Dual Network By applying KVL, $$v(t) = Fi(t) + L\frac{di}{dt} + \frac{1}{C}\int_{0}^{t}i(t) dt$$ $$V'(t)$$ By applying KCL, $$i'(t) = v'(t)G' + C'\frac{dv'(t)}{dt} + \frac{1}{L'}\int_{0}^{t}v'(t) dt$$ - The networks N₁ and N₂ are called dual networks but these networks are not equivalent networks and therefore, the network N₁ cannot be replaced by N₂ network. - The KVL equation for network N₁ has similar format as for the KCl equation for network N₂. Therefore, if the response of the first network is known is terms of current i(t) then the response of its dual network for voltage v'(t) can be directly written without actually solving it by using necessary transformation by various elements as follows: | N_{1} | N ₂ | |---------|----------------| | v(t) | i(t) | | R | G | | G | R | | L | С | | С | | | KVL | KCL |