
Chapter 8

Identical Particles

Up to this point, we have dealt mainly with the motion of a single particle. Now we want to

examine how to describe systems with many particles. We shall focus on systems of identical
particles and examine how to construct their wave functions.

8.1 Many-Particle Systems

Most physical systems—nucleons, nuclei, atoms, molecules, solids, fluids, gases, etc.—involve

many particles. They are known as many-particle or many-body systems. While atomic, nu-
clear, and subnuclear systems involve intermediate numbers of particles ( 2 to 300), solids,

fluids, and gases are truly many-body systems, since they involve very large numbers of parti-

cles ( 1023).

8.1.1 Schrödinger Equation

How does one describe the dynamics of a system of N particles? This description can be
obtained from a generalization of the dynamics of a single particle. The state of a system of

N spinless particles (we ignore their spin for the moment) is described by a wave function
r1 r2 rN t , where r1 r2 rN t 2d3r1 d3r2 d3rN represents the probability

at time t of finding particle 1 in the volume element d3r1 centered about r1, particle 2 in the
volume d3r2 about r2, . . . , and particle N in the volume d3rN about rN . The normalization
condition of the state is given by

d3r1 d3r2 r1 r2 rN t 2d3rN 1 (8.1)

The wave function evolves in time according to the time-dependent Schrödinger equation

ih
t

r1 r2 rN t H r1 r2 rN t (8.2)

The form of H is obtained by generalizing the one-particle Hamiltonian P2 2m V r to N
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particles:

H
N

j 1

P2j
2m j

V r1 r2 rN t
N

j 1

h2

2m j
2
j V r1 r2 rN t (8.3)

where m j and P j are the mass and the momentum of the j th particle and V is the operator

corresponding to the total potential energy (V accounts for all forms of interactions—internal
and external—the mutual interactions between the various particles of the system and for the

interactions of the particles with the outside world).

The formalism of quantummechanics for an N -particle system can be, in principle, inferred
from that of a single particle. Operators corresponding to different particles commute; for

instance, the commutation relations between the position and momentum operators are

[X j Pxk ] ih j k [X j Xk] [Px j Pxk ] 0 j k 1 2 3 N (8.4)

where X j is the x-position operator of the j th particle, and Pxk the x-momentum operator of
the kth particle; similar relations can be obtained for the y and z components.

Stationary states

In the case where the potential V is time independent, the solutions of (8.2) are given by sta-
tionary states

r1 r2 rN t r1 r2 rN e i Et h (8.5)

where E is the total energy of the system and is the solution to the time-independent Schrödinger

equation H E , i.e.,

N

j 1

h2

2m j
2
j V r1 rN r1 r2 rN E r1 r2 rN (8.6)

The properties of stationary states for a single particle also apply to N -particle systems. For
instance, the probability density , the probability current density j , and the expectation
values of time-independent operators are conserved, since they do not depend on time:

A A d3r1 d3r2 r1 r2 rN A r1 r2 rN d3rN

(8.7)

In particular, the energy of a stationary state is conserved.

Multielectron atoms

As an illustration, let us consider an atom with Z electrons. If R is used to represent the posi-
tion of the center of mass of the nucleus, the wave function of the atom depends on 3 Z 1

coordinates r1 r2 rZ R , where r1 r2 rZ are the position vectors of the Z elec-
trons. The time-independent Schrödinger equation for this atom, neglecting contributions from

the spin–orbit correction, the relativistic correction, and similar terms, is given by

h2

2me

Z

i 1

2
ri

h2

2M
2
R

Z

i 1

Z e2

ri R i j

e2

ri r j
r1 r2 rZ R

E r1 r2 rZ R (8.8)
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where M is the mass of the nucleus and h2 2
R 2M is its kinetic energy operator. The term

Z
i 1 Ze

2 ri R represents the attractive Coulomb interaction of each electron with the

nucleus and i j e
2 ri r j is the repulsive Coulomb interaction between the i th and the

j th electrons; ri r j is the distance separating them. As these (Coulomb) interactions are
independent of time, the states of atoms are stationary.

We should note that the Schrödinger equations (8.3), (8.6), and (8.8) are all many-particle

differential equations. As these equations cannot be separated into one-body equations, it is

difficult, if not impossible, to solve them. For the important case where the N particles of the
system do not interact—this is referred to as an independent particle system—the Schrödinger
equation can be trivially reduced to N one-particle equations (Section 8.1.3); we have seen how
to solve these equations exactly (Chapters 4 and 6) and approximately (Chapters 9 and 10).

8.1.2 Interchange Symmetry

Although the exact eigenstates of the many-body Hamiltonian (8.3) are generally impossible

to obtain, we can still infer some of their properties by means of symmetry schemes. Let i

represent the coordinates (position ri , spin si , and any other internal degrees of freedom such as
isospin, color, flavor) of the i th particle and let 1 2 N designate the wave function

of the N -particle system.
We define a permutation operator (also called exchange operator) Pi j as an operator that,

when acting on an N -particle wave function 1 i j N , interchanges the

i th and the j th particles

Pi j 1 i j N 1 j i N (8.9)

i and j are arbitrary (i j 1, 2, , N ). Since

Pj i 1 i j N 1 j i N

Pi j 1 i j N (8.10)

we have Pi j Pj i . In general, permutation operators do not commute:

Pi j Pkl Pkl Pi j or [Pi j Pkl] 0 i j kl (8.11)

For instance, in the case of a four-particle state 1 2 3 4 3 4 2 3 e i 1 , we have

P12P14 1 2 3 4 P12 4 2 3 1 2 4 3 1
3 1

4 3
e i 2 (8.12)

P14P12 1 2 3 4 P14 2 1 3 4 4 1 3 2
3 2

1 3
e i 4 (8.13)

Since two successive applications of Pi j leave the wave function unchanged,

P2i j 1 i j N Pi j 1 j i N

1 i j N (8.14)

we have P2i j 1; hence Pi j has two eigenvalues 1:

Pi j 1 i j N 1 i j N (8.15)
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The wave functions corresponding to the eigenvalue 1 are symmetric and those corresponding
to 1 are antisymmetric with respect to the interchange of the pair i j . Denoting these
functions by s and a , respectively, we have

s 1 i j N s 1 j i N (8.16)

a 1 i j N a 1 j i N (8.17)

Example 8.1

Specify the symmetry of the following functions:

(a) x1 x2 4 x1 x2 2
10

x21 x22
,

(b) x1 x2
3 x1 x2

2 x1 x2 2 7
,

(c) x1 x2 x3 6x1x2x3
x21 x22 x23 1

2x31 2x32 2x33 5
,

(d) x1 x2
1

x2 3
e x1 .

Solution

(a) The function x1 x2 is symmetric, since x2 x1 x1 x2 .
(b) The function x1 x2 is antisymmetric, since x2 x1 x1 x2 , and is zero

when x1 x2: x1 x1 0.

(c) The function x1 x2 x3 is symmetric because

x1 x2 x3 x1 x3 x2 x2 x1 x3 x2 x3 x1

x3 x1 x2 x3 x2 x1 (8.18)

(d) The function x2 x1 is neither symmetric nor antisymmetric, since
x2 x1

1
x1 3

e x2 x1 x2 .

8.1.3 Systems of Distinguishable Noninteracting Particles

For a system of N noninteracting particles that are distinguishable—each particle has a different
mass mi and experiences a different potential Vi i —the potential V is given by

V 1 2 N

N

i 1

Vi i (8.19)

and the Hamiltonian of this system of N independent particles by

H
N

i 1

Hi
N

i 1

h2

2mi
2
i Vi i (8.20)

where Hi h2 2
i 2mi Vi i is the Hamiltonian of the i th particle, known as the single

particle Hamiltonian. The Hamiltonians of different particles commute [Hi H j ] 0, since

[Xi X j ] [Pi Pj ] 0.
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The Schrödinger equation of the N -particle system

H n1 n2 nN 1 2 N En1 n2 nN n1 n2 nN 1 2 N (8.21)

separates into N one-particle equations

h2

2mi
2
i Vi i ni i ni ni i (8.22)

with

En1 n2 nN n1 n2 nN

N

i 1
ni (8.23)

and

n1 n2 nN 1 2 N n1 1 n2 2 nN N

N

i 1
ni i (8.24)

We see that, when the interactions are neglected, the N -particle Schrödinger equation separates
into N one-particle Schrödinger equations. The solutions of these equations yield the single-
particle energies ni and states ni i ; the single-particle states are also known as the orbitals.
The total energy is the sum of the single-particle energies and the total wave function is the

product of the orbitals. The number ni designates the set of all quantum numbers of the i th
particle. Obviously, each particle requires one, two, or three quantum numbers for its full de-

scription, depending on whether the particles are moving in a one-, two-, or three-dimensional

space; if the spin were considered, we would need to add another quantum number. For in-

stance, if the particles moved in a one-dimensional harmonic oscillator, ni would designate
the occupation number of the i th particle. But if the particles were the electrons of an atom,
then ni would stand for four quantum numbers: the radial, orbital, magnetic, and spin quantum
numbers Ni limlimsi .

Example 8.2

Find the energy levels and wave functions of a system of four distinguishable spinless particles

placed in an infinite potential well of size a. Use this result to infer the energy and the wave
function of the ground state and the first excited state.

Solution

Each particle moves in a potential which is defined by Vi xi 0 for 0 xi a and Vi xi
for the other values of xi . In this case the Schrödinger equation of the four-particle system:

4

i 1

h2

2mi

d2

dx2i
n1 n2 n3 n4 x1 x2 x3 x4 En1 n2 n3 n4 n1 n2 n3 n4 x1 x2 x3 x4

(8.25)

separates into four one-particle equations

h2

2mi

d2 ni xi

dx2i
ni ni xi i 1 2 3 4 (8.26)
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with

ni

h2 2n2i
2mia2

ni xi
2

a
sin

ni
a
xi (8.27)

The total energy and wave function are given by

En1 n2 n3 n4
h2 2

2a2
n21
m1

n22
m2

n23
m3

n24
m4

(8.28)

n1 n2 n3 n4 x1 x2 x3 x4
4

a2
sin

n1
a
x1 sin

n2
a
x2 sin

n3
a
x3 sin

n4
a
x4

(8.29)

The ground state corresponds to the case where all four particles occupy their respective

ground state orbitals, n1 n2 n3 n4 1. The ground state energy and wave function are

thus given by

E1 1 1 1
h2 2

2a2
1

m1

1

m2

1

m3

1

m4
(8.30)

1 1 1 1 x1 x2 x3 x4
4

a2
sin

a
x1 sin

a
x2 sin

a
x3 sin

a
x4 (8.31)

The first excited state is somewhat tricky. Since it corresponds to the next higher energy

level of the system, it must correspond to the case where the particle having the largest mass

occupies its first excited state while the other three particles remain in their respective ground

states. For argument’s sake, if the third particle were the most massive, the first excited state

would correspond to the configuration n1 n2 n4 1 and n3 2; the energy and wave

function of the first excited state would then be given by

E1 1 2 1
h2 2

2a2
1

m1

1

m2

4

m3

1

m4
(8.32)

1 1 2 1 x1 x2 x3 x4
4

a2
sin

a
x1 sin

a
x2 sin

2

a
x3 sin

a
x4 (8.33)

Continuing in this way, we can obtain the entire energy spectrum of this system.

8.2 Systems of Identical Particles

8.2.1 Identical Particles in Classical and Quantum Mechanics

In classical mechanics, when a system is made of identical particles, it is possible to identify

and distinguish each particle from the others. That is, although all particles have the same

physical properties, we can “tag” each classical particle and follow its motion along a path.

For instance, each particle can be colored differently from the rest; hence we can follow the

trajectory of each particle separately at each time. Identical classical particles, therefore, do
not lose their identity; they are distinguishable.
In quantum mechanics, however, identical particles are truly indistinguishable. The un-

derlying basis for this is twofold. First, to describe a particle, we cannot specify more than
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Figure 8.1 When scattering two identical particles in the center of mass frame, it is impossible
to forcast with certitude whether the particles scatter according to the first process or to the

second. For instance, we cannot tell whether the particle fired from source S1 will make it to
detector D1 or to D2.

a complete set of commuting observables. In particular, there exists no mechanism to tag the

particles as in classical mechanics. Second, due to the uncertainty principle, the concept of the

path of a particle becomes meaningless. Even if the position of a particle is exactly determined

at a given time, it is not possible to specify its coordinates at the next instant. Thus, identical
particles lose their identity (individuality) in quantum mechanics.
To illustrate this, consider an experiment in which we scatter two identical particles. As

displayed in Figure 8.1, after particles 1 and 2 (fired from the sources S1 and S2) have scattered,
it is impossible to distinguish between the first and the second outcomes. That is, we cannot

determine experimentally the identity of the particles that are collected by each detector. For

instance, we can in no way tell whether it is particle 1 or particle 2 that has reached detector

D1. We can only say that a particle has reached detector D1 and another has made it to D2,
but have no information on their respective identities. There exists no experimental mechanism

that allows us to follow the motion of each particle from the time it is fired out of the source till

it reaches the detector. This experiment shows that the individuality of a microscopic particle
is lost the moment it is mixed with other similar particles.
Having discussed the indistinguishability concept on a two-particle system, let us now study

this concept on larger systems. For this, consider a system of N identical particles whose wave
function is 1 2 N .

The moment these N particles are mixed together, no experiment can determine which

particle has the coordinates 1, or which one has 2, and so on. It is impossible to specify

experimentally the identity of the particle which is located at 1, or that located at 2, and so

on. The only measurements we can perform are those that specify the probability for a certain

particle to be located at 1, another at 2, and so on, but we can never make a distinction as to

which particle is which.

As a result, the probability must remain unchanged by an interchange of the particles. For

instance, an interchange of particles i and j will leave the probability density unaffected:

1 2 i j N
2

1 2 j i N
2

(8.34)
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hence we have

1 2 i j N 1 2 j i N (8.35)

This means that the wave function of a system of N identical particles is either symmetric or
antisymmetric under the interchange of a pair of particles. We will deal with the implications

of this result in Section 8.2.3. We will see that the sign in (8.35) is related to the spin of the

particles: the negative sign corresponds to particles with half-odd-integral spin and the positive

sign corresponds to particles with integral spin; that is, the wave functions of particles with

integral spins are symmetric and the wave functions of particles with half-odd-integral spins

are antisymmetric. In fact, experimental observations show that, in nature, particles come in

two classes:

Particles with integral spin, Si 0 1h 2h 3h , such as photons, pions, alpha

particles. These particles are called bosons.

Particles with half-odd-integral spin, Si h 2, 3h 2, 5h 2, 7h 2, , such as quarks,

electrons, positrons, protons, neutrons. These particles are called fermions.

That is, particles occurring in nature are either bosons or fermions.

Before elaborating more on the properties of bosons and fermions, let us present a brief

outline on the interchange (permutation) symmetry.

8.2.2 Exchange Degeneracy

How does the interchange symmetry affect operators such as the Hamiltonian? Since the

Coulomb potential, which results from electron–electron and electron–nucleus interactions,

V r1 r2 r3 rZ
Z

i 1

Z e2

ri R i j

e2

ri r j
(8.36)

is invariant under the permutation of any pair of electrons, the Hamiltonian (8.8) is also invariant

under such permutations. This symmetry also applies to the orbital, spin, and angular momenta

of an atom. We may thus use this symmetry to introduce another definition of the identicalness
of particles. The N particles of a system are said to be identical if the various observables
of the system (such as the Hamiltonian H , the angular momenta, and so on) are symmetrical
when any two particles are interchanged. If these operators were not symmetric under particle
interchange, the particles would be distinguishable.

The invariance of the Hamiltonian under particle interchanges is not without physical impli-

cations: the eigenvalues of H are degenerate. The wave functions corresponding to all possible
electron permutations have the same energy E : H E . This is known as the exchange
degeneracy. For instance, the degeneracy associated with a system of two identical particles is
equal to 2, since 1 2 and 2 1 correspond to the same energy E .
So the Hamiltonian of a system of N identical particles (mi m) is completely symmetric

with respect to the coordinates of the particles:

H 1 i j N

N

k 1

P2k
2m

V 1 i j N

H 1 j i N (8.37)
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because V is invariant under the permutation of any pair of particles i j :

V 1 i j N V 1 j i N (8.38)

This property can also be ascertained by showing that H commutes with the particle inter-
change operator Pi j . If is eigenstate to H with eigenvalue E , we can write

HPi j 1 i j N H 1 j i N

E 1 j i N EPi j 1 i j N

Pi j E 1 i j N Pi jH 1 i j N

(8.39)

or

[H Pi j ] 0 (8.40)

Therefore, Pi j is a constant of the motion. That is, if we start with a wave function that is sym-

metric (antisymmetric), it will remain so for all subsequent times. Moreover, since Pi j and H
commute, they possess a complete set of functions that are joint eigenstates of both. As shown

in (8.15) to (8.17), these eigenstates have definite parity, either symmetric or antisymmetric.

8.2.3 Symmetrization Postulate

We have shown in (8.35) that the wave function of a system of N identical particles is either
symmetric or antisymmetric under the interchange of any pair of particles:

1 2 i j N 1 2 j i N (8.41)

This result, which turns out to be supported by experimental evidence, is the very essence of

the symmetrization postulate which stipulates that, in nature, the states of systems containing
N identical particles are either totally symmetric or totally antisymmetric under the interchange
of any pair of particles and that states with mixed symmetry do not exist. Besides that, this

postulate states two more things:

Particles with integral spins, or bosons, have symmetric states.

Particles with half-odd-integral spins, or fermions, have antisymmetric states.

Fermions are said to obey Fermi–Dirac statistics and bosons to obey Bose–Einstein statistics.
So the wave function of a system of identical bosons is totally symmetric and the wave function

of a system of identical fermions is totally antisymmetric.

Composite particles

The foregoing discussion pertains to identical particles that are “simple” or elementary such as

quarks, electrons, positrons, muons, and so on. Let us now discuss the symmetry of systems

of identical composite “particles” where each particle is composed of two or more identical
elementary particles. For instance, alpha particles, which consist of nuclei that are composed

of two neutrons and two protons each, are a typical example of composite particles. A system

of N hydrogen atoms can also be viewed as a system of identical composite particles where
each “particle” (atom) consists of a proton and an electron. Protons, neutrons, pions, etc., are
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themselves composite particles, because protons and neutrons consist of three quarks and pions

consist of two. Quarks are elementary spin 1
2
particles.

Composite particles have spin. The spin of each composite particle can be obtained by

adding the spins of its constituents. If the total spin of the composite particle is half-odd-integer,

this particle behaves like a fermion, and hence it obeys Fermi–Dirac statistics. If, on the other

hand, its resultant spin is integer, it behaves like a boson and obeys Bose–Einstein statistics. In

general, if the composite particle has an odd number of fermions; it is then a fermion, otherwise

it is a boson. For instance, nucleons are fermions because they consist of three quarks; mesons

are bosons because they consist of two quarks. For another illustrative example, let us consider

the isotopes 4He and 3He of the helium atom: 4He, which is called an alpha particle, is a boson

for it consists of four nucleons (two protons and two neutrons), while 3He is a fermion since it

consists of three nucleons (one neutron and two protons). The hydrogen atom consists of two

fermions (an electron and a proton), so it is a boson.

8.2.4 Constructing Symmetric and Antisymmetric Functions

Since the wave functions of systems of identical particles are either totally symmetric or totally

antisymmetric, it is appropriate to study the formalism of how to construct wave functions

that are totally symmetric or totally antisymmetric starting from asymmetric functions. For

simplicity, consider first a system of two identical particles. Starting from any normalized

asymmetric wave function 1 2 , we can construct symmetric wave functions s 1 2 as

s 1 2
1

2
1 2 2 1 (8.42)

and antisymmetric wave functions a 1 2 as

a 1 2
1

2
1 2 2 1 (8.43)

where 1 2 is a normalization factor.

Similarly, for a system of three identical particles, we can construct s and a from an

asymmetric function as follows:

s 1 2 3
1

6
1 2 3 1 3 2 2 3 1

2 1 3 3 1 2 3 2 1 (8.44)

a 1 2 3
1

6
1 2 3 1 3 2 2 3 1

2 1 3 3 1 2 3 2 1 (8.45)

Continuing in this way, we can in principle construct symmetric and antisymmetric wave

functions for any system of N identical particles.

8.2.5 Systems of Identical Noninteracting Particles

In the case of a system of N noninteracting identical particles, where all particles have equal
mass mi m and experience the same potential Vi i V i , the Schrödinger equation of
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the system separates into N identical one-particle equations

h2

2m
2
i V i ni i ni ni i (8.46)

Whereas the energy is given, like the case of a system of N distinguishable particles, by a sum of
the single-particle energies En1 n2 nN

N
i 1 ni , the wave function can no longer be given

by a simple product n1 n2 nN 1 2 N
N
i 1 ni i for at least two reasons. First,

if the wave function is given by such a product, it would imply that particle 1 is in the state n1 ,

particle 2 in the state n2 , . . . , and particle N in the state nN . This, of course, makes no sense

since all we know is that one of the particles is in the state n1 , another in n2 , and so on; since

the particles are identical, there is no way to tell which particle is in which state. If, however, the

particles were distinguishable, then their total wave function would be given by such a product,

as shown in (8.24). The second reason why the wave function of a system of identical particles

cannot be given by
N
i 1 ni i has to do with the fact that such a product has, in general,

no definite symmetry—a mandatory requirement for systems of N identical particles whose
wave functions are either symmetric or antisymmetric. We can, however, extend the method

of Section 8.2.4 to construct totally symmetric and totally antisymmetric wave functions from

the single-particle states ni i . For this, we are going to show how to construct symmetrized

and antisymmetrized wave functions for systems of two, three, and N noninteracting identical
particles.

8.2.5.1 Wave Function of Two-Particle Systems

By analogy with (8.42) and (8.43), we can construct the symmetric and antisymmetric wave

functions for a system of two identical, noninteracting particles in terms of the single-particle

wave functions as follows:

s 1 2
1

2
n1 1 n2 2 n1 2 n2 1 (8.47)

a 1 2
1

2
n1 1 n2 2 n1 2 n2 1 (8.48)

where we have supposed that n1 n2. When n1 n2 n the symmetric wave function is
given by s 1 2 n 1 n 2 and the antisymmetric wave function is zero; we will deal

later with the reason why a 1 2 0 whenever n1 n2.
Note that we can rewrite s as

s 1 2
1

2! P

P n1 1 n2 2 (8.49)

where P is the permutation operator and where the sum is over all possible permutations (here
we have only two possible ones). Similarly, we can write a as

a 1 2
1

2! P

1 P P n1 1 n2 2 (8.50)
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where 1 P is equal to +1 for an even permutation (i.e., when we interchange both 1 and 2

and also n1 and n2) and equal to 1 for an odd permutation (i.e., when we permute 1 and 2 but

not n1, n2, and vice versa). Note that we can rewrite a of (8.48) in the form of a determinant

a 1 2
1

2!

n1 1 n1 2

n2 1 n2 2
(8.51)

8.2.5.2 Wave Function of Three-Particle Systems

For a system of three noninteracting identical particles, the symmetric wave function is given

by

s 1 2 3
1

3! P

P n1 1 n2 2 n3 3 (8.52)

or by

s 1 2 3
1

3!
n1 1 n2 2 n3 3 n1 1 n2 3 n3 2

n1 2 n2 1 n3 3 n1 2 n2 3 n3 1

n1 3 n2 1 n3 2 n1 3 n2 2 n3 1 (8.53)

and, when n1 n2 n3, the antisymmetric wave function is given by

a 1 2 3
1

3! P

1 P P n1 1 n2 2 n3 3 (8.54)

or, in the form of a determinant, by

a 1 2 3
1

3!

n1 1 n1 2 n1 3

n2 1 n2 2 n2 3

n3 1 n3 2 n3 3

(8.55)

If n1 n2 n3 n we have s 1 2 3 n 1 n 2 n 3 and a 1 2 3 0.

8.2.5.3 Wave Function of Many-Particle Systems

We can generalize (8.52) and (8.55) and write the symmetric and antisymmetric wave functions

for a system of N noninteracting identical particles as follows:

s 1 2 N
1

N ! P

P n1 1 n2 2 nN N (8.56)

a 1 2 N
1

N ! P

1 P
n1 1 n2 2 nN N (8.57)

or

a 1 2 N
1

N !

n1 1 n1 2 n1 N

n2 1 n2 2 n2 N

nN 1 nN 2 nN N

(8.58)
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This N N determinant, which involves one-particle states only, is known as the Slater deter-
minant. An interchange of any pair of particles corresponds to an interchange of two columns
of the determinant; this interchange introduces a change in the sign of the determinant. For

even permutations we have 1 P 1, and for odd permutations we have 1 P 1.

The relations (8.56) and (8.58) are valid for the case where the numbers n1, n2, , nN are
all different from one another. What happens if some, or all, of these numbers are equal? In the

symmetric case, if n1 n2 nN then s is given by

s 1 2 N

N

i 1
n i n 1 n 2 n N (8.59)

When there is a multiplicity in the numbers n1, n2, , nN (i.e., when some of the numbers ni
occur more than once), we have to be careful and avoid double counting. For instance, if n1
occurs N1 times in the sequence n1, n2, , nN , if n2 occurs N2 times, and so on, the symmetric
wave function will be given by

s 1 2 N
N1!N2! NN !

N !
P

P n1 1 n2 2 nN N (8.60)

the summation P is taken only over permutations which lead to distinct terms and includes
N ! N1!N2! Nn! different terms. For example, in the case of a system of three independent,
identical bosons where n1 n2 n and n3 n, the multiplicity of n1 is N1 2; hence s is

given by

s 1 2 3
2!

3!
P

P n 1 n 2 n3 3
1

3
n 1 n 2 n3 3

n 1 n3 2 n 3 n3 1 n 2 n 3 (8.61)

Unlike the symmetric case, the antisymmetric case is quite straightforward: if, among the

numbers n1, n2, , nN , only two are equal, the antisymmetric wave function vanishes. For
instance, if ni n j , the i th and j th rows of the determinant (8.58) will be identical; hence the
determinant vanishes identically. Antisymmetric wave functions, therefore, are nonzero only

for those cases where all the numbers n1, n2, , nN are different.

8.3 The Pauli Exclusion Principle

As mentioned above, if any two particles occupy the same single-particle state, the determinant

(8.58), and hence the total wave function, will vanish since two rows of the determinant will

be identical. We can thus infer that in a system of N identical particles, no two fermions can
occupy the same single-particle state at a time; every single-particle state can be occupied by
at most one fermion. This is the Pauli exclusion principle, which was first postulated in 1925
to explain the periodic table. It states that no two electrons can occupy simultaneously the
same (single-particle) quantum state on the same atom; there can be only one (or at most one)
electron occupying a state of quantum numbers ni limlimsi : ni limlimsi

ri Si . The exclusion
principle plays an important role in the structure of atoms. It has a direct effect on the spatial
distribution of fermions.
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Boson condensation

What about bosons? Do they have any restriction like fermions? Not at all. There is no

restriction on the number of bosons that can occupy a single state. Instead of the exclusion

principle of fermions, bosons tend to condense all in the same state, the ground state; this

is called boson condensation. For instance, all the particles of liquid 4He (a boson system)
occupy the same ground state. This phenomenon is known as Bose–Einstein condensation. The
properties of liquid 3He are, however, completely different from those of liquid 4He, because
3He is a fermion system.

Remark

We have seen that when the Schrödinger equation involves the spin, the wave function of a

single particle is equal to the product of the spatial part and the spin part: r S r S .
The wave function of a system of N particles, which have spins, is the product of the spatial
part and the spin part:

r1 S1 r2 S2 rN SN r1 r2 rN S1 S2 SN (8.62)

This wave function must satisfy the appropriate symmetry requirements when the N particles
are identical. In the case of a system of N identical bosons, the wave function must be symmet-
ric; hence the spatial and spin parts must have the same parity:

s r1 S1 r2 S2 rN SN
a r1 r2 rN a S1 S2 SN
s r1 r2 rN s S1 S2 SN

(8.63)

In the case of a system of N identical fermions, however, the space and spin parts must have
different parities, leading to an overall wave function that is antisymmetric:

a r1 S1 r2 S2 rN SN
a r1 r2 rN s S1 S2 SN
s r1 r2 rN a S1 S2 SN

(8.64)

Example 8.3 (Wave function of two identical, noninteracting particles)

Find the wave functions of two systems of identical, noninteracting particles: the first consists

of two bosons and the second of two spin 1
2
fermions.

Solution

For a system of two identical, noninteracting bosons, (8.47) and (8.48) yield

s r1 S1 r2 S2
1

2

n1 r1 n2 r2 n1 r2 n2 r1 a S1 S2

n1 r1 n2 r2 n1 r2 n2 r1 s S1 S2
(8.65)

and for a system of two spin 1
2
fermions

a r1 S1 r2 S2
1

2

n1 r1 n2 r2 n1 r2 n2 r1 s S1 S2

n1 r1 n2 r2 n1 r2 n2 r1 a S1 S2
(8.66)
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where, from the formalism of angular momentum addition, there are three states (a triplet) that

are symmetric, s S1 S2 :

triplet S1 S2

1
2
1
2 1

1
2
1
2 2

1

2

1
2
1
2 1

1
2

1
2 2

1
2

1
2 1

1
2
1
2 2

1
2

1
2 1

1
2

1
2 2

(8.67)

and one state (a singlet) that is antisymmetric, a S1 S2 :

singlet S1 S2
1

2

1

2

1

2 1

1

2

1

2 2

1

2

1

2 1

1

2

1

2 2

(8.68)

8.4 The Exclusion Principle and the Periodic Table

Explaining the periodic table is one of the most striking successes of the Schrödinger equation.

When combined with the Pauli exclusion principle, the equation offers insightful information

on the structure of multielectron atoms.

In Chapter 6, we saw that the state of the hydrogen’s electron, which moves in the spher-

ically symmetric Coulomb potential of the nucleus, is described by four quantum numbers n,
l, ml , and ms : nlmlms r nlml r ms , where nlml r Rnl r Ylml is the elec-

tron’s wave function when the spin is ignored and ms
1
2

1
2
is the spin’s state. This

representation turns out to be suitable for any atom as well.

In a multielectron atom, the average potential in which every electron moves is different

from the Coulomb potential of the nucleus; yet, to a good approximation, it can be assumed

to be spherically symmetric. We can therefore, as in hydrogen, characterize the electronic

states by the four quantum numbers n, l, ml , and ms , which respectively represent the principal
quantum number, the orbital quantum number, the magnetic (or azimuthal) quantum number,

and the spin quantum number; ml represents the z-component of the electron orbital angular
momentum and ms the z-component of its spin.
Atoms have a shell structure. Each atom has a number of major shells that are specified

by the radial or principal quantum number n. Shells have subshells which are specified by the
orbital quantum number l. Subshells in turn have subsubshells, called orbitals, specified by ml ;
so an orbital is fully specified by three quantum numbers n, l, ml ; i.e., it is defined by nlml .
Each shell n therefore has n subshells corresponding to l 0, 1, 2, 3, , n 1, and in turn

each subshell has 2l 1 orbitals (or subsubshells), since to ml l, l 1, l 2, ,

l 2, l 1, l. As in hydrogen, individual electrons occupy single-particle states or orbitals;
the states corresponding to the respective numerical values l 0 1 2 3 4 5 are called s,

p, d, f, g, h, states. Hence for a given n an s-state has 1 orbital (ml 0), a p-state has 3

orbitals (ml 1 0 1), a d-state has 5 orbitals (ml 2 1 0 1 2), and so on (Chapter

6). We will label the electronic states by nl where, as before, l refers to s, p, d, f, etc.; for
example 1s corresponds to n l 1 0 , 2s corresponds to n l 2 0 , 2p corresponds to
n l 2 1 , 3s corresponds to n l 3 0 , and so on.

How do electrons fill the various shells and subshells in an atom? If electrons were bosons,

they would all group in the ground state nlml 100 ; we wouldn’t then have the rich di-

versity of elements that exist in nature. But since electrons are identical fermions, they are
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Figure 8.2 Filling orbitals according to the Pauli exclusion principle.
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governed by the Pauli exclusion principle, which states that no two electrons can occupy simul-
taneously the same quantum state nlmlms on the same atom. Hence each orbital state nlml
can be occupied by two electrons at most: one having spin-up ms

1
2
, the other spin-down

ms
1
2
. Hence, each state nl can accommodate 2 2l 1 electrons. So an s-state (i.e., n00 )

can at most hold 2 electrons, a p-state (i.e., n1ml ) at most 6 electrons, a d-state (i.e., n2ml )
at most 10 electrons, an f-state (i.e., n3ml ) at most 14 electrons, and so on (Figure 8.2).
For an atom in the ground state, the electrons fill the orbitals in order of increasing energy;

once a subshell is filled, the next electron goes into the vacant subshell whose energy is just

above the previous subshell. When all orbitals in a major electronic shell are filled up, we get

a closed shell; the next electron goes into the next major shell, and so on. By filling the atomic
orbitals one after the other in order of increasing energy, one obtains all the elements of the

periodic table (Table 8.1).

Elements 1 Z 18

As shown in Table 8.1, the first period (or first horizontal row) of the periodic table has two

elements, hydrogen H and helium He; the second period has 8 elements, lithium Li to neon

Ne; the third period also has 8 elements, sodium Na to argon Ar; and so on. The orbitals of

the 18 lightest elements, 1 Z 18, are filled in order of increasing energy according to the

sequence: 1s, 2s, 2p, 3s, 3p. The electronic state of an atom is determined by specifying the

occupied orbitals or by what is called the electronic configuration. For example, hydrogen has
one electron, its ground state configuration is 1s 1; helium He has two electrons: 1s 2; lithium

Li has three electrons: 1s 2 2s 1; beryllium Be has four: 1s 2 2s 2, and so on.

Now let us see how to determine the total angular momentum of an atom. For this, we need

to calculate the total orbital angular momentum L Z
i 1 li , the total spin S

Z
i 1 si , and

then obtain total angular momentum by coupling L and S, i.e., J L S, where li and si
are the orbital and spin angular momenta of individual electrons. As will be seen in Chapter

9, when the spin–orbit coupling is considered, the degeneracy of the atom’s energy levels is

partially lifted, introducing a splitting of the levels. The four numbers L, S, J , and M are good
quantum numbers, where L S J L S and J M J . So there are 2S 1 values

of J when L S and 2L 1 values when L S. Since the energy depends on J , the levels
corresponding to an L and S split into a 2J 1 -multiplet. The issue now is to determine

which one of these states has the lowest energy. Before studying this issue, let us introduce the

spectroscopic notation according to which the state of an atom is labeled by

2S 1L J (8.69)

where, as before, the numbers L 0 1 2 3 are designated by S, P, D, F, , respectively

(we should mention here that the capital letters S, P, D, F, refer to the total orbital angular

momentum of an atom, while the small letters s, p, d, f, refer to individual electrons; that

is, s, p, d, f, describe the angular momentum states of individual electrons). For example,

since the total angular momentum of a beryllium atom is J 0, because L 0 (all electrons

are in s-states, li 0) and S 0 (both electrons in the 1s 2 state are paired and so are the two

electrons in the 2s 2 state), the ground state of beryllium can be written as 1S0. This applies

actually to all other closed shell atoms such as helium He, neon Ne, argon Ar, and so on; their

ground states are all specified by 1S0 (Table 8.1).

Let us now consider boron B: the closed shells 1s and 2s have L S J 0. Thus the

angular momentum of boron is determined by the 1p electron which has S 1 2 and L 1.

A coupling of S 1 2 and L 1 yields J 1 2 or 3 2, leading therefore to two possible
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Table 8.1 Ground state electron configurations, spectroscopic description, and ionization en-

ergies for the first four rows of the periodic table. The brackets designate closed-shell elements.

Ground state Spectroscopic Ionization

Shell Z Element configuration description energy eV

1 1 H 1s 1 2S1 2 13.60

2 He 1s 2 1S0 24.58

2 3 Li [He] 2s 1 1s 2 2s 1 2S1 2 5.39

4 Be [He] 2s 2 1S0 9.32

5 B [He] 2s 2 2p 1 2P1 2 8.30

6 C [He] 2s 2 2p 2 3P0 11.26

7 N [He] 2s 2 2p 3 4S3 2 14.55

8 O [He] 2s 2 2p 4 3P2 13.61

9 F [He] 2s 2 2p 5 2P3 2 17.42

10 Ne [He] 2s 2 2p 6 1S0 21.56

3 11 Na [Ne] 3s 1 2S1 2 5.14

12 Mg [Ne] 3s 2 1S0 7.64

13 Al [Ne] 3s 2 3p 1 2P1 2 5.94

14 Si [Ne] 3s 2 3p 2 3P0 8.15

15 P [Ne] 3s 2 3p 3 4S3 2 10.48

16 S [Ne] 3s 2 3p 4 3P2 10.36

17 Cl [Ne] 3s 2 3p 5 2P3 2 13.01

18 Ar [Ne] 3s 2 3p 6 1S0 15.76

4 19 K [Ar] 4s 1 2S1 2 4.34

20 Ca [Ar] 4s 2 1S0 6.11

21 Sc [Ar] 3d 1 4s 2 2D3 2 6.54

22 Ti [Ar] 3d 2 4s 2 3F2 6.83

23 V [Ar] 3d 3 4s 2 4F3 2 6.74

24 Cr [Ar] 3d 4 4s 2 7S3 6.76

25 Mn [Ar] 3d 5 4s 2 6S3 2 7.43

26 Fe [Ar] 3d 6 4s 2 5D4 7.87

27 Co [Ar] 3d 7 4s 2 4F9 2 7.86

28 Ni [Ar] 3d 8 4s 2 3F4 7.63

29 Cu [Ar] 3d 10 4s 1 2S1 2 7.72

30 Zn [Ar] 3d 10 4s 2 1S0 9.39

31 Ga [Ar] 3d 10 4s 2 4p 1 2P1 2 6.00

32 Ge [Ar] 3d 10 4s 2 4p 2 3P0 7.88

33 As [Ar] 3d 10 4s 2 4p 3 4S3 2 9.81

34 Se [Ar] 3d 10 4s 2 4p 4 3P2 9.75

35 Br [Ar] 3d 10 4s 2 4p 5 2P3 2 11.84

36 Kr [Ar] 3d 10 4s 2 4p 6 1S0 9.81



8.4. THE EXCLUSION PRINCIPLE AND THE PERIODIC TABLE 473

states:
2P1 2 or 2P3 2 (8.70)

Which one has a lower energy? Before answering this question, let us consider another exam-

ple, the carbon atom.

The ground state configuration of the carbon atom, as given by 1s 2 2s 2 2p 2, implies

that its total angular momentum is determined by the two 2p electrons. The coupling of the two

spins s 1 2, as shown in equations (7.174) to (7.177), yields two values for their total spin

S 0 or S 1; and, as shown in Problem 7.3, page 436, a coupling of two individual orbital

angular momenta l 1 yields three values for the total angular momenta L 0, 1, or 2. But

the exclusion principle dictates that the total wave function has to be antisymmetric, i.e., the

spin and orbital parts of the wave function must have opposite symmetries. Since the singlet

spin state S 0 is antisymmetric, the spin triplet S 1 is symmetric, the orbital triplet L 1

is antisymmetric, the orbital quintuplet L 2 is symmetric, and the orbital singlet L 0 is

symmetric, the following states are antisymmetric:

1S0
3P0

3P1
3P2 or 1D2 (8.71)

hence any one of these states can be the ground state of carbon. Again, which one of them has

the lowest energy?

To answer this question and the question pertaining to (8.70), we may invoke Hund’s rules:
(a) the lowest energy level corresponds to the state with the largest spin S (i.e., the maximum
number of electrons have unpaired spins); (b) among the states with a given value of S, the
lowest energy level corresponds to the state with the largest value of L; (c) for a subshell that
is less than half full the lowest energy state corresponds to J L S , and for a subshell that
is more than half full the lowest energy state corresponds to J L S.
Hund’s third rule answers the question pertaining to (8.70): since the 2p shell of boron is

less than half full, the value of J corresponding to the lowest energy is given by J L S
1 1 2 1 2; hence 2P1 2 is the lower energy state.

To find which one of the states (8.71) has the lowest energy, Hund’s first rule dictates that

S 1. Since the triplet S 1 is symmetric, we need an antisymmetric spatial wave function;

this is given by the spatial triplet L 1. We are thus left with three possible choices: J 0, 1,

or 2. Hund’s third rule precludes the values J 1 and 2. Since the 2p shell of carbon is less than

half full, the value of J corresponding to the lowest energy is given by J L S 1 1 0;

hence 3P0 is the lower energy state (Table 8.1). That is, the two electrons are in different spatial

states or different orbitals (Figure 8.2). Actually, we could have guessed this result: since the

Coulomb repulsion between the two electrons when they are paired together is much larger

than when they are unpaired, the lower energy configuration corresponds to the case where

the electrons are in different spatial states. The ground state configurations of the remaining

elements, oxygen to argon, can be inferred in a similar way (Table 8.1).

Elements Z 18

When the 3p shell is filled, one would expect to place the next electron in a 3d shell. But this

doesn’t take place due to the occurrence of an interesting effect: the 4s states have lower energy

than the 3d states. Why? In a hydrogen atom the states 3s, 3p, and 3d have the same energy

(E 0
3 R 32 1 51 eV, since R 13 6 eV). But in multielectron atoms, these states

have different energy values. As l increases, the effective repulsive potential h2l l 1 2mr2

causes the d-state electrons to be thrown outward and the s-state electrons to remain closer to

the nucleus. Being closer to the nucleus, the s-state electrons therefore feel the full attraction of
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the nucleus, whereas the d-state electrons experience a much weaker attraction. This is known

as the screening effect, because the inner electrons, i.e., the s-state electrons, screen the nucleus;
hence the outward electrons (the d-state electrons) do not experience the full attraction of the

nucleus, but instead feel a weak effective potential. As a result, the energy of the 3d-state is

larger than that of the 4s-state. The screening effect also causes the energy of the 5s-state to

have a lower energy than the 4d-state, and so on. So for a given n, the energies Enl increase as
l increases; in fact, neglecting the spin–orbit interaction and considering relativistic corrections
we will show in Chapter 9 (9.90) that the ground state energy depends on the principal and

orbital quantum numbers n and l as E 0
nl Z2E 0

n 1 2Z2[2 2l 1 3 4n] n , where

1 137 is the fine structure constant and E 0
n R n2 13 6 eV n2.

In conclusion, the periodic table can be obtained by filling the orbitals in order of increasing

energy Enl as follows (Table 8.1):

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14

5d10 6p6 7s2 5f14 6d10 7p6

(8.72)

Remarks

The chemical properties of an element is mostly determined by the outermost shell. Hence

elements with similar electron configurations for the outside shell have similar chemical prop-

erties. This is the idea behind the structure of the periodic table: it is arranged in a way that

all elements in a column have similar chemical properties. For example, the elements in the

last column, helium, neon, argon, krypton, and so on, have the outer p-shell completely filled

(except for helium whose outside shell is 1s). These atoms, which are formed when a shell or

a subshell is filled, are very stable, interact very weakly with one another, and do not combine

with other elements to form molecules or new compounds; that is, they are chemically inert.

They are very reluctant to give up or to accept an electron. Due to these properties, they are

called noble gases. They have a very low boiling point (around 200 C). Note that each row

of the periodic table corresponds to filling out a shell or subshell of the atom, up to the next

noble gas. Also, there is a significant energy gap before the next level is encountered after each

of these elements. As shown in Table 8.1, a large energy is required to ionize these elements;

for instance, 24 58 eV is needed to ionize a helium atom.

Atoms consisting of a closed shell (or a noble gas configuration) plus an s-electron (or a va-

lence electron), such as Li, Na, K, and so on, have the lowest binding energy; these elements are

known as the alkali metals. In elements consisting of an alkali configuration plus an electron,

the second s-electron is more bound than the valence electron of the alkali atom because of the

higher nuclear charge. As the p-shell is gradually filled (beyond the noble gas configuration),

the binding energy increases initially (as in boron, carbon, and nitrogen) till the fourth electron,

then it begins to drop (Table 8.1). This is due to the fact that when the p-shell is less than half

full all spins are parallel; hence all three spatial wave functions are antisymmetric. With the

fourth electron (as in oxygen), two spins will be antiparallel or paired; hence the spatial wave

function is not totally antisymmetric, causing a drop in the energy. Note that elements with

one electron more than or one electron less than noble gas configurations are the most active

chemically, because they tend to easily give up or easily accept one electron.

Example 8.4

(a) Specify the total angular momenta corresponding to 4G, 3H, and 1D.
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(b) Find the spectroscopic notation for the ground state configurations of aluminum Al

(Z 13) and scandium Sc (Z 21).

Solution

(a) For the term 4G the orbital angular momentum is L 4 and the spin is S 3 2, since

2S 1 4. The values of the total angular momentum corresponding to the coupling of L 4

and S 3 2 are given by 4 3 2 J 4 3 2. Hence we have J 5 2, 7 2, 9 2, 11 2.

Similarly, for 3H we have S 1 and L 5. Therefore, we have 5 1 J 5 1, or

J 4, 5, 6.

For 1D we have S 0 and L 2. Therefore, we have 2 0 J 2 0, or J 2.

(b) The ground state configuration of Al is [Ne] 3s 2 3p 1. The total angular momentum

of this element is determined by the 3p electron, because S 0 and L 0 for both [Ne] and

3s 2. Since the 3p electron has S 1 2 and L 1, the total angular momentum is given by

1 1 2 J 1 1 2. Hence we have J 1 2, 3 2. Which of the values J 1 2 and

J 3 2 has a lower energy? According to Hund’s third rule, since the 3p shell is less than half

full, the state J L S 1 2 has the lower energy. Hence the ground state configuration

of Al corresponds to 2P1 2 (Table 8.1), where we have used the spectroscopic notation
2S 1L J .

Since the ground state configuration of Sc is [Ar] 4s 2 3d 1, the angular momentum is given

by that of the 3d electron. Since S 1 2 and L 2, and since the 3d shell is less than half

full, Hund’s third rule dictates that the total angular momentum is given by J L S
2 1 2 3 2. Hence we have 2D3 2.

8.5 Solved Problems

Problem 8.1

Consider a system of three noninteracting particles that are confined to move in a one-dimensional

infinite potential well of length a: V x 0 for 0 x a and V x for other values of

x . Determine the energy and wave function of the ground state and the first and second excited
states when the three particles are (a) spinless and distinguishable with m1 m2 m3; (b)
identical bosons; (c) identical spin 1

2
particles; and (d) distinguishable spin 1

2
particles.

Solution

(a) As shown in Example 8.2 on page 459, the total energy and wave function are given by

En1 n2 n3
h2 2

2a2
n21
m1

n22
m2

n23
m3

(8.73)

n1 n2 n3 x1 x2 x3
8

a3
sin

n1
a
x1 sin

n2
a
x2 sin

n3
a
x3 (8.74)

The ground state of the system corresponds to the case where all three particles occupy their

respective ground state orbitals, n1 n2 n3 1; hence

E 0 E1 1 1
h2 2

2a2
1

m1

1

m2

1

m3
(8.75)

0 x1 x2 x3 1 1 1 x1 x2 x3
8

a3
sin

a
x1 sin

a
x2 sin

a
x3 (8.76)
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Since particle 3 has the highest mass, the first excited state corresponds to the case where

particle 3 is in n3 2, while particles 1 and 2 remain in n1 n2 1:

E 1 E1 1 2
h2 2

2a2
1

m1

1

m2

4

m3
(8.77)

1 x1 x2 x3 1 1 2 x1 x2 x3
8

a3
sin

a
x1 sin

a
x2 sin

2

a
x3 (8.78)

Similarly, the second excited state corresponds to the case where particles 2 and 3 are in n2
n3 2, while particle 1 remains in n1 1:

E 2 E1 2 2
h2 2

2a2
1

m1

4

m2

4

m3
(8.79)

2 x1 x2 x3 1 2 2 x1 x2 x3
8

a3
sin

a
x1 sin

2

a
x2 sin

2

a
x3 (8.80)

(b) If all three particles were identical bosons, the ground state will correspond to all parti-

cles in the lowest state n1 n2 n3 1 (Figure 8.3):

E 0 E1 1 1 3 1
3h2 2

2ma2
(8.81)

0
1 x1 1 x2 1 x3

8

a3
sin

a
x1 sin

a
x2 sin

a
x3 (8.82)

since n xi 2 a sin n xi a .
In the first excited state we have two particles in 1 (each with energy 1 h2 2 2ma2 )

and one in 2 (with energy 2 4h2 2 2ma2 4 1):

E 1 2 1 2 2 1 4 1 6 1
3 2h2

ma2
(8.83)

The wave function is somewhat tricky again. Since the particles are identical, we can no longer

say which particle is in which state; all we can say is that two particles are in 1 and one in 2.

Since the value n 1 occurs twice (two particles are in 1), we infer from (8.60) and (8.61)

that

1 x1 x2 x3
2!

3!
1 x1 1 x2 2 x3 1 x1 2 x2 1 x3

2 x1 1 x2 1 x3 (8.84)

In the second excited state we have one particle in 1 and two in 2:

E 2
1 2 2 1 8 2 9 1

9 2h2

2ma2
(8.85)

Now, since the value n 2 occurs twice (two particles are in 2) and n 1 only once, (8.60)

and (8.61) yield

2 x1 x2 x3
2!

3!
1 x1 2 x2 2 x3 2 x1 1 x2 2 x3

2 x1 2 x2 1 x3 (8.86)
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Figure 8.3 Particle distribution among the levels of the ground state (GS) and the first (FES)

and second excited states (SES) for a system of three noninteracting identical bosons (left) and

fermions (right) moving in an infinite well, with 1 h2 2 2ma2 . Each state of the fermion
system is fourfold degenerate due to the various possible orientations of the spins.

(c) If the three particles were identical spin 1
2
fermions, the ground state corresponds to the

case where two particles are in the lowest state 1 (one having a spin-up
1
2

1
2
, the

other with a spin-down 1
2

1
2
), while the third particle is in the next state 2 (its spin

can be either up or down, 1
2

1
2
); see Figure 8.3. The ground state energy is

E 0 2 1 2 2 1 4 1 6 1
3h2 2

ma2
(8.87)

The ground state wave function is antisymmetric and, in accordance with (8.55), it is given by

0 x1 x2 x3
1

3!

1 x1 S1 1 x2 S2 1 x3 S3
1 x1 S1 1 x2 S2 1 x3 S3
2 x1 S1 2 x2 S2 2 x3 S3

(8.88)

This state is fourfold degenerate, since there are four different ways of configuring the spins of

the three fermions (the ground state (GS) shown in Figure 8.3 is just one of the four configu-

rations). Remark: one should be careful not to erroneously conclude that, since the first and

second rows of the determinant in (8.88) are "identical", the determinant is zero. We should

keep in mind that the spin states are given by S1 , S2 , and S3 ;

hence, we need to select these spin states in such a way that no two rows (nor two columns)

of the determinant are identical. For instance, one of the possible configurations of the ground

state wave function is given by

0 x1 x2 x3
1

3!

1 x1 1 x2 1 x3
1 x1 1 x2 1 x3
2 x1 2 x2 2 x3

(8.89)

This remark applies also to the first and second excited state wave functions (8.90) and (8.92);

it also applies to the wave function (8.109).

The first excited state corresponds to one particle in the lowest state 1 (its spin can be

either up or down) and the other two particles in the state 2 (the spin of one is up, the other is

down). As in the ground state, there are also four different ways of configuring the spins of the

three fermions in the first excited state (FES); the FES shown in Figure 8.3 is just one of the
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four configurations:

1 x1 x2 x3
1

3!

1 x1 S1 1 x2 S2 1 x3 S3
2 x1 S1 2 x2 S2 2 x3 S3
2 x1 S1 2 x2 S2 2 x3 S3

(8.90)

These four different states correspond to the same energy

E 1
1 2 2 1 8 1 9 1

9h2 2

2ma2
(8.91)

The excitation energy of the first excited state is E 1 E 0 9 1 6 1 3h2 2 2ma2 .
The second excited state corresponds to two particles in the lowest state 1 (one with spin-

up, the other with spin-down) and the third particle in the third state 3 (its spin can be either up

or down). This state also has four different spin configurations; hence it is fourfold degenerate:

2 x1 x2 x3
1

3!

1 x1 S1 1 x2 S2 1 x3 S3
1 x1 S1 1 x2 S2 1 x3 S3
3 x1 S1 3 x2 S2 3 x3 S3

(8.92)

The energy of the second excited state is

E 2 2 1 3 2 1 9 1 11 1
11h2 2

2ma2
(8.93)

The excitation energy of this state is E 2 E 0 11 1 6 1 5 1 5h2 2 2ma2 .
(d) If the particles were distinguishable fermions, there will be no restrictions on the sym-

metry of the wave function, neither on the space part nor on the spin part. The values of the

energy of the ground state, the first excited state, and the second excited state will be similar to

those calculated in part (a). However, the wave functions of these states are somewhat different

from those found in part (a); while the states derived in (a) are nondegenerate, every state of the

current system is eightfold degenerate, since the coupling of three 1
2
spins yield eight different

spin states (Chapter 7). So the wave functions of the system are obtained by multiplying each

of the space wave functions 0 x1 x2 x3 , 1 x1 x2 x3 , and 2 x1 x2 x3 , derived in
(a), by any of the eight spin states calculated in Chapter 7:

1
3

2

3

2

1

2

1

2

1

2

1

2

1

2

1

2
(8.94)

1
3

2

1

2

1

3
j1 j2 j3 j1 j2 j3 j1 j2 j3

(8.95)

0
1

2

1

2

1

2
j1 j2 j3 j1 j2 j3 (8.96)

1
1

2

1

2

1

6
j1 j2 j3 2 j1 j2 j3 j1 j2 j3

(8.97)
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Problem 8.2

Consider a system of three noninteracting identical spin 1
2
particles that are in the same spin

state 1
2

1
2
and confined to move in a one-dimensional infinite potential well of length a:

V x 0 for 0 x a and V x for other values of x . Determine the energy and wave
function of the ground state, the first excited state, and the second excited state.

Solution

We may mention first that the single-particle energy and wave function of a particle moving in

an infinite well are given by n n2h2 2 2ma2 and n xi 2 a sin n xi 2 .
The wave function of this system is antisymmetric, since it consists of identical fermions.

Moreover, since all the three particles are in the same spin state, no two particles can be in the

same state; every energy level is occupied by at most one particle. For instance, the ground state

corresponds to the case where the three lowest levels n 1 2 3 are occupied by one particle

each. The ground state energy and wave function are thus given by

E 0
1 2 3 1 4 1 9 3 14 1

7h2 2

ma2
(8.98)

0 x1 x2 x3
1

3!

1 x1 1 x2 1 x3
2 x1 2 x2 2 x3
3 x1 3 x2 3 x3

1

2

1

2
(8.99)

The first excited state is obtained (from the ground state) by raising the third particle to the

fourth level: the levels n 1 2, and 4 are occupied by one particle each and the third level is

empty:

E 1
1 2 4 1 4 1 16 3 21 1

21h2 2

2ma2
(8.100)

1 x1 x2 x3
1

3!

1 x1 1 x2 1 x3
2 x1 2 x2 2 x3
4 x1 4 x2 4 x3

1

2

1

2
(8.101)

In the second excited state, the levels n 1 3 4 are occupied by one particle each; the

second level is empty:

E 2
1 3 4 1 9 1 16 3 26 1

13h2 2

ma2
(8.102)

2 x1 x2 x3
1

3!

1 x1 1 x2 1 x3
3 x1 3 x2 3 x3
4 x1 4 x2 4 x3

1

2

1

2
(8.103)

Problem 8.3

Find the ground state energy and wave function of a system of N noninteracting identical par-
ticles that are confined to a one-dimensional, infinite well when the particles are (a) bosons and

(b) spin 1
2
fermions.
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Solution

In the case of a particle moving in an infinite well, its energy and wave function are n

n2h2 2 2ma2 and n xi 2 a sin n xi 2 .
(a) In the case where the N particles are bosons, the ground state is obtained by putting all

the particles in the state n 1; the energy and wave function are then given by

E 0
1 1 1 1 N 1

Nh2 2

2ma2
(8.104)

0 x1 x2 xN
N

i 1

2

a
sin

2
xi

2N

aN
sin

2
x1 sin

2
x2 sin

2
xN

(8.105)

(b) In the case where the N particles are spin 1
2
fermions, each level can be occupied by at

most two particles having different spin states 1
2

1
2
. The ground state is thus obtained by

distributing the N particles among the N 2 lowest levels at a rate of two particles per level:

E 0 2 1 2 2 2 3 2 N 2 2

N 2

n 1

n2h2 2

2ma2
h2 2

ma2

N 2

n 1

n2 (8.106)

If N is large we may calculate N 2
n 1 n

2 by using the approximation

N 2

n 1

n2
N 2

1

n2dn
1

3

N

2

3

(8.107)

hence the ground state energy will be given by

E 0 N3
h2 2

24ma2
(8.108)

The average energy per particle is E 0 N N2h2 2 24ma2 . In the case where N is even,
a possible configuration of the ground state wave function 0 x1 x2 xN is given as

follows:

1

N !

1 x1 S1 1 x2 S2 1 xN SN
1 x1 S1 1 x2 S2 1 xN SN
2 x1 S1 2 x2 S2 2 xN SN
2 x1 S1 2 x2 S2 2 xN SN
3 x1 S1 3 x2 S2 3 xN SN
3 x1 S1 3 x2 S2 3 xN SN

N 2 x1 S1 N 2 x2 S2 N 2 xN SN
N 2 x1 S1 N 2 x2 S2 N 2 xN SN

(8.109)

where Si
1
2

1
2
is the spin state of the i th particle, with i 1, 2, 3, . . . , N . If N is

odd then we need to remove the last row of the determinant.
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Problem 8.4

Neglecting the spin–orbit interaction and the interaction between the electrons, find the energy

levels and the wave functions of the three lowest states for a two-electron atom.

Solution

Examples of such a system are the helium atom (Z 2), the singly ionized Li ion (Z 3),

the doubly ionized Be2 ion (Z 4), and so on. Neglecting the spin–orbit interaction and the

interaction between the electrons, V12 e2 r12 e2 r1 r2 , we can view each electron as
moving in the Coulomb field of the Ze nucleus. The Hamiltonian of this system is therefore
equal to the sum of the Hamiltonians of the two electrons:

H H 1
0 H 2

0

h2

2
2
1

Ze2

r1

h2

2
2
2

Ze2

r2
(8.110)

where Mme M me , M is the mass of the nucleus, and me is the mass of the electron.
We have considered here that the nucleus is placed at the origin and that the electrons are located

at r1 and r2. The Schrödinger equation of the system is given by

H 1
0 H 2

0 r1 S1 r2 S2 En1n2 r1 S1 r2 S2 (8.111)

where the energy En1n2 is equal to the sum of the energies of the electrons:

En1n2 E 0
n1 E 0

n2

Z2e2

2a0

1

n21

Z2e2

2a0

1

n22
(8.112)

where a0 h2 me2 is the Bohr radius. The wave function is equal to the product of the

spatial and spin parts:

r1 S1 r2 S2 r1 r2 S1 S2 (8.113)

S1 and S2 are the spin vectors of the electrons.
Since this system consists of two identical fermions (electrons), its wave function has to be

antisymmetric. So either the spatial part is antisymmetric and the spin part is symmetric,

r1 S1 r2 S2
1

2
n1l1m1 r1 n2l2m2 r2 n2l2m2 r1 n1l1m1 r2 tri plet S1 S2

(8.114)

or the spatial part is symmetric and the spin part is antisymmetric,

r1 S1 r2 S2 n1l1m1 r1 n2l2m2 r2 singlet S1 S2 (8.115)

where triplet and singlet , which result from the coupling of two spins
1
2
, are given by (8.67)

and (8.68).

Let us now specify the energy levels and wave functions of the three lowest states. The

ground state corresponds to both electrons occupying the lowest state nlm 100 (i.e.,

n1 n2 1); its energy and wave function can be inferred from (8.112) and (8.115):

E 0 E11 2E 0
1 2

Z2e2

2a0
27 2Z2 eV (8.116)
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0 r1 S1 r2 S2 100 r1 100 r2 singlet S1 S2 (8.117)

where 100 r R10 r Y00 1 Z a0 3 2e Zr a0 .

In the first excited state, one electron occupies the lowest level nlm 100 and the other

electron occupies the level nlm 200 ; this corresponds either to n1 1, n2 2 or to

n1 2, n2 1. The energy and the wave function can thus be inferred from (8.112) and

(8.114):

E 1 E12 E 0
1 E 0

2

Z2e2

2a0

1

4

Z2e2

2a0

5

4
13 6Z2 eV 17 0Z2 eV (8.118)

1 r1 S1 r2 S2
1

2
100 r1 200 r2 200 r1 100 r2 triplet S1 S2 (8.119)

where 200 r R20 r Y00 1 8 Z a0 3 2 1 Zr 2a0 e Zr 2a0 .

Finally, the energy and wave function of the second excited state, which correspond to both

electrons occupying the second level nlm 200 (i.e., n1 n2 2), can be inferred from

(8.112) and (8.115):

E 2 E22 E 0
2 E 0

2 2E 0
2

1

2

Z2e2

2a0

1

2
13 6Z2 eV 6 8Z2 eV (8.120)

2 r1 S1 r2 S2 200 r1 200 r2 singlet S1 S2 (8.121)

These results are obviously not expected to be accurate because, by neglecting the Coulomb

interaction between the electrons, we have made a grossly inaccurate approximation. For in-

stance, the numerical value for the ground state energy obtained from (8.112) for the helium

atom is E 0
theory 108 8 eV whereas the experimental value is E 0

exp 78 975 eV; that is,

the theoretical value is 37 8% lower than the experimental value.

In Chapter 9 we will show how to use perturbation theory and the variational method to

obtain very accurate theoretical values for the energy levels of two-electron atoms.

Problem 8.5

Find the energy levels and the wave functions of the ground state and the first excited state

for a system of two noninteracting identical particles moving in a common external harmonic

oscillator potential for (a) two spin 1 particles with no orbital angular momentum and (b) two

spin 1
2
particles.

Solution

Since the particles are noninteracting and identical, their Hamiltonian is H H1 H2, where
H1 and H2 are the Hamiltonians of particles 1 and 2: H j h2 2m d2 dx2j m x2j 2 with

j 1 2. The total energy of the system is En1n2 n1 n2 , where n j n j
1
2
h .

(a) When the system consists of two identical spin 1 particles, the total wave function of

this system must be symmetric. Thus, the space and spin parts must be both symmetric or both

antisymmetric:

x1 S1 x2 S2
1

2
s x1 x2 s S1 S2 a x1 x2 a S1 S2 (8.122)
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where

s x1 x2
1

2
n1 x1 n2 x2 n1 x2 n2 x1 (8.123)

a x1 x2
1

2
n1 x1 n2 x2 n1 x2 n2 x1 (8.124)

where n x is a harmonic oscillator wave function for the state n; for instance, the ground
state and first excited state are

0 x
1

x0
exp

x2

2x20
1 x

2

x30
x exp

x2

2x20
(8.125)

with x0 h m .

The spin states S1 S2 can be obtained by coupling the spins of the two particles, S1 1

and S2 1: S S1 S2. As shown in Chapter 7, the spin states corresponding to S 2 are

given by

2 2 11 1 1 2 1
1

2
1 1 1 0 1 1 0 1 (8.126)

2 0
1

6
1 1 1 1 2 1 1 0 0 1 1 1 1 (8.127)

those corresponding to S 1 by

1 1
1

2
1 1 1 0 1 1 0 1 (8.128)

1 0
1

2
1 1 1 1 1 1 1 1 (8.129)

and the one corresponding to S 0 by

0 0
1

3
1 1 1 1 1 1 0 0 1 1 1 1 (8.130)

Obviously, the five states 2 ms , corresponding to S 2 and 00 , are symmetric, whereas

the three states 1 ms are antisymmetric. Thus, s S1 S2 is given by any one of the six states
2 2 , 2 1 , 2 0 , and 0 0 ; as for a S1 S2 , it is given by any one of the three states
2 1 , and 1 0 .

The ground state corresponds to the case where both particles are in their respective ground

states n1 n2 0. The energy is then given by E 0
0 0

1
2
h 1

2
h h . Since

a x1 x2 , as given by (8.124), vanishes for n1 n2 0, the ground state wave function

(8.122) reduces to

0 x1 S1 x2 S2 0 x1 0 x2 s S1 S2
1

x0
exp

x21 x22
2x20

s S1 S2

(8.131)

where 0 x is given by (8.125). The ground state is thus sixfold degenerate, since there are

six spin states s S1 S2 that are symmetric.
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In the first excited state, one particle occupies the ground state level n 0 and the other in

the first excited state n 1; this corresponds to two possible configurations: either n1 0 and

n2 1 or n1 1 and n2 0. The energy is then given by E 1
0 1

1
2
h 3

2
h 2h .

The first excited state can be inferred from (8.122) to (8.124):

1 x1 S1 x2 S2
1

2
0 x1 1 x2 0 x2 1 x1 s S1 S2

1

2
0 x1 1 x2 0 x2 1 x1 a S1 S2 (8.132)

where 0 x and 1 x are listed in (8.125). The first excited state is ninefold degenerate

since there are six spin states, s S1 S2 , that are symmetric and three, a S1 S2 , that are
antisymmetric.

(b) For a system of two identical fermions, the wave function must be antisymmetric and

the space and spin parts must have opposite symmetries:

x1 S1 x2 S2
1

2
s x1 x2 singlet S1 S2 a x1 x2 tri plet S1 S2 (8.133)

where the symmetric spin state, tri plet S1 S2 , is given by the triplet states listed in (8.67); the
antisymmetric spin state, singlet S1 S2 , is given by the (singlet) state (8.68).

The ground state for the two spin 1
2
particles corresponds to the case where both particles

occupy the lowest level, n1 n2 0, and have different spin states. The energy is then given

by E 0
0 0 h and the wave function by

0 x1 S1 x2 S2 0 x1 0 x2 singlet S1 S2

1

x0
exp

x21 x22
2x20

singlet S1 S2 (8.134)

since a x1 x2 vanishes for n1 n2 0. The ground state is not degenerate, since there is

only one spin state which is antisymmetric, singlet S1 S2 .
The first excited state corresponds also to n1 0 and n2 1 or n1 1 and n2 0. The

energy is then given by E 1
0 1 2h and the wave function by

1 x1 S1 x2 S2
1

2
0 x1 1 x2 0 x2 1 x1 singlet S1 S2

1

2
0 x1 1 x2 0 x2 1 x1 tri plet S1 S2 (8.135)

This state is fourfold degenerate since there are three spin states, triplet S1 S2 , that are sym-
metric and one, singlet S1 S2 , that is antisymmetric.

8.6 Exercises

Exercise 8.1

Consider a system of three noninteracting identical bosons that move in a common external

one-dimensional harmonic oscillator potential. Find the energy levels and wave functions of

the ground state, the first excited state, and the second excited state of the system.
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Exercise 8.2

Consider two identical particles of spin 1
2
that are confined in a cubical box of side L . Find the

energy and the wave function of this system in the case of no interaction between the particles.

Exercise 8.3

(a) Consider a system of two nonidentical particles, each of spin 1 and having no orbital

angular momentum (i.e., both particles are in s states). Write down all possible states for this

system.

(b) What restrictions do we get if the two particles are identical? Write down all possible

states for this system of two spin 1 identical particles.

Exercise 8.4

Two identical particles of spin 1
2
are enclosed in a one-dimensional box potential of length L

with rigid walls at x 0 and x L . Assuming that the two-particle system is in a triplet
spin state, find the energy levels, the wave functions, and the degeneracies corresponding to the
three lowest states.

Exercise 8.5

Two identical particles of spin 1
2
are enclosed in a one-dimensional box potential of length L

with rigid walls at x 0 and x L. Assuming that the two-particle system is in a singlet
spin state, find the energy levels, the wave functions, and the degeneracies corresponding to the
three lowest states.

Exercise 8.6

Two identical particles of spin 1
2
are moving under the influence of a one-dimensional harmonic

oscillator potential. Assuming that the two-particle system is in a triplet spin state, find the
energy levels, the wave functions, and the degeneracies corresponding to the three lowest states.

Exercise 8.7

Find the ground state energy, the average ground state energy per particle, and the ground state

wave function of a system of N noninteracting, identical bosons moving under the influence of
a one-dimensional harmonic oscillator potential.

Exercise 8.8

Find the ground state energy, the average ground state energy per particle, and the ground state

wave function of a system of N noninteracting identical spin 1
2
particles moving under the

influence of a one-dimensional harmonic oscillator potential for the following two cases:

(a) when N is even and
(b) when N is odd.

Exercise 8.9

Consider a system of four noninteracting particles that are confined to move in a one-dimensional

infinite potential well of length a: V x 0 for 0 x a and V x for other values

of x . Determine the energies and wave functions of the ground state, the first excited state, and
the second excited state when the four particles are

(a) distinguishable bosons such that their respective masses satisfy this relation: m1
m2 m3 m4, and
(b) identical bosons (each of mass m).
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Exercise 8.10

Consider a system of four noninteracting identical spin 1 2 particles (each of mass m) that
are confined to move in a one-dimensional infinite potential well of length a: V x 0 for

0 x a and V x for other values of x . Determine the energies and wave functions of
the ground state and the first three excited states. Draw a figure showing how the particles are

distributed among the levels.

Exercise 8.11

Consider a system of four noninteracting identical spin 1
2
particles that are in the same spin state

1
2

1
2
and confined to move in a one-dimensional infinite potential well of length a: V x 0

for 0 x a and V x for other values of x . Determine the energies and wave functions
of the ground state, the first excited state, and the second excited state.

Exercise 8.12

Assuming the electrons in the helium atom to be spinless bosons and neglecting the interactions

between them, find the energy and the wave function of the ground state and the first excited

state of this (hypothetical) system.

Exercise 8.13

Assuming the electrons in the lithium atom to be spinless bosons and neglecting the interactions

between them, find the energy and the wave function of the ground state and the first excited

state of this (hypothetical) system.

Exercise 8.14

Consider a system of two noninteracting identical spin 1 2 particles (with mass m) that are
confined to move in a one-dimensional infinite potential well of length L: V x 0 for 0

x L and V x for other values of x . Assume that the particles are in a state with the
wave function

x1 x2
2

L
sin

2 x1
L

sin
5 x2
L

sin
5 x1
L

sin 2
x2
L

s1 s2

where x1 and x2 are the positions of particles 1 and 2, respectively, and s1 s2 is the spin

state of the two particles.

(a) Is s1 s2 going to be a singlet or triplet state?
(b) Find the energy of this system.

Exercise 8.15

Consider a system of two noninteracting identical spin 1 2 particles (with mass m) that are
confined to move in a common one-dimensional harmonic oscillator potential. Assume that the

particles are in a state with the wave function

x1 x2
2

x20
x2 x1 exp

x21 x22
2x20

s1 s2

where x1 and x2 are the positions of particles 1 and 2, respectively, and s1 s2 is the spin

state of the two particles.

(a) Is s1 s2 going to be a singlet or triplet state?
(b) Find the energy of this system.
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Exercise 8.16

Consider a system of five noninteracting electrons (in the approximation where the Coulomb

interaction between the electrons is neglected) that are confined to move in a common one-

dimensional infinite potential well of length L 0 5 nm: V x 0 for 0 x L and
V x for other values of x .
(a) Find the ground state energy of the system.

(b) Find the energy of the first state of the system.

(c) Find the excitation energy of the first excited state.

Exercise 8.17

Determine the ground state electron configurations for the atoms having Z 40, 53, 70, and

82 electrons.

Exercise 8.18

Specify the possible J values (i.e., total angular momenta) associated with each of the following
states: 1P , 4F , 2G, and 1H .

Exercise 8.19

Find the spectroscopic notation 2S 1L J (i.e., find the L, S, and J ) for the ground state config-
urations of

(a) Sc (Z 21) and

(b) Cu (Z 29).


