
 9. Limitation of L-Attributed Grammar is:

(A) uses only inherited Attributes.

(B) each inherited attribute inherits either from parent

or Left side sibling

(C) each inherit attribute inherits either from parent or

right side sibling

(D) each inherit attribute inherits either from parent or

Left side sub tree.

 10. Which of the following statement is false?

(A) It is always possible to rewrite a SDD to use only

synthesized attributes.

(B) Evolution of L-Attributed grammar is BUP (Bot-

tom up parsing)

(C) Evolution of S-Attribute grammar is BUP (Bot-

tom up parsing)

(D) Evolution of L-Attributed grammar is Depth first.

Traversal, left to right.

 11. A grammar is said to be ‘attribute grammar’ if and only

if it has

(A) L-Attribute definition

(B) S-Attribute definition

(C) SDT which does not have any side effects

(D) SDT which must have side effects

 12. Which of the following statement is FALSE about

L-Attributed definition?

(A) Traverse the parse tree in Breadth first manner

from Left to Right.

(B) Evaluate inherited attributes if the node is visited

for first time.

(C) Evaluate synthesized attributes if the node is vis-

ited for Last time.

(D) None of the above.

 13. Which of the following is not an advantage of reverse

polish notation?

(A) no rules of precedences

(B) no associativity

(C) no parenthesis

(D) not low level representation

 14. A single tape Turing machine M has two states q0 and

q1, of which q0 is the starting state. The tape alphabet

of M is {0, 1, B} and its input alphabet is {0, 1}, the

symbol B is the blank symbol used to indicate end of an

input string. The transition function of M is described

in the following table.

0 1 B

q0 q1, 1, R q1, 0, R q1, B, L

q1 q0, 1, R q0, 0, R Halt

Which of the following statements is TRUE about M?

(A) M accepts all strings that end with 0 only

(B) M accepts all strings that end with 1 only

Directions for questions 1 to 35: Select the correct alterna-

tive from the given choices.

 1. Which of the following is FALSE for regular expres-

sions L, M and N?

(A) L + M = M + L

(B) (L + M) + N = L + (M + N)

(C) (LM) N = (LM) N

(D) LM = ML

 2. Which of the following does not hold for two regular

expressions R and S?

(A) (R*)* = R*

(B) (∈ + R)* = R*

(C) (R*S*)* = (R + S)*

(D) None of the above

 3. Which of the following language is not regular?

 (i) (0 + 1)*

 (ii) Palindromes over {0, 1}

(iii) {0n10n/n ≥ 1}

(A) (i), (ii), (iii) (B) (i), (iii)

(C) (ii), (iii) (D) (iii) only

 4. Identify the regular languages from the following:

 (i) Set of strings of balanced parentheses

 (ii) {0n/n is a perfect square}

(iii) {ww/w ∈ {0, 1}*}

(A) (i), (ii) (B) (ii), (iii)

(C) (i), (iii) (D) None of these

 5. Which of the following properties hold for regular

languages?

(A) Complement (B) Difference

(C) Reversal (D) All the above

 6. Which of the following is TRUE?

(A) Pushdown automata has same expressing power as

Deterministic finite automata.

(B) NFA is an extension of pushdown automata.

(C) Pushdown automata is an extension of ∈-NFA.

(D) PDA does not have any storage component.

 7. Which type of language is accepted by DPDA?

(A) Regular languages only

(B) Context free languages only

(C) The class of languages between regular languages

and context free languages.

(D) Recursively enumerable languages only

 8. Which of the following statement is TRUE about Top

down parsing and bottom up parsing?

(A) Bottom up parser is more powerful.

(B) Error detection in Top down parser is easy.

(C) Table size in Bottom up parser and Top down pars-

er is approximately equal.

(D) Design complexity of Top down parser and Bot-

tom up parser are same.

Theory of Computation and Compiler Design Test 4

Number of Questions: 35 Section Marks: 30

Theory of Computation and Compiler Design Test 4 | 3.161

 21. Let L and M be two context free languages then which

of the following is not context free?

(A) L ∪ M (B) L M

(C) L* (D) L ∩ M

 22. Which of the following are undecidable?

(A) Is a given CFG, G ambiguous?

(B) Is the intersection of two CFL’s empty?

(C) Are two CFL’s the same.

(D) All the above

 23. Which languages are accepted by Turing machines

only?

(A) Regular languages

(B) Context free languages

(C) Recursively enumerable languages

(D) All the above

 24. Which of the following languages are accepted by

Turing machines?

 (i) set of all strings of balanced parentheses

 (ii) {0n1m0n1m/m, n ≥ 1}

(iii) {ww/w∈{0, 1}*}

(A) (i), (ii) (B) (ii), (iii)

(C) (i), (iii) (D) (i), (ii), (iii)

 25. Which of the following is FALSE?

(A) A problem L is decidable if it is a recursive lan-

guage.

(B) A problem L is undecidable if it is not a recursive

language.

(C) If L is a recursive language then L is also recur-

sive.

(D) If L is recursively enumerable language then it is

also recursive language.

 26. Consider the following grammar:

S → Sd/aA/aB

A → ab/d

B → acd/dde

Parse a string w = adde using Brute force technique,

How many back tracks are required?

(A) 6 (B) 4

(C) 0 (D) None of the above

 27. Consider the following Grammar:

S → Aa/bAc/Bc/bBa

A → d/a/aB

B → d/e

Parse a string w = “bea” using Brute Force Technique,

What is the maximum height of parse tree and how

many back tracks are required?

(A) 2, 13 (B) 3, 16

(C) 3, 4 (D) 2, 4

 28. In LL(1) parsing, while parsing a string ‘w’, the Top

of the stack contains non terminal ‘X’ and input string

look ahead symbol ‘a’ and LL(1) parsing Table con-

tains M[X, a]X → aBc

(C) M accepts all strings of (0 + 1)+ only.

(D) M accepts all strings of (0 + 1)* 01 (0 + 1)* +

1 * 0*

 15. Which phase is most important for complex parts of

any modern compiler?

(A) Syntax Analysis (B) Semantic Analysis

(C) Target code generator (D) Code optimizer

 16. Match the following:

Regular

expression
Finite Automata

 (i) R + S (A)

R S

∈

 (ii) RS (B)

∈

∈∈

∈

R

(iii) R* (C)

R
∈

∈

∈

∈ S

(A) (i)–(C), (ii)–(B), (iii)–(A)

(B) (i)–(A), (ii)–(B), (iii)–(C)

(C) (i)–(C), (ii)–(A), (iii)–(B)

(D) (i)–(B), (ii)–(A), (iii)–(C)

 17. Consider below DFA:

1

1

0

What is the language accepted by this DFA?

(A) 1* + (01)* (B) [1* (01)*]*

(C) (1 + 01)* (D) Both (B) and (C)

 18. Consider the grammar:

S → AS/∈
A → aa/ab/ba/bb

What is the language generated by this grammar?

(A) Generates all the strings of the form {anbn/n ≥ 0}

(B) Generates all the strings of even length.

(C) Generates all the strings of equal number of a’s

and b’s.

(D) Generates all the strings possible with {a, b}*.

 19. Which of the following is not Context-free language?

(A) {anbncn/n ≥ 1} (B) {wwR/w ∈ (0 + 1)*}

(C) {wcwR/w ∈ (0 + 1)*} (D) {anbn/n ≥ 1}

 20. Which of the following are Deterministic context free

language(s)?

 (i) {0n1m+n 1m/m, n ≥ 0}

(ii) {0n1m0n/n and m are arbitrary}

(A) (i) only (B) (ii) only

(C) Both (i) and (ii) (D) Neither (i) nor (ii)

3.162 | Theory of Computation and Compiler Design Test 4

 32. While constructing LL(1) parsing Table, place produc-

tion ‘A → a’ in the following cells of M[X, a], where

‘a’ is [first (a) contains ‘∈’ and terminals]:

(A) only first (a) – {∈}

(B) first (a) ∪ follow(A)

(C) only in follow(A) – {∈}

(D) first (a) ∪ follow(A) – {∈}

 33. In LL(1) parsing Table, M[X, $] contains production if

and only if [here X → ABC]

(A) first (X) contains {∈}

(B) first (A) contains {∈}

(C) first (AB) contains {∈}

(D) data is insufficient

 34. Consider the following operator precedence Relational

Table. For the string W = id + id, × id, how many han-

dles are possible to accept?

id + * $

id •> •> •>

+ <• •> <• •>

* <• •> •> •>

$ <• <• <•

(A) 4 (B) 5

(C) 6 (D) Data insufficient

 35. In the above precedence table, what is the associativity

of ‘+’ and ‘*’?

(A) + is right associative and * is left associative

(B) + and * Left associative

(C) + and * Right associative

(D) Data insufficient

After performing appropriate action, how many sym-

bols are there in stack and what is the Top of the stack?

(A) 4, a (B) 4, c

(C) 3, a (D) 3, c

 29. Consider the following grammar:

A → X1|X2|e
here X1 and X2 are the productions of ‘A’.

The grammar should be LL(1) grammar if and only if

(A) first(X1) ∩ first (x2) = f
(B) first(X1) = first(x2)

(C) follow(A) ∩ first(x1) ≠ f
(D) first(X1) ∩ first (x2) ≠ f

 30. A non-terminal ‘A’ is deriving one production

A → X1 X2 X3,

here X1, X2, X3 are non terminals, which have some

productions. Which of the following statement always

holds to find first(A)?

(A) first(A) = first(X1) if (X1 ⇒

*

 ∈)

(B) first(A) = first(X1)∪ first(X2) ∪ first(X3)

(C) first(A) = first(X1)∪ first(X2) ∪ first(X3) – {∈}

 if (X1 ⇒

*

 ∈)

(D) first(A) = first(X1) – {∈} ∪ first(X2 X3)

 if (X1 ⇒

*

 ∈)

 31. Consider the following Grammar:

S → AB/aAbAd

B → a/b/c/∈, find follow of the Non-terminal A?

(A) follow(A) = first(B) – {∈}

(B) follow(A) = first(B) ∪ {d}

(C) follow(A) = first(B) ∪ {$} – {∈}

(D) follow(A) = first(B) ∪ {d, $} – {∈}

Answer Keys

 1. D 2. D 3. C 4. D 5. D 6. C 7. C 8. A 9. B 10. B

 11. C 12. A 13. D 14. C 15. D 16. C 17. D 18. B 19. C 20. C

 21. D 22. D 23. C 24. D 25. D 26. D 27. B 28. C 29. A 30. D

 31. D 32. D 33. A 34. B 35. B

Hints and Explanations

 1. Commutative law for union, associative law for union

and concatenation holds for regular expression. But com-

mutative law for concatenation doesn’t hold. Choice (D)

 2. Choice (D)

 3. Regular languages are accepted by FA. It has only limited

storage, so it can’t compare the front of a string with its back.

Similarly it can’t check the equality of 0’s. Choice (C)

 4. No language is regular (Not recognized by FA).

 Choice (D)

 5. Choice (D)

 6. PDA is an ∈-NFA with the addition of a stack.

 Choice (C)

 7. Choice (C)

 8. Error detection in Top down parser is difficult com-

pared to Bottom up parser. Choice (A)

 9. S-Attribute grammar uses synthesized attributes.

L-Attributed grammar uses both synthesized and

inherited attributes. As it scans Left to right inherited

attribute, it must inherit from parent or left hand side

siblings. Choice (B)

 10. L-attributed grammar uses both synthesized and inher-

ited attributes, it scans from Root node to leaf nodes in

Depth first search, left to right manner.

 Choice (B)

Theory of Computation and Compiler Design Test 4 | 3.163

 19. The CFL’s are accepted by PDA’s. The PDA has a stack

storage it moves only towards right side of string. It

can’t check equality of a’s b’s and c’s. But it can check

{wwR}, {wcwR}, {an bn} patterns. Choice (C)

 20. {0n 1m+n 0m/m, n ∈ 0}

Push 0’s whenever 1’s are in input, pop 0’s i.e., match-

ing between 0’s and 1’s. After that push remaining 1’s

and pop them whenever 0’s occur.

There is no non determinism. So it is DCFL.

Similarly we can check the equality of 0’s in (ii) by

pushing first set of 0’s & pop them with last set of 0’s.

 Choice (C)

 21. CFL’s are not closed under intersection. Choice (D)

 22. Choice (D)

 23. Recursively enumerable languages are only accepted

by TM. Regular, CFL’s are accepted by TM but they are

also accepted by FA, PDA respectively. Choice (C)

 24. A TM has infinite storage buffer, which can move in

two directions (forward, backward) and also it has both

read and write capabilities.

All the given three languages are accepted by TM’s.

 Choice (D)

 25. A language L is recursive if both L and L are recur-

sively enumerable. Choice (D)

 26. Fall into infinite Loop in Brute Force Technique,

Blindly substitute the first productions.

S ⇒ Sd

⇒ Sdd

⇒ Sddd

⇒ Sdddd

 :

 :

 Infinite Loop

 Choice (D)

 27.

d

1

e
10

S

A Aa a A A
A Ab c

7
d

5
BaB

3

e
4d

S

b bA A

a B

d
9

c

8

S S

b

a B

A

12

11

S

B c

15 S

B c

14

S

b B a b B a

e
16

d

S

e
13

d
a

aa B

a a a
2

a

S
S S

S
6

S

 Choice (B)

 11. A grammar is said to be attribute grammar if and only

if it does not contain side effects like any action rule

print something. Choice (C)

 12. L-Attributed grammar Traverses parse tree in Depth

first search manner, left to right. Choice (A)

 13. Reverse polish notation, Abstract syntax tree, Direct

acyclic graph are high level intermediate code forms,

three address code is low level intermediate code form.

 Choice (D)

 14.

B, B/L

1,0,R

q1 qo

0, 1, R

1,0,R

0,1,R
HALT

B

For example, take string 0110 and check whether it is

accepted

by TM or not

qo 0110B

1q1 110B

10qo10B

100q1 0B

1001 qoB

q1

Final accepting state

\ Any string of length 1 or more of {0, 1} is accepted

by given TM. Choice (C)

 15. In early age of compilers, developers focused on syntax

analysis and recently, on optimization, focused mainly

on code optimization and risc. Choice (D)

 16. Choice (C)

 17. Given DFA accepts any number of 1’s and (01’s)

repeatedly. The regular expression is (1 + 01)*

= [1* (01)*]*. Choice (D)

 18. S → AS/∈
A → aa/ab/ba/bb

It generates {an bn} but it generates {aa, aaaa, ...}

also. It also won’t generate equal number of a’s and b’s.

It won’t generate single ‘a’. It generates even length

strings. Choice (B)

3.164 | Theory of Computation and Compiler Design Test 4

 32. In LL(1) parsing, place ‘A → a’ in first (a) columns. If

first (a) contains ‘∈’ also place ‘A → a’ in follow (A).

 Choice (D)

 33. $ is in follow set only. A production ‘A → a’ placed in

every symbol follow set if and only if first (a) contains ‘∈’.

So ‘X → ABC’ placed in ‘$’ column if and only if first

(ABC) contains ‘∈’. Choice (A)

 34.

Successful

Handle 1

$ <id> + <id> * <id> $

$ <• + <• * •> $

$ < + > $

$ $

2

4

5

3

 Choice (B)

 35. In operator precedence parsing table θ1 and θ 2 are two

Operators and have equal precedence then

θ1 < θ2 if Right associative

θ1 > θ2 if Left associative

So

+ > + , * > *

Left associativity Choice (B)

 28.

a⇒

B
c

M[X, a]: X → aBc

Replace X by aBc such that a is Top of the stack.

 Choice (C)

 29. In LL(1) parsing table construction, for a production

‘A → a’

Place the production in first (a) column and in ‘A’ row.

A → X1|X21 A → X1, in first (x1), and A → x2 in first (x2).

So if we have common symbol then it is a conflict in

LL(1) parser. Choice (A)

 30. first(A) = first (X1 X2 X3) = first(X1), if first (X1) contains

‘∈’ then we have to take first (X2). If first (x2) also con-

tains ‘∈’ then go for first (x3) also. If first (x3) contains

‘∈’ then it will be added to ‘A’s first.

 Choice (D)

 31. follow(A) = {a, b, c, d, $}

follow(A) = first (B) ∪ first(b) ∪ first (d)

first(B) contains ‘∈’ then ‘A’ is followed by ‘∈’. If a

non terminal followed by ‘∈’ then take follow of Left

hand side non terminal i.e., follow(A) = follow(S)

 Choice (D)

	PART III: COMPUTER SCIENCE AND INFORMATION TECHNOLOGY
	Unit VI: Compiler Design
	Theory of Computation and Compiler Design Test 4

