signs (positive or negative), one state of the

circular polarization cannot propagate in the plasma and will be reflected when it strikes

the ionosphere. The other wave will be partially transmitted. So, when a linearly polarized

wave with !�!B in Figure 8.14 is incident on the ionosphere, the reflected wave will be

elliptically polarized. The electron number densities in the ionosphere are measured by

varying the frequency ! of the transmitted electromagnetic waves until reflection occurs.

This method is similar to that used on the laboratory plasmas of the previous section.

However, the value of n e varies in an ionospheric layer. It is found to increase with height

until it reaches a maximum, only to fall off rapidly with a further increase in height. The

height for a particular value of n e is measured by timing the interval between the trans-

mitted and reflected wave.

The analysis above explains the main features of radio reception which are:

� Very high frequencies (VHF) are received over relatively short distances only.

� Medium wave (MW) reception is possible over longer distances and improves at night.

� Short wave (SW) reception is possible over very long distances.
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Very high frequencies are greater than !p for both the D and F2 layers; the waves

propagate through both layers without reflection (Figure 8.15). The D layer has a plasma

frequency 
300 kHz; that is, a wavelength of 
 1 km and medium waves with 200 <
� < 600 km are attenuated within it. However, the electron number density in the D

layer, sustained by ionizing radiation during the day, drops very sharply after sunset and

the medium waves are transmitted to the higher F2 layer where they are reflected

and received over longer distances. The D layer is transparent to short waves, 10 <
� < 80 m, but these are reflected by the layer F2 allowing long-distance radio reception

around the earth.
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Figure 8.13 The ionospheric plasma is birefringent to electromagnetic waves with different values
of the refractive index nþ for right handed circularly polarized waves and n� for left handed
circularly polarized waves. These values depend upon the ratio of the plasma frequency ! p to the
Larmor frequency !B. Graphs of n

2
þ and n2

� are shown for a fixed value !p=!B ¼ 2 with a horizontal
axis !=!B, where ! is the frequency of the propagating e.m. wave
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Figure 8.14 (a) The number density n e of a plasma (in this case the ionosphere) may be measured
by a probing electromagnetic wave, the frequency of which is varied until reflection occurs. The time
of the wave from transmission to reception is a measure of the height at which reflection occurs. The
variation of number density n e with height h in an ionospheric layer is shown in (b)

VHF = Very high frequency
HW = Medium waves
SW = Short waves

T – Transmitter
R – Receiver

EARTH

day

MW

SW

MW
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VHF

R
R
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D
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Figure 8.15 Electron number densities in the ionosphere layers D and F2 govern the pattern of
radio reception. Very high frequencies (VHF) penetrate both layers and are received only over short
distances Medium waves (MW) are reflected at the D layer during the daytime but are received over
longer distances at night when n e of the D layer drops and medium waves proceed to the F2 layer
before reflection. Short waves (SW) penetrate the D layer to be reflected at the F2 layer and are
received over very long distances
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Problem 8.1
The solutions to the e.m. wave equations are given in Figure 8.3 as

Ex ¼ E 0 sin
2�

�
ðvt � zÞ

and

Hy ¼ H 0 sin
2�

�
ðvt � zÞ

Use equations (8.1a) and (8.2a) to prove that they have the same wavelength and phase as shown in

figure.

Problem 8.2
Show that the concept of B2=2� (magnetic energy per unit volume) as a magnetic pressure accounts

for the fact that two parallel wires carrying currents in the same direction are forced together and that

reversing one current will force them apart. (Consider a point midway between the two wires.) Show

that it also explains the motion of a conductor carrying a current which is situated in a steady

externally applied magnetic field.

Problem 8.3
At a distance r from a charge e on a particle of mass m the electric field value is E ¼ e=4�" 0r

2.

Show by integrating the electrostatic energy density over the spherical volume of radius a to infinity

and equating it to the value mc 2 that the ‘classical’ radius of the electron is given by

a ¼ 1:41� 10�15 m

Problem 8.4
The rate of generation of heat in a long cylindrical wire carrying a current I is I 2R, where R is the

resistance of the wire. Show that this joule heating can be described in terms of the flow of energy

into the wire from surrounding space and is equal to the product of the Poynting vector and the

surface area of the wire.

Problem 8.5
Show that when a current is increasing in a long uniformly wound solenoid of coil radius r the total

inward energy flow rate over a length l (the Poynting vector times the surface area 2�rl) gives the
time rate of change of the magnetic energy stored in that length of the solenoid.

Problem 8.6
The plane polarized electromagnetic wave (Ex, Hy) of this chapter travels in free space. Show that its

Poynting vector (energy flow in watts per squaremetre) is given by

S ¼ ExHy ¼ cð1
2
" 0E

2
x þ 1

2
� 0H

2
y Þ ¼ c" 0E

2
x
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where c is the velocity of light. The intensity in such a wave is given by

I ¼ S av ¼ c" 0E 2 ¼ 1
2
c"0E

2
max

Show that

S ¼ 1:327� 10�3 E 2
max

Emax ¼ 27:45 S
1=2

Vm�1

Hmax ¼ 7:3� 10�2 S
1=2

Am�1

Problem 8.7
A light pulse from a ruby laser consists of a linearly polarized wave train of constant amplitude

lasting for 10�4 s and carrying energy of 0.3 J. The diameter of the circular cross section of the

beam is 5�10�3 m. Use the results of Problem 8.6 to calculate the energy density in the beam to

show that the root mean square value of the electric field in the wave is

2:4� 105 Vm�1

Problem 8.8
One square metre of the earth’s surface is illuminated by the sun at normal incidence by an energy

flux of 1.35 kW. Show that the amplitude of the electric field at the earth’s surface is 1010 V m�1

and that the associated magnetic field in the wave has an amplitude of 2.7 A m�1 (See Problem 8.6).

The electric field energy density 1
2
"E 2 has the dimensions of a pressure. Calculate the radiation

pressure of sunlight upon the earth.

Problem 8.9
If the total power lost by the sun is equal to the power received per unit area of the earth’s surface

multiplied by the surface area of a sphere of radius equal to the earth sun distance (15�107 km),

show that the mass per second converted to radiant energy and lost by the sun is 4:2� 109 kg. (See

Problem 8.6.)

Problem 8.10
A radio station radiates an average power of 105 W uniformly over a hemisphere concentric with the

station. Find the magnitude of the Poynting vector and the amplitude of the electric and magnetic

fields of the plane electromagnetic wave at a point 10 km from the station. (See Problem 8.6)

Problem 8.11
A plane polarized electromagnetic wave propagates along a transmission line consisting of two

parallel strips of a perfect conductor containing a medium of permeability � and permittivity ". A
section of one cubic metre in the figure shows the appropriate field vectors. The electric field Ex

generates equal but opposite surface charges on the conductors of magnitude "Ex C m2. The motion

of these surface charges in the direction of wave propagation gives rise to a surface current (as in the

discussion associated with Figure 7.1). Show that the magnitude of this current is Hy and that the

characteristic impedance of the transmission line is

Ex

Hy

¼
ffiffiffi
�

"

r
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1m

1m

1m

z

Hy

Ex

Problem 8.12
Show that equation (8.6) is dimensionally of the form (per unit area)

V ¼ L
d I

d t

where V is a voltage, L is an inductance and I is a current.

Problem 8.13
Show that when a group of electromagnetic waves of nearly equal frequencies propagates in a

conducting medium the group velocity is twice the wave velocity.

Problem 8.14
A medium has a conductivity � ¼ 10�1 S m�1 and a relative permittivity " r ¼ 50, which is constant

with frequency. If the relative permeability � r ¼ 1, is the medium a conductor or a dielectric at a

frequency of (a) 50 kHz, and (b) 104 MHz?

½" 0 ¼ ð36�� 109Þ�1
Fm�1; �0 ¼ 4�� 10�7 Hm�1�

Answer: (a) �=!" ¼ 720 (conductor)

ðbÞ �=!" ¼ 3:6� 10�3 (dielectric):

Problem 8.15
The electrical properties of the Atlantic Ocean are given by

" r ¼ 81; � r ¼ 1; � ¼ 4:3 Sm�1

Show that it is a conductor up to a frequency of about 10 MHz. What is the longest electromagnetic

wavelength you would expect to propagate under water?
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Problem 8.16
Show that when a plane electromagnetic wave travelling in air is reflected normally from a plane

conducting surface the transmitted magnetic field value Ht � 2Hi, and that a magnetic standing

wave exists in air with a very large standing wave ratio. If the wave is travelling in a conductor and is

reflected normally from a plane conductor–air interface, show that Et � 2Ei. Show that these two

cases are respectively analogous to a short-circuited and an open-circuited transmission line.

Problem 8.17
Show that in a conductor the average value of the Poynting vector is given by

S av ¼ 1
2
E0H0 cos 45

�

¼ 1
2
H 2

0 � ðreal part of ZcÞWm2

where E0 and H0 are the peak field values. A plane 1000 MHz wave travelling in air with E0 ¼
1 V m�1 is incident normally on a large copper sheet. Show firstly that the real part of the conductor

impedance is 8.2�10�3� and then (remembering from Problem 8.16 that H0 doubles in the

conductor) show that the average power absorbed by the copper per square metre is 1.6�10�7 W.

Problem 8.18
For a good conductor " r ¼ � r ¼ 1. Show that when an electromagnetic wave is reflected normally

from such a conducting surface its fractional loss of energy (1–reflection coefficient I r) is

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
8!"=�

p
. Note that the ratio of the displacement current density to the conduction current density

is therefore a direct measure of the reflectivity of the surface.

Problem 8.19
Using the value of the Poynting vector in the conductor from Problem 8.17, show that the ratio of

this value to the value of the Poynting vector in air is � ffiffiffiffiffiffiffiffiffiffiffiffiffi
8!"=�

p
, as expected from Problem 8.18.

Problem 8.20
The electromagnetic wave of Problems 8.18 and 8.19 has electric and magnetic field magnitudes in

the conductor given by

Ex ¼ A e�kz e ið!t�kzÞ

and

Hy ¼ A
�

!�

� �1=2

e�kz e ið!t�kzÞ e�i�=4

where k ¼ ð!��=2Þ 1=2.
Show that the average value of the Poynting vector in the conductor is given by

S av ¼ 1
2
A2 �

2!�

� � 1=2

e�2kz ðWm2Þ

This is the power absorbed per unit area by the conductor. We know, however, that the wave
propagates only a distance of the order of the skin depth, so that this power is rapidly transformed.
The rate at which it changes with distance is given by @S av=@z, which gives the energy transformed
per unit volume in unit time. Show that this quantity is equal to the conductivity � times the square
of the mean value of the electric field vector E, that is, the joule heating from currents flowing in the
surface of the conductor down to a depth of the order of the skin depth.
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Problem 8.21
Show that when light travelling in free space is normally incident on the surface of a dielectric of

refractive index n the reflected intensity

I r ¼ E r

E i

� � 2

¼ 1� n

1þ n

� �2

and the transmitted intensity

I t ¼ Z iE
2
t

Z tE
2
i

¼ 4n

ð1þ nÞ 2

(Note I r þ I t ¼ 1.)

Problem 8.22
Show that if the medium of Problem 8.21 is glass (n ¼ 1:5) then I r ¼ 4% and I t ¼ 96%. If an

electromagnetic wave of 100 MHz is normally incident on water (" r ¼ 81) show that I r ¼ 65% and

I t ¼ 35%.

Problem 8.23
Light passes normally through a glass plate suffering only one air to glass and one glass to air

reflection. What is the loss of intensity?

Problem 8.24
A radiating antenna in simplified form is just a length x0 of wire in which an oscillating current is

maintained. The expression for the radiating power is that used on p. 47 for an oscillating electron

P ¼ dE

dt
¼ q2!4x 20

12�" 0c 3

where q is the electron charge and ! is the oscillation frequency. The current I in the antenna may be

written I0 ¼ !q. If P ¼ 1
2
RI 20 show that the radiation resistance of the antenna is given by

R ¼ 2�

3

ffiffiffiffiffiffi
� 0

" 0

r
x0

�

� � 2

¼ 787
x0

�

� � 2

�

where � is the radiated wavelength (an expression valid for � � x0).
If the antenna is 30 m long and transmits at a frequency of 5�105 H with a root mean square

current of 20 A, show that its radiation resistance is 1:97� and that the power radiated is 400 W.
(Verify that � � x0.)

Summary of Important Results

Dielectric; � and "ð� ¼ 0Þ
Wave equation

@ 2Ex

@z2
¼ �"

@ 2Ex

@t 2
v 2 ¼ 1

�"

� �
@ 2Hy

@z2
¼ �"

@ 2Hy

@t 2
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Impedance

Ex

Hy

¼
ffiffiffi
�

"

r
ð376:7� for free spaceÞ

Energy density 1
2
"E 2

x þ 1
2
�H 2

y

Mean energy flow ¼ Intensity ¼ S ¼ vðmean energy densityÞ
¼ vð1

2
"E 2

x þ 1
2
�H 2

y Þaverage
¼ v"E 2

x ¼ 1
2
v"E 2

xðmaxÞ

Conductor; � " and �

Add diffusion equation to wave equation for loss effects from �

@ 2E 2
x

@z2
¼ �"

@ 2E 2
x

@t 2
þ ��

@Ex

@t

giving

Ex ¼ E0 e
�kz eið!t�kzÞ

where

k 2 ¼ !��=2

Skin Depth

	 ¼ 1

k
givingEx ¼ E0 e

�1

Criterion for conductor/dielectric behaviour is ratio

conduction current

displacement current
¼ �

!"
(note frequency dependence)

Impedance Zc (conductor)

Z c ¼ 1þ iffiffiffi
2

p !�

�

� �1=2

with magnitude Zc ¼ 376:6
ffiffiffiffiffiffiffiffiffiffiffiffi
� r=" r

p ffiffiffiffiffiffiffiffiffiffiffi
!"=�

p
ohms
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Reflection and Transmission Coefficients (normal incidence),

R ¼ E r

E i

¼ Z2 � Z1

Z2 þ Z1

ðE’s and Z’s may be complexÞ

T ¼ E t

E i

¼ 2Z2

Z2 þ Z1

Fresnel’s Equations (dielectrics)

Rk ¼ tan ð�� �Þ
tan ð�þ �Þ ; Tk ¼ 4 sin� cos �

sin 2�þ sin 2�

R? ¼ sin ð�� �Þ
sin ð�þ �Þ ; T? ¼ 2 sin� cos �

sin ð�þ �Þ

Refractive Index

n ¼ c

v
¼ Z ðfree spaceÞ

Z ðdielectricÞ

Electromagnetic Waves in a Plasma
Low frequency waves propagate, but a high frequency wave E0 e

i!t is attenuated or

reflected when ! < !p the plasma frequency, where !2
p ¼ n ee

2="0m e. (n e is the electron

number density.)

The plasma has a refractive index n, where

n2 ¼ 1� !2
p=!

2

when !p � !0, the wave amplitude E0 ! E0e
�1 in a skin depth distance

	 ¼ c

!p

1� !2

!2
p

 !�1=2

� c

!p
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