INTRODUCTION TO C
AND BASIC STRUCTURE

[CHAPTER - 7| OF C PROGRAM

OBJECTIVES OF THIS CHAPTER

7.1 Introduction and History of C

7.2 Why C is called Middle Level Language

7.3 Introduction to C Editors & IDEs

74 Creating and Executing C Programs

7.5 Getting Started with C

7.6 Character set

7.7 Tokens: keywords, Identifiers, Literals, Operators, Special Symbols
7.8 Concept of variables & constants and their declarations
7.9 Data types - Primitive Data types only

7.10 Header files in C

7.11 Input and Output Statements in C

7.12 Structure of a C program

7.1 INTRODUCTION AND HISTORY OF C

C iz a general-purpose programming language. C can be used to develop any type of
application programs. We can develop Business applications, Scientific applications efc. using
it. It can also be used to develop System programs such as Operating Systems, Language
Translators etc. Thus, we can say that it is useful for developing both types of software, Le.
System Software and Application Software,

In 1960, many computer programming languages were emerged like FORTRAN, COBOL
etc. Bul, these languages were used for specific applications. For example: FORTRAN (FORmula
TRANslation) was used to develop Scientific Applications only, while COBOL (COmmon
Business Oriented Language) was used to develop Business Applications only. Later an
international commitiee was set up to develop a general purpose programming language. As a
result, in 1963, Combined Programming Language (CPL) was developed at Cambridge
University. It was hard to learn and difficult to implement. So, later in 1967, BCPL (Basic
Combined Programming Language) was developed by Martin Richards at Cambridge University.
Similarly, B language was developed by Ken Thompson at AT & T's Bell Laboratory in 1970,

108 CoMpUTER SCIENCE

But both of these languages, BCPL and B, are type-less languages and too specific. Finally, in
1972, using many mmportant ideas of BCPL and B languages, Language C was developed by
Dennis Ritchie at AT & T's Bell Laboratories of USA and it became a general-purpose
programming language.

7.2 WHY C-LANGUAGE IS CALLED MIDDLE LEVEL LANGUAGE?

All the programming languages can be divided into two types: Low Level Programming
Languages and High Level Programming Languages.

Low Level Languages are known as Machine-Oriented Languages because programmers
have to concentrate more on the architecture of underlying hardware (machine) rather than on
the logic of the program to be solved. It is difficult to leamn & use these programming
languages. These languages are used to write machine dependent system programs such as
operating system, translators and so-on. Examples of these languages are Assembly Language
and Machine Language.

High Level Languages are known as Problem-Oriented Languages because programumners
have to concentrate more on the logic of the program rather than the hardware architecture of
the machine. It is easy to learn and use these programming languages. These languages are
used to write any type of application programs, such as business applications, scientific
applications etc. Examples of these languages are FORTRAN, COBOL, Pascal etc.

PROGRAMMING LANGUAGE

Low Level Languages High Level Languages
(Well suited for System Programming) (Well suited for Application Pregramming)

C-Language as
Middle Level Languages
{Well suited for both System and Application Programming)

IFig. 7.1 Why C is considercd specially a5 2 Middle Level Lanaguage

C Language has the capabilities of these both types of programming languages. i.e. Low
Level and High Level programming languages. It means C language is well suited for writing
both system programs and application programs. Hence, C is a programuming language which
stands in between the above two Lypes of programming languages. So C is called Middle Level
Language.

Though. there is no special category of Middle level Programming language. it is only due
to the special features of C language why it 15 designated as Middle Level Programming
Language,

Intropuerion To C Axp Basic StrucTure OF C Procitan 109

7.3 INTRODUCTION TO C EDITORS & IDEs

Editors are the programs that are useful for writing source codes of languages, There are
many programming languages which have their own editors to write programs, such as C, C4++
etc. But some programming languages do not have their own editor for writing programs, such
as Java, Java Programming can be written in any simple text editor program. After writing
source programs in programming languages, they must be compiled in order to execute by the
computer systems. These source programs must be compiled by their respective Compilers.

Many programming languages also support the IDEs. IDE stands for Integrated Development
Environment. Integrated Development Environment (IDE) can be defined as software that
gives ils users an environment for writing programs (Editor), along with tools for ¢ompiling,
executing, testing and debugging the programs. Usually Modem IDE Software are very user-
friendly. They provide an easy-to-use interface, These IDE interfaces provide suggestions for
syntax to programmers, the graphical user interface having buttons and menus to interact with,
editors and pluging and many other features.

There are many IDEs that are available for programming in C. Some of these common
IDEs are piven below:

« Turbo C . Code Blocks . Eclipse

* Code Lite . Net Beans . Dev C++ efc....

Turbo C is one of the oldest IDE for programming in the C language. It was developed by
Borland and first introduced in 1987. At the time. Turbo C was known for its compact size,
comprehensive manual, fast compile speed and low price. But now a days, Turbo C was getting
out-dated due to the advancements in the newer Operating Systems, such as Windows 7,

F1 Help ¥Z Save F3 Open AlL-F9 Compile F9 HMake FI1O Menn ==

Fig: 7.2 Turbo C/C++ IDE Interface

110 CoMruTER SCIENCE

Windows § and Windows 10. In these operating systems, programmers have been facing many
issues while they make C programs in Turbo C due to compatibility issues. Many modemn 1DEs

have been developed for programming in C which works well in modemn operating systems.

Code::Blocks is also a popular modern IDE for programming in C/C++. It is a free (Open
Source), highly extensible and configurable, cross-platform C and C++ IDE. It offers
programmers the most demanded and ideal features. It delivers a consistent user interface and
feel. Most importantly, we can extend its functionality by using plugins developed by users.

PH Smar s - bl s TRTT (1]
B il Ve R Bl Bt Dideny Foibion wafredls Towhi Teafie Biapes Deiplliovis Tmem ip
IFeHAS s ha Qi orsdn lisMsz Sé:N o EH
et s BoE 8 B
BR|mrciagt«de pin | = = i o ba » CEAMemeEloool& s O] o
mp ey
1] —
O“‘-ll-n.-

" Code::Blocks

B LA R GRILT | 14] L T ey -

=, JE " J—. J-

- mn Rty |
U e e Tt e A - TR LT R [el et I T - Ty T

Fig: 7.3 Code::Blocks TDE imterface

Code::Blocks provides many features to programmers which are given below:

It works on Windows, Linux and Mac OS X as well.
It supports Compiling, Debugging. Code Coverage, Profiling, Auto-completion of
code

It provides support for multiple compilers including GCC, mingw, clang, Borland
C++ 5.5, elc.

It is very fast, no need for makefiles

It provide facilities of debugging by supporting full breakpoints including code
breakpoints, data breakpoints, breakpoint conditions plus many moredisplay local
functions symbols and arguments

It is designed to be fully configurable and extensible with its plugins.

It provides workspace that supports combining of projects

It supports the leature of Custom memory dump and syntax highlighting

It also provides support for code analysis, etc.

D e uz OF C P = 111

Code:;Blocks IDE can be downloaded from the following link:
hitp://www.codeblocks.org/downloads
Any one of the C/C++ IDE. that are available in market including modem or old ones, can

be used for writing C programs of this book,

7.4 CREATING AND EXECUTING C PROGRAMS
Any C program development involves the following steps:

Design the program

b et

Write the program using any Text Editor or IDE supporting C Language
Save the program by giving filename with extension .c
Compile the program

3
4
5. It there are any errors in the program, then correct it and repeat the step 4
6. Execute the program.

7

View the Output Window

7.5 GETTING STARTED WITH C

For communication with human beings, we use natural languages like English, Hindi, and
Punjabi etc. But to communicate with computers, we can use only those languages which a
computer system can understand directly or indirectly. These languages are called Programming
Languages. C i8 a programming language. As we have to learn any natural language before
using it, similarly we must also have to leam programming languages like C for communication
with the computers. Leamning programing languages are very similar to leam any natural
language like Hindi, Punjabi etc.

Steps in Learning Steps in Learning
Natural Languages Programming Languages
like English like C Language
Characters and Characters, Digits
symbals used and symbols used

in English in C Language
Word Formation Different types of
using Characters Tokens formed with

above character set

Sentence Formation

using words & Instructions formed

symbols with tokens
Paragraph Writing Program formed
using senences with Instructions

Fig. 7.4 Analogy heiween learning Natural and Computer Languages

112 CoMruTER SCIENCE

There is a very close analogy between leamning natural languages (like English, Hindi,
Punjabi, ete.) and computer programming languages (like C, C4+, JAVA, etc.). The classical
method of leamning any natural language (for example English) is to leam the alphabets or
characters used in the language, then learn to combine these characters to form words, which in
turn are combined to form sentences and sentences are combined to form paragraphs. Learning
any computer programming language, for example C. is similar and much easier.

Therefore, mnstead of straight-away learning how to write programs, we must first know
what characters, numbers, symbols are used in C, then using these how different tokens are
constructed, finally how these tokens are combined to form mstructions. A group of instructions
would be combined later on to form a program. This analogy of leaming natural and computer
programming languages can be represented using figure 7.4.

7.6 CHARACTER SET

It 1s the first step for learming any language whether it is Natural or a Computer Programming
Language. We can leam any language only if we know which characters and symbols are
allowed in that language. So, before leaming C, we must be familiar with the characters and
symbols used in the C language. C language supports ASCIl (American Standard Code for
Information Interchange) character set. The ASCII set of characters includes the following
characters and symbols:

* Upper and Lower case Alphabets (A to Z, a to z)

« Digits (0 to 9)

« Special Symbels (all the printable symbols present on the keyboards, For Example: !

@H#FFBAE*()-_+={}[1::""<,=.7/1\et.
- Some Non-printable characters, For example: new-line, horizontal-tab etc.
The set of these above characters and symbols is called the Character Set of C Language.

7.7 TOKENS

Tokens are like words and punctuation-marks in English language. In any programrming
language. like C, a program is made up of tokens. Tokens are the smallest individual unmits in a
program. A C-program can have five types of tokens as shown below:

e

Keywords Identifiers Literals Operators Special
I 1L (Constant Valaes) Il Symbols
int float rollno, radius, O + - */ g
char void area, a, b, 5. 3.14, > <= 0O
if else main, printf "A' "Hello" +H - g "
elc. etc. B1C. efc. etc.

Fig. 7.5 C Tokens with Examples
Introduction of these tokens with suitable examples is given below:
O - O O s O C Dot 113

7.7.1 Keywords

Keywords are also called the Reserve Words. These words are predefined in the Compiler
of C Language. Meaning of these words is predefined. They are used for special purposes for
which they had been defined. We cannot change their meaning. In Turbo C, these words are
shown in white colour while in code::blocks these words are shown in blue colour, C language
has 32 keywords but some new compilers introduce some more keywords to C Language.
Following 1s the list of 32 keywords that are supported by all the compilers of C language:

Table : 7.1- List of C Keywords

auto const double | float int short struet unsigned
break continue else for long signed switch void
case default enum goto register | sizeof typedelf | wvolatile
char do extern | if relurn static union while

These keywords can be used wherever they are required in the program. All the keywords
in C programs must be written in lower-case only. As C is case-sensitive language. so if we
wrile these keywords in upper-case in a program, it will digplay compile errors. (A case
sensitive language is a language which considers lower case and upper case alphabets as
different elements.)

7.7.2 Identifiers

Identifiers are the name given to elements of program such as variables, constants, arrays,
functions, structures etc. Every program element must be named to distinguish it from other
elements. The name assigned to the elements should be meaningful because it facilitates easy
understanding of the program elements. After naming the program elements, they can be
identified by their name. For defining names of program elements, some naming rules must be
followed during writing of C programs. These naming rules are given below:

« Identifier name must begin with an alphabet or underscore (_) symbol. It must not
begin with a digit. For example: ldentifier name Sstar will be wrong because 1t beging
with a digit 5 which is not allowed.

. No special character, except underscore (_), is allowed [or defining name of program
element. For example: if we define a name: roll#, it will be considered wrong and
compiler will show an error because we are using # in the name which is a special
character.

+ Two consecutive underscores are not allowed in the identifier name. For example:
[dentifier name roll__ no will be wrong because we use two consecutive underscores
in the name which is not allowed in ¢ programs.

« In some C language compilers (Turbo C), length of identifiers is restricted to 31
characters. It means identifier name can have maximum 31 characters and minimum

114 CoMruTER SCIENCE

1 character. If we use more than 31 characters in the name than it will not show any
error, instead the compiler considers only first 31 characters as identifier name and
ignore the remaining characters.

Keywords cannot be used as identifier names, For example: int cannot be used for
defining identifier name because it is a keyword and has a special meaning.

« Identifier names are case-sensitive. It means identifier names in lower-case and
upper-case are considered distinet. So, we should take care of lower and upper cases
while defining names. For example: roll and ROLL will be considered two different
identifiers in C programs.

« Blank spaces in the identifier names are not allowed. For example: identifier name
roll no will be wrong because it contains a blank space between the words roll and no.

7.7.3 Literals

Literals are also called constant values. These are the fixed values that are normally
assigned to variables in the C-programs. These fixed or constant values can be caiegorized nto
two categories: Numeric and Character constant values as shown in the following diagram with
suilable examples:

Literals
(Constant Values)

_,——’/(’__‘\-\—_

Numeric Literals Character Literals
Integer Literals Real Literals Single Character String Literals
Literals
& < i s
425 3.14 Al g “Hellc ;
-15 -2.70 iy “E;.”“ #16
w " 5! "Wikas Kansal"

Fig. 7.6 Different Types of Literals (Constant Values)
7.7.3.1 Numeric Literals : These are the numernc values, which can be used for numeric
calculations. There are two types of numeric literals:

Integer Literals : These are literals without fractional(decimal) part. It consists of
digits from 0 to 9 along with positive (+) or negative (-) sign. If number does not have
any sign, it is considered the positive integer literal. For example: 56, 426, -96 etc. are
the integer Hierals.
Real Literals : These are literals with fractional(decimal) part. It consists of digits
from 0 to @ along with positive (+) or negative (-} sign. It also has a decimal point (.)
which separates the infegral and fractional part of the real number. If integral part

does not have any sign, it 18 considered the positive real literal. For example: 3.14.
+256.5896, -96.14. 36.00 etc. are the real literals.

7.7.3.2 Character Literals : These are the character values, which usually do not involve
in the calculations. There are two types of character literals:

Single Character Literals : These are the literals which have a single character
eticlosed in the single quotes. More than one printable character is not allowed in
these literals. Non-printable characters also come in this categery of constant literals
though two symbols are used in these characters, for example: new line character (\n
- backslash and a letter n), but yet they are considered to be a single character.
Examples of single character literals are: "A", 'g’, 7. '+, '$, "', \ etc. Values 'AB', ‘45
are the invalid examples of single character literals because more than one character
is enclosed in single quotes which are not allowed in the single character constant.

« String Literals : These are the literals which have one or more characters enclosed in
the double quotes. These literals may have the combination of letters, digits. special
symbols, and blank space. Examples of these literals are: "V. Kansal”, "A".
"House#196", "1829" etc,

7.7.4 Operators

Operators are the symbols which are used to perform some mathematical or logical
operation. Operators are used to manipulate values/variables in the program. These values/
variables are called operands. C supports a rich set of built-in operators. All these operators can
be classified into three broad categories: unary, binary, and ternary. A detailed explanation has
heen given on operators in the next chapter of this book.

7.7.5 Special Symbols

These are the symbols used as punctuation marks. Each symbol has its different speciality
in program. Each symbel is used to denote something special in the program. For example:
semicolon () is used to terminate the statement, comma (,) is used as a separator, parenthesis
() are used to represent the functions, square brackets [] are used to denote arrays, Braces { }
are used for grouping the stalements elc.

7.8 VARIABLES AND CONSTANTS

These both are the important program elements which are used to store values in the
program. Both are given a name and type of value to be stored in them. But there is a little
difference between them. Variables allow us to change their values during execution time while
constant do not. It means constants have fixed values while variables can have changeable
values during program execution. C is a strictly typed language. [t means we must declare
variables and constants before using them in the program. If we use variables or constants
without declaring them. compiler will generate a syntax error; "Variable not declared”. So.
each variable or constant must be declared in the program. Following are the syntax rules for
declaring variables and constants in the program:

116 CoMruTER SCIENCE

Syntax of variable declaration:

data_type variable_name;

Here, data_type tells the compiler what type of value is going to be stored in the variable,
and variable_ name is the valid identifier which tells the compiler about the name of the
variable which will be used to refer to the value stored in the variable. Consider the following
example of vaniable declaration:

int roll_no;

Here, int represents the integer data type while roll_no is the identifier name which is used
to refer to the vanable. It means the variable roll_no can hold only the integer values. It is not
civen any value, so a garbage value will be stored in it by default, If we want to assign it a
value during its declaration, then it will be called variable mitialization.

For example:

int roll_no=5;

This assigned value can be changed later at any time because a variable allows us 1o
change its values at any time during execution.

Syntax of constant declaration:

A variable can be made constant if we put a keyword const before the variable declaration
and assign it a fixed value at the time of declaration. Consider the following syntax rule:

const data type constant name = value;

Here, const is a keyword which tells the compiler that the given value cannot be changed
during program execution. Consider the following example of defining constant:

const float pi=3.14;

In this example, we define a constant value 3.14 which is of real type. It is given a name
pi. The keyword float tells that the value will be of real type and const malke it a fixed value that
cannot be changed during execution time. If we try to change its value, compiler will generate

a compile error.

7.9 DATA TYPES

Data type defines which type of data will be stored in the program elements, such as
variables, constant, arrays etc. Data types define a specific type or range of values for the
variables or other program elements. C is a strongly typed language therefore data type of all
the variables must be declared during declaration time.

C supports many different types of data, each of which mav be represented differently
within the computer's memory. Storage representation of data in memory varies from machine
to machine and compiler to compiler. For example: in Turbo C, int data type takes 2 bytes of
memory while in Code::Blocks it takes 4 bytes of memory. Following table shows the list of
primitive or basic data types available in the Standard C language:

Introvueriox To € Anp Basic Structure Or C Procram 117

Table 7.2: Primitive Data types available in C

Keyword | Description Memory Range Format
Requirement of values

char Used to store single 1 byte -128 to 127 G
byte/character data

it Used to store integer type data 2 byte -32768 to Fod

+32767

float Used to store single precision 4 byte 3.4x10* to Tof
floating, values 3.4x10438

double Used to store double precision 8 byte 1.7%1073% 10 Blf
floating values 1.7x10+308

void Used with functions which do - - -

not return any value

7.10 HEADER FILES IN C

C provides a huge library of predefined functions to perform various types of tasks in the
programs. All these functions are called library functions. To organize these functions, all the
functions are logically grouped into separate files. These files are termed as header files. All the
header files have .h extension. To use any of these functions in our program, we have to melude
these header files m our program. This inclusion is done by using the pre-processor directive
#include. In C, pre-processors begin with the # symbol. Consider the following example:

#include<stdio.h>

In this example, stdio.h is a header file and #include is a pre-processor directive. Using

this example, we can use any of the function defined in the stdio.h header file in our program.

There are many header files in C. The header files that will be used in a program, depends

solely on our requirement in the program, Following are some of the common header files that
are used in the C programs:

« The header file stdio.h : The Tull name of this header file is standard input output
header file. This file contains the functions that can be used for input and output from
the standard input/output devices. For Example: scanf() and printf() functions
The header file conio.h : The full name of this header file is console mput output
header file. Console is screen where our program executes. This file contains the
functions that are vsed for console during input/output. For example: clrscr() and
eetch() functions

« The header file math.h : This file contains mathematical and trigonometric fungtions
that we can use 10 our programs for various mathematical operations. For example:
sqri(), pow(), sin{), cos() etc.

118 Cosmrurer SciEncE

* The header hile string.h : This file contains functions thal can be used for string
manipolation operations. For example: strlen(), strepy(), strupr(), strhwr(), stremp(
) ete.
To use any library function, we must use respective header file with pre-processor directive
#include in our program.

7.11 INPUT AND OUTPUT STATEMENTS IN C

Input and Output statements provide interaction between program and users. Using input
statements, user provides input to program and using output statements output is displayed by
the program to user.

All the input and output operations in C program are carried out using pre-defined
functions. Although. there are many formatted and unformatted input/output functions provided
by the C library, but normally, this input/outpul operation is carried out using scanf{) and
printf{) formatted functions in C programs. Consider the [ollowing diagram which shows the
purpose of nput and output statements in the programs:

[ng'am

Output

Input —e—— Dol v} i
Inpui Statement Omtput Statement . |I
scanfy) mnc.gn printf{) l‘unr;iun '.

Fig. 7.7 Parpose of Input and Outpot Statements in a Program

Now, we shall discuss these two commonly used input and output library functions in ¢
programs, i.e. scanf{) and printf{’) function:

The scanfi) function:

Input data can be entered into the program from a standard input device by using C library
function scanf{). This function can be used to enter any combination of numerical values,
single characters and strings. The general syntax for using functions is as follows:

scanf("format string”, &argl, &arg2,, &argn};

Here, format string refers to a string that containg certain format codes depending on the
data type of arguments, and argl, arg2,, argn are the arguments that represent the
individual input data iterns. Normally, arguments are the variables preceded by address operator
&. This address operatar & specify the address of the variable where the data will be stored.
Format string and all the arguments must be separated by the comma operator. To have better
understanding of the concept, consider the following example:

int a;
MMoat b;
scanf(" %od %t . &a,dcb):

InteovvcTion To C Anp Basic Structure OF C Program 118

Here, "%d%{" is a format siring which specify the type of value to receive from the
keyboard. The format string %d is used to imput the integer value for vaniable a, and %f 15 used
to input float value for variable b. Here, a, and b are the two arguments representing variables
which are getting values from user. The symbol & before these variables a, and b specifies that
the integer and floar values will be stored at the memory addresses allotted to a, and b,

The printf() function : The printf()} function is used to display information on the
monitor in C programs. This function is normally used to display simple text messages on the
monitor (output) screen. The general syntax of this function for displaying simple text is as
Tfollows:

printf("simple text message");
For example:
prinif("Hello from C Language");

This function can also be used to show any numerical, single character and string values
stored in variables on the monitor (output) screen. The general syntax for displaying values
stored in the variables is as follows:

printf{"format string", argl, arg2,, argn);

Here, format string refers to a string that contains certain format codes depending on the
data type of arguments, and argl, arg2,, argn are the arguments that represent the
individual output data items. Here, the printf{) functions read values of arguments from
memory and display them on the monitor screen. Format string and all the arguments must be
separated by the comma operator. To have better understanding of the concepl, congider the
following example:

int a=56;
float b=3.14:
printf{"Fed%f" a.b);

Here, "%d %" is a format string which specify the type of value to display at the monitor

screen, The format string %d is used to display the integer value stored in variable a, and %f is

int a;
fNoat b; Main Memory (RAM) printf{" %d %I",a.b);

|

seanf{" Yod % La Lb);

input

Standard Input Device Standard Gﬁtpul Device
Keyboard Monitor

Fig. 7.8 Concept of working with scanf() and printfi) function

120 CoMruTER SCIENCE

used Lo display float value stored in variable b. Here, a, and b are the two arguments representing
variables which are displaying values to user at monitor screen.

Figure 7.8 tries to illustrates the concept of working with scanf{) and printf() functions in
C programs:

Functions scanf() and printf{) are the most important and useful functions that are widely
used in any C program. These functions are part of the stdio.h header file. So, the header file
stdio.h should be used in each ¢ program.

7.12 STRUCTURE OF C PROGRAM

As we know that a program is a set of instructions written for specific task. Logical
grouping of instructions in a program is called a function or block, Each C program is a
collection of one or more functions and one of them should be named as main. It is because the
function main is the entry point of execution for a C program. It means a computer system
starts execution of ¢ program from the main function.

Till now, we have discussed many

concepts of learning any programming Enmr-a:essm' Directive Statements I

languages. Now, we have a clear understanding

about what ig the character-set, different types [-_E}'Iubal il _J
of tokens, different types of data, input and | (jain () i
outpurt statements, and header files. All these i
’ . p Local Declarations;
CD{:ICEpfS are essentiad 0 begin programming Statements or Instructions;
uzing ¢ language. Now, we need (o know the]

P j . J
bagic structure of ¢ program where we can pul .
all these stufls to make simple program. In Other User Defined Functions
general, a simple executable C-program can
have the structure as shown in figure 7.9.

L -

Although we have discussed many of
,C_Dncepts used in the above smm, jlr.et_ agajn I'Ig 7.9 Structure of a Si:l“fllﬂ Executable C
we are going to have a brief discussion of all -
element ol above program-structure:

Pre-processor Directive Statements : The pre-processor statlement beging with #
symbol. These statements mnstruct the compiler to perform some operations before
compilation. Common use of these directive statements is to include header files or to
define symbolic constants etc. Some of the common pre-processor examples are:
#include<stdio h=
#define PI 3.14
« (lobal Declarations : Program elements in these declarations ¢an be used throughout
the whole program. These declarations can be variables, functions or any other
program element. These declarations are written outside the body of the functions.

The main () function : Execution of C program starts with main () function. C
program cannot run without the main function. Every executable C program must
contain one main {) functon.

Braces [} : Braces are used to define the block of statements. The left braces after
main() indicates the beginning of the main function and the right braces indicates the
end of the main function.

Local Declarations : Declarations inside any function are called local declarations.
These declarations can be used only within the function in which they are declared.

Program statements : These statements are the instructions of program. They are
used to perform a specific task. Each executable statement should be terminated with
semicolon,

User defined functions : A function is a logical grouping of statements to perform
some specific task. Like main() function. we can define more functions according to
our requirenients. Because these functions are wrilten by ithe vser, therefore these are
called user defined functions.

Now let us start C programming by making small C programs using whatever we have

learnt in this chapter. Before proceeding, we are assuming that you have downloaded and
mstalled the Turbo C or Code::Blocks for C program. Now, we will proceed with how to
develop and execute C programs using Code::Blocks:

1.
2

122

Open Code::Blocks by double clicking on its icon on the Desktop.

Create a New file by Click on File - New — Empty File or Using shortcut key
Ctri+Shift+N

Now type the following program in the file, as shown in the following figure:

wir - CoderPlocks 17,12
I_!im- A sz W] i]]

//Program 1l: C-Program to show hello message
#include<stdio.h>
?aid. main{)

=gy LN e L B

]
Ij‘igrintf {("Hello from C");

x|

F. b Sssssgs
[== Baild File: v swrws® b “er yoaiees® |smemiler s —
— Beald Cinasbme] @ mpeanial, 0 " + ¥ 1 -—

it K Do el o oy | Wmawaa [THeA] WHIOWS-18 e d, o2 R B i

Program: 7.1

CoMpuTER SCIENCE

4, After typing the source code of the program, save it by clicking the File — Save File
or by pressing shortcut key Ctrl+S. While saving the file, don't forget to write the file
extension .c with the file name, for example: testl.c, where testl is the file name and
.C 18 the extension name for the C programs.

MNow, we have to compile and execute this program by clicking on Build — Build

and Run or by pressing shorteut kev F9 from the kevboard.

6. If the program contains errors, they will be shown in the Logs and Others window
which 18 present at the bottom of this window. If this window is not showing in the
interface, we can show it by clicking on View — Logs or by pressing shortcut key F2
from the keyboard. All the errors must be corrected to compile and execute the
program. Consider the following program having error at line 3:

Lh

[P 01 - Coeionin FT.41
e [0 W baps Pragrt i Debug Peiv aetoets [eas Tgehs Fpei Dogllesis et Hels
(Swihre Miale x|
1 //Program 1: C-Program to show hello message
2 binclude<stdio.h>
3 void maini()
4 {
5 printf("Hello from C};
6 }
9
A J o tocin [Ch Sewrmaits 3| e W] Aty 2] 1 R memnpm 0. | Eovrhiierce, 3] | Cpoimforn o s, 31} G 30) Do
Fais L. | Bmsssgs
— Wgald #1le Tme secger™ in "m0 proieck® doogler ook s
Eonliseryiames i Dorasean el . 2 fn fusovien ‘maamtc
€ | Tswre! Mamsa | \Sscumsst el .o 3 saraig: missing tsmissting * chersrssr
E-vNmerniarss i incsenisinl ¢ & srrors miswng sereaneiong " charseser
E-sDssrisnasliDecomsnr rial £ § GETECT SEpSCUEd SNpraEAiCn Bafacs f|° nanEn
Sl m—e o s Spean T
Euua.l.uu.n-mu [L% Wemadame, (T8 2] WD 175 Ly, Cal 1, P 2 o) Fin:

In the above figure, red box in the 5th line shows that there 18 some error in thig line.
Details of the errors can be seen in the "Build Messages” tab of "Logs and Others"
window. All these errors must be removed for proceeding with compilation and
execution.

7. When no errors left in the program, it will display the output of the program as shown
below:

jello from (

‘eturned 12

any key

IntrovvcTion To C Axp Basic Structine OF C ProGgraM 123

This output window will also display the ime taken to execute the program. Now, to come
back to the source code, press any key from the keyboard.

By following the above mentioned steps, we can develop, compile and execute C programs
in the Code::Blocks. Following are some more examples of C programs. These programs show
the usage of various concepts that has been explained in this chapter.

Program 7.2: C-Program to show mulfi-line message

vold main

4 printf
3 printfi*"wnC s Middle Level arcquag="

Qutput of Program 7.2

Program 7.2

Program 7.3: C-Program to show Variables Declaration and showing their value

wold main i

int a=17; {finteger varianle initialization
float pl ;- ffEloat varlable Inltializatio
printf{"\nkd™,a);

printf("\n%i",plh:

WO W =1 o ol W b EET

Qutput of Program: 7.3

Program: 7.3

In thig program (Program 7.3), we have used many types of tokens. Let us discuss these
tokens to illustrate whatever we have read in this chapter.

All Tokens in program : #include <> stdioh void main () [inta=47 ; float pi 3.14
printf " " %d %f pi }

Keywords ¢ void, int, float (representing data types)

Identifiers . stdio (name of header file), main, printf (name of functions).
a, pi (name of variables)

Literals : 47, 3.14 (fixed values)

Operators . = (assignment operator for storing values)

Special Symbols T | 30~ i J K

Now we are going to explain the whole program (Program 7.3) line by line so that we have
a better understanding of programming:

« Inline lof the program, we used pre-processor directive to include header file stdio.h

in our program o that we can use printf() function in our program.

124 CoMruTER SCIENCE

In line 2, we started the main() function. Our program starts execution from this
main{) function. Any executable program must have the main function. We cannot
define more than one main function in a ¢ program.

In line 3, we used opening brace { which shows the beginning of main{) function.
In line 4 and 5, we declared integer and float type variables: int a; and float pi; and
assigned them literal values. These declaration statements are terminated with special
symbol semicolon (;).

In line 6 and 7, we used output statement printf{) function to show the values of
integer and float variables a and pi, respective format strings %d and %f are used o
represent the values.

In line 8, we use clesing brace } which represents the end of the main function.

In the line 4 and 5 of above program, we use a special symbol /f to explam the code in the

program. The lines beginming with // are called Comments. Comments are used to deseribe our

code in the program. They are ignored by compiler during compilation process. The symbol
// iz used for single line comment. For multiline comments, we can use /* and */ symbols in

Our program.

Program 7.4: C-Program te show how te use input and output statements with

integer variable

W om =] on Lo L Ry T

void main|

int a: Hlintegqer variable declaratior
printf ("Input Valuoe f I
e T

printf ("Value of a Iz %d",a);

Program 7.4

Qutput of Program 7.4

Program 7.5: C-Program to show how to use inpul and output statements with float

variable

void mair

float radius; frfloat variable declarat

" Faa g A P = = it £ e ks n
- e) WA .-

printfi"va f radius 1z W™ padiug):

Output of Program: 7.5

A 0D =0 LA oW L R3O

Program; 7.5

IntrovvcTion To C Axp Basic Structine Or C ProGgrAM 126

Program 7.6: C-Program o show how to use constanils

F Bt 171

S e B i ey et T e Mgw eples (el

vold main

const float pi 14; ffEloat

printf{"Value of pi 18 %

b o N

Qutput of Program: 7.6

Program: 7.6
If we use Turbo C for programming, then output window will not be display directly after
compiling and executing the program. To view the output window. press Alt+F5 or open
Windows menu and then click User Screen to view the output window. But if we use
code::blocks [or ¢ programmung, then output window will automatically appears on our screen
after successful execution of the program.

"E " Dofints To Rememliar

. Cisa general purpose programming language which is developed by Dennis Ritchie.

!‘-J

C is specially designated as a Middle Level language because it has the capabilities of

both low and high level languages.

3. IDE is an Integrated Development Environment that provides an environment for writing
programs along with tools for compiling, executing, testing and debugging programs.

4. Character set is a set of all allowed characters for making a program.

5. Tokens are smallest individual unifs in a4 program. They are like words and punctuation
marks in English.

6. Keywords are the reserve words whose meaning are predefined in the C compiler.
Identifiers are the names given Lo program elements such as variables, arrays, functions
ele.

8. Operators are the symbols which are used to perform some mathematical or logical
operation.

9. Constants do not allew us to change their value during execution time while the value of
variables can be changed.

10. Data types define a specific type or range of values for the variables or other program

elements that can hold values in the memory.

11. The functions scanf() and printf() are formatted Input/output functions which can be
used to deal with any combination of numerical values, single characters and strings.

12. Comments are used (o describe our code in the program.

126 CoMpUTER SCIENCE

2

-

EXERCISE &2

Part-A
Multiple Choice Questions
. Cisa purpose programming language.
a. special b. general
c. objective d. None of these

[1. Which of the following is invalid example of identifier?
a. roll no b. Zbage_marks
c. rollno d. main

[I. Which of the followings are the tokens?

a. keywords b. special symbols
¢. Literals d. All of these

IV. Which of the following keywords do not represent a data type?
a. intl b. float
¢. const d. char

V. are used to describe a code in the program?
a. Compiler b. Comments
c. Literals d. Identifiers

Fill in the Blanks:

L are the smallest individual units of a program.

II. The names given to program elements, such as variables, constants, arrays, functions
elc. are called

HII. Those program elemenis which do not allow changing their value during execution
are called

IV. To work with single precision values, we use data type.

V. File extension of header files is

Write the Full form of following:
I. FORTRAN
[I. BCPL

1. IDE

IV, stdio.h

V. comoh

VI. ASCII

D e uz OF C P = 127

Part-B

Short Answer Type (Questions. (Write the answers in 4-3 lines)
Why C 1z called Middle Level Programming Language?

Whalt is a chuaracter set?

What are keywords?

What should be the steps for creating and executing C program?

Wrile the difference between variables and constants,

<< <dgB~

What are Pre-processor directives?
Part-C

Long Answer Type Questions. (Write the answers in 10-15 lines)

I. What are Identifiers? Write the naming rules of identifiers.

[I. What are Tokens? What are the different categories of tokens that can be used in a
program?

. What are the data types? Which primitive data types are supported by C language?

Lab Activity

Draw a chart which represents different types of Tokens in C Language with suitable
examples

Write a C Program to Show Your School Name with complete address, each address line
muost be shown in a separate line

128 CoMruTER SCIENCE

