ELECTROMAGNETISM

SYNOPSIS

INTRODUCTION:

- A current carrying wire is surrounded by a magnetic field. This was first discovered by Oersted. This is called magnetic effects of electric current.
- Ampere's right hand grip rule: If a straight conductor is held in right hand such that the thumb points in the direction of the current then the direction of the curl of the remaining fingers gives the direction of the line of force.
- Maxwell's cork screw rule: If the direction of the movement of a right handed cork screw represents the direction of current in a wire then the direction of rotation of the head of the screw gives the direction of the line of force, i.e., direction of the magnetic field around it.

• AMPERE'S LAW:

• The line integral of the magnetic induction over a closed loop is equal to μ_0 times the current (I) passing through the area bounded by the loop.

 $\int B.dl = \mu_0 i$

• i.e. the work done in moving a unit N-pole around a conductor carrying current is

 μ_0 I which is a constant. It does not depend upon the radius of the circle in which it is moved.

• The Magnetic Induction at any point due to a straight conductor is directly proportional to the strength of the current in the conductor, and is inversely proportional to the distance of the point from the conductor.

$$B \propto i$$

$$B \propto \frac{\iota}{r}$$
$$B = \frac{\mu_0}{2\pi}$$

Where μ_0 is the permeability of free space, $\mu_0 = 4 \pi x \ 10^{-7}$ henry m⁻¹.

- **BIOT ŠAVART'S LAW :**
 - Magnetic Induction at a distance from an arbitrary shaped conductor is found using Biot-Savart's Law.

• Magnetic induction 'dB' due to a small element of the conductor of length 'dl' carrying a current I is given by :

$$\mathrm{dB} = \frac{\mu_0}{4\pi} \; \frac{idl\sin\theta}{r^2}$$

Due to the total conductor it will be,

$$B = \int dB$$

• In vector form,

$$\overline{\mathbf{dB}} = \frac{\mu_0}{4\pi} \frac{i\overline{dl}x\overline{r}}{r^3}$$

Magnetic Induction on the Axis of a Circular current carrying coil is :

•
$$B = \frac{\mu_0 n i r^2}{2(r^2 + x^2)^{\frac{3}{2}}}$$

Where n is the number of turns, 'r' is the radius of the coil and 'x' is the distance of the point from the centre of the coil.

Case (A): At the center of coil(x=0)

$$\mathbf{B} = \frac{\mu_0 n i}{2r}$$

Case (B): If x >> r, then B = $\frac{\mu_0 n i r^2}{2 x^3} \Rightarrow B \alpha \frac{1}{x^3}$

The magnetic induction at the centre of circular current carrying arc, subtending angle θ at center

$$is \ B = \frac{\mu_0 i}{4\pi r} \bigl(\theta \bigr) \$$
 where ' θ ' is in radians

• 1) If $\theta = \pi$, that is for semi circle

2) If
$$\theta = 2\pi$$
 that is for acircle B = $\frac{\mu_0 ni}{2r}$

• If n = 1; $B = \frac{\mu_0 i}{2r}$

- For half a circular Loop, n = 1/2B = $(\mu_0 i/4r)$
- The magnetic moment of a circular coil of area 'A' carrying a current 'i' and having 'n' turns is, M = n i A
- An electron (Charge 'e') revolving around the nucleus in an orbit with a speed 'V' then the magnetic field induction at it's centre is

$$\mathbf{B} = \frac{\mu_0 V e}{4\pi r^2}$$

• A long solenoid carrying a current acts like a bar magnet, $B = \mu_0 n i$ along the axis of the solenoid. Where, n is the number of turns per meter length.

At the ends of long solenoid, $B = \frac{1}{2} \mu_0 ni$

FIELD DUE TO AN INFINITE LONG STRAIGHT CONDUCTOR:

• $B = \frac{\mu_0 l}{2}$ When condudistar • For a i^i induc Whenrent through thethe perpendicularimmu the conductor.length the magnetic

$$\mathbf{B} = \frac{\mu_0 i}{4\pi r} (\operatorname{Sin} \, \boldsymbol{\theta}_1 + \operatorname{Sin} \boldsymbol{\theta}_2)$$

- If the point P lies along the axis of the conductor then B = 0
- If the point P lies at a perpendicular distance r from one end of an infinitely long conductor then magnetic induction at P is.

$$\mathbf{B} = \frac{\mu_0 i}{4\pi r}$$

Similarly for conductor of finite length perpendicular

to one end,
$$B = \frac{\mu_0 i}{4\pi r} \sin \theta$$

- FORCE EXPERIENCED BY A CHARGE IN A MAGNETIC FIELD:
 - •A moving charge in a magnetic field experiences a force. The direction of the force is given by Fleming's left hand rule. Forefinger, Central-finger and the thumb show the direction of field, current and the direction of the motion of the charge respectively.

- •The Magnitude of the force is given by F = qV $B \sin \theta$ In vector form $F = q (\overline{V}_{X}\overline{B})$ where θ is the angle between \overline{V} and \overline{B} Fore finger \rightarrow field (B) Central finger \rightarrow charge (q) Thumb \rightarrow Force (F)
- i) When $\theta = 0$ or 180° , F = 0 charge moves in a straight line
- ii) When $\theta = 90^{\circ}$ F=Bqv charge moves in a circular path
- iii) For any other angle charge moves in a helical path.
- When a particle of mass 'm' and charge 'q' is moving perpendicular to a uniform magnetic field of Induction 'B' with a velocity 'v', it describes a circular path of radius 'r' then,

$$r = \frac{mv}{qB}$$
 (since, $qvB = \frac{mv^2}{r}$)

frequency 'n' =
$$\frac{qB}{2\pi m}$$

Time period 'T' = $\frac{2\pi m}{qB}$

- n and T are independant of the radius of the circular path it describes.
- FORCE EXPERIENCED BY A CURRENT CARRYING CONDUCTOR PLACED IN A MAGNETIC FIELD:
 - If a current carrying conductor is placed in a magnetic field of induction 'B' such that, its length (L) is perpendicular to the field then it experiences maximum force given by F = Bi L

Where 'i' is the current flowing through the conductor

• If the length makes an angle θ with the field then,

 $F = BiL Sin \theta$ or $\overline{F} = i \overline{L} X \overline{B}$

FORCE BETWEEN TWO INFINITELY LONG PARALLEL CONDUCTORS CARRYINGCURRENT:

• Force experienced per unit length of each conductor is,

$$\mathbf{f} = \frac{F}{l} = \frac{\mu_0 i_1 i_2}{2 \pi r}$$

where i_1, i_2 , are the currents flowing through the two conductors, r is the distance between them.

7)

Force experienced by a length 'l' of each

conductor is $F = \frac{\mu_0 I_1 I_2 l}{2\pi r}$

- If the currents in the parallel conductors are in the same direction then they attract each other. If the currents are in opposite direction then they repel each other.
- When a small conductor 'PQ' of length '*l*' carrying a current 'I₁', is in equilibrium above an infinitely long conductor carrying current

'I₂' then
$$\frac{\mu_0 I_1 I_2 l}{2\pi r} = mg$$

Where mg is the weight of PQ and r is the distance between the conductors I_1 and I_2 are in opposite directions.

• If PQ is below the infinitely long conductor, then I_1 and I_2 must be in the same direction.

If two stright parallel current carrying conductors with current $i_1, i_2 (i_2 > i_1)$ are seperated by a distance 'd' then distance of

null point from conductor i_1 is $x = \frac{d}{\left(\frac{i_2}{i_1}\right) \pm 1}$

+ve for the currents in the same direction. -ve for the current in the opposite direction.

- TORQUE ON A CURRENT CARRYING COIL IN A UNIFORM MAGNETIC FIELD:
 - If the plane of the coil makes an angle 'θ' with the direction of the field of induction B then

 $\tau = n I AB \cos \theta = MB \cos \theta$

Where 'A' is area of the coil of 'n' turns carrying a current I and magnetic moment of coil M = nIA.

 If the normal drawn to the plane of the coil makes an angle 'φ' with the direction of the magnetic field then.

 $\tau = n I AB \sin \phi$

In vector form $\overline{\tau} = nI \ (\overline{A}x\overline{B}) = \overline{M}x\overline{B}$

Magnetic moment of the coil is M = n I A

- MOVING COIL GALVANOMETER (MCG):
 - It works on the principle that a coil carrying current when placed in uniform magnetic field experiences a torque.

- It is used to measure currents of the order of 10⁻⁹ A.
- The horse shoe type of magnet provides the radial field with the help of cylindrical poles and soft iron cylinder
- The coil in MCG is suspended by a phosphor bronze ribbon and it provides the restoring torque.
- The deflections are measured with a lamp and scale arrangement.
- The current through the MCG,

$$I = \left(\frac{C}{nBA}\right) \quad \theta = K\theta$$

Where 'K' is called as galvanometer constant and 'C' is the couple per unit twist of the suspension fibre.

- I θ graph is a straight line passing through the origin (θ on Y - Axis, I on X - Axis) Slope of the graph = (nBA)/C
- Current sensitivity of the galvanometer = $\theta/I = (nBA)/C$

The Current sensitivity can be increased by,

- a) increasing the number of turns
- b) increasing the area of the coil
- c) increasing 'B'
- d) decreasing 'C'
- Voltage sensitivity of the galvanometer, = $\theta/V = (nBA)/CG$

Where G is the resistance of the galvanometer

- Table galvanometer is also a moving coil galvanometer in which the deflection of the coil and hence current is directly read by the motion of the pointer of the scale.
- The sensitivity of a table galvanometer is less than that of a MCG.
- If we pass same current through different galvanometers, then the galvanometer which shows more deflection is more sensitive.

TANGENT GALVANOMETER (TG) :

- It is a moving magnet galvanometer used to measure current
- It is less sensitive than MCG. It can measure current of the order of 10⁻⁶ A.

In S.I. units
$$I = \left(\frac{2r B_H}{\mu_0 n}\right) \tan \theta = K \tan \theta$$

 $I = K \tan \theta$

Where K is called as T.G. constant (or) reduction factor of T.G. r-radius in meter B_{H} = Horizontal component of earth magnetic field in Tesla. $I \rightarrow$ current in amperes $I = \left(\frac{10rH}{2\pi n}\right) \tan \theta \text{ in C.G.S. Units}$ $I = K \tan \theta$ Where K is called as T.G. constant (or) reduction factor of T.G. $r \rightarrow$ radius of coil of T.G. in centimeters $H \rightarrow$ Horizontal of component of earth magnetic field in oersteds. $I \rightarrow \text{current in amperes}$ The unit of K is ampere It is portable **ADVANTAGES OF (MCG) OVER (TG) :** The scale is linear It is unaffected by external magnetic material (or) magnetic fields. It need not be adjusted in a particular position. It can be used at the poles also It is more sensitive. SHUNT → ↓ ↓ ↓ ↓ $I = I^{a} + I^{s}$ $I_g = \frac{IS}{G+S}$ • $I_s = \frac{IG}{G+S}$ • $\frac{I_g}{I_s} = \frac{S}{G}$; $\frac{I_g}{I} = \frac{S}{G+S}$; $\frac{I_s}{I} = \frac{G}{G+S}$ effective resistance of the circuit is, $\frac{GS}{G+S}$ A shunt is a small resistance connected in parallel to a sensitive device to protect it from damage due to large currents. **AMMETER:** A galvanometer is converted into an ammeter by connecting a low resistance in parallel called shunt resistance.

Shunt resistance,

$$\mathbf{S} = \frac{I_g G}{I - I_g}$$

Where I_g is the full scale deflection current of the galvanometer, I is the maximum current to be read on the ammeter.

- In electrical circuits, an ammeter is always connected in series.
- The internal resistance of an ammeter is low. An Ideal ammeter should have zero resistance.
- By shunting a galvanometer, the sensitivity decreases.
- When increasing the range of an ammeter,

$$\mathbf{S} = \left(\frac{\mathbf{G}}{\mathbf{n} - \mathbf{1}}\right)$$

Where n = new range / old range

• The P.D. across the terminal of an ammeter is negligible.

VOLTMETER:

- A galvanometer is converted into a Voltmeter by connecting a high resistance in series to it.
- The resistance 'R' that should be connected to galvanometer in order to convert it into a voltmeter is,

$$\mathbf{R} = \frac{V}{I_g} - G$$

where 'V' is the maximum Voltage to be read with the converted Voltmeter.

- To change the range, R=(n-1)G Where, n = new range / old range
- Resistance of Voltmeter is (G+R)
- The internal resistance of a Voltmeter is high. An Ideal Voltmeter should have infinite resistance.
- In electrical circuits, the voltmeter is always connected in parallel.
- The current drawn by a voltmeter is negligible.
- Voltmeter is converted into ammeter by connecting a low resistance in parallel with it.
- Ammeter is converted into voltmeter by connecting a high resistance in series with it.

	CONCEPTUAL QUESTIONS	10.	A light body is hanging at the lower end of a vertical
1.	The intensity of magnetic induction at the centre of		spring. On passing current in the spring, the body
	a current-carrying circular coil is B, and at a point		1) Rises up 2) Goes down
	on its axis at a distance equal to its radius from the		3) No change 4) Oscillates up & down
	centre is B_1 , then B_1/B_2 is	11.	For a given distance from a current element the
	1 1	11.	magnetic induction is maximum at an angle
	1) $2\sqrt{2}$ 2) $\frac{1}{\sqrt{2}}$ 3) $\frac{1}{\sqrt{2}}$ 4) $\sqrt{2}$		measured with respect to axis of the current
	$\sqrt{2\sqrt{2}}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$		1) $3\pi/4$ 2) $\pi/4$ 3) $\pi/2$ 4) 2π
2.	The magnetic field due to a current element is	12	The work done in moving a unit n pole round a
	independent of :	12.	a conductor compring a cument in a circle of modius 10 cm
	1)current through it 2)distance from it		conductor carrying current in a circle of fadius form
	3) its length 4) nature of meterial		is w. The work done in moving it in a circle of
3.	If we double the radius of a current carrying coil		radius 20cm is. $(2 - 4) = 4$
	keeping the current unchanged, the magnetic field	1.2	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
	at its centre	13.	A straight wire of diameter 0.5 mm carrying a
	1) becomes four times 2) doubled		current of IA is replaced by another wire of
	3) remains unchanged 4) halved		1 mm diameter carrying the same current. The
4.	It we double the radius of the coil keeping the		strength of magnetic field far away is
	current through it unchanged, the magnetic field on		1) Twice the earlier value
	its axis at very very far away points		2) half of the earlier value
	1) becomes tour times 2) is doubled		3) Quarter of the earlier value
6	3) remains unchanged 4) halved		4) unchanged
5.	A current carrying coil is placed with its plane in	14.	Magnetic lines of force due to a straight conductor
	the magnetic meridian of the earth. When seen from		carrying current are
	the east side a clockwise current is set up in the		1) Straight lines 2) Elliptical
	coil. The magnetic field at its centre will be directed		3) Circular 4) Parabolic
	towards (1) (1) (2) (1) (2) (3) (4) (3)	15	The magnetic field $\overline{\mathbf{J}}$ due to a small current
6	1) north 2) south 3) West 4) east	10.	
0.	A current carrying power line carries current from		element dl at a distance r and carrying current 'i'
	above is		is
	1) porth to south 2) south to porth		$(\overline{n}, \overline{n})$ $(\overline{n}, \overline{n})$
	$\begin{array}{c} 1 (b) If the solution of the solutio$		1) $\overline{dB} = \frac{\mu_0}{4}i\left \frac{dl \times r}{dl}\right $ 2) $\overline{dB} = \frac{\mu_0}{4}i^2\left \frac{dl \times r}{dl}\right $
7	A metallic nine carries direct current Which of		$=$ 4π (r) $=$ 4π (r')
/.	the following statements about the existence of		$(\overline{n}, \overline{n})$ $(\overline{n}, \overline{n})$
	magnetic field is true?		3) $\overline{dB} = \frac{\mu_0}{4}i^2 \left \frac{dl \times r}{dl} \right $ 4) $\overline{dB} = \frac{\mu_0}{4}i \left \frac{dl \times r}{dl} \right $
	1) it exists outside only		4π (r) 4π (r')
	2)it exists inside only	16.	Magnetic effect of an electric current was
	3) it exists both inside & outside		discovered by
	4) it exists neither inside nor outside		1) Ohm 2) Faraday 3) Oersted 4) Ampere
8.	A current carrying wire produces in the neighbour	17.	An electric charge in uniform motion produces
	hood		1) An electric field only
	1) Electric and magnetic fields		2) A magnetic field only
	2) Electric field only 3) Magnetic field only		3) Both electric and magnetic fields.
	4) No field.		4) No such field at all
9.	Two circular coils of equal radius carrying currents	18.	A current 'i' amp flows along an infinitely long
	i_1, i_2 in opposite direction are at a large distance		straight thin conductor. Then the magnetic induction
	'd'. The distance from the first coil where the		at any point on the axis of the conductor is
	resultant magnetic induction is zero is		
	, , , , , , , , , , , , , , , , , , ,		1) infinity 2) zero 3) $\frac{\mu_0 2i}{2}$ 4) $\frac{\mu_0}{i}$
	$\frac{d}{\sqrt{1-\frac{a}}{1-\frac{a}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$		$4\pi r^{-3}/4\pi r$
	1) $1 + \frac{l_2}{2}$ 2) $1 + \sqrt{\frac{l_2}{2}}$ 3) $1 + \left(\frac{l_2}{2}\right)^3$ 4) $1 + \left(\frac{l_2}{2}\right)$		
	$l_1 \qquad \bigvee l_1 \qquad \left(i_1 \right) \qquad \left(i_1 \right)$		
SR.	PHYSICS	171	ELECTRO MAGNETISM

19.	A current 'i' flows along an infinitely long straight	25.	Which of the following characteristics is
	conductor. If r is the perpendicular distance of a		independent of the angle between \vec{v} and \vec{p}
	point from the middle point of the conductor then		1) Momentum 2) Radius of helical path
	the magnetic induction B is given by		3) Angular speed 4) Both 1 and 2
	$\mu_0 2i \qquad \mu_0 i$	26	A positively charged particle fall vertically
	1) $B = \frac{1}{4\pi} \frac{1}{r}$ 2) $B = \frac{1}{4\pi} \frac{1}{r}$	20.	downwards. The horizontal component of earth's
	$\mu \pi i$ $\mu 2\pi i$		magnetic field will deflect it towards
	3) $B = \frac{\mu_0}{4\pi} \frac{\pi r}{r}$ 4) $B = \frac{\mu_0}{4\pi} \frac{2\pi r}{r}$		1) West 2) East 3) South 4) North
20.	A current 'i' flows along an infinitely long straight	27.	An electron and a proton enter a magnetic field
	conductor. If 'r' is the perpendicular distance of		with equal velocities. The particle that experiences
	a point from the lower end of the conductor, then		more force is
	the magnetic induction B is given by		1) Electron 2) Proton
	$\mu_{2} = 2i$ $\mu_{2} = i$		3) Both experience same force
	1) $B = \frac{r_0}{4\pi} \frac{-r}{r}$ 2) $B = \frac{r_0}{4\pi} \frac{r}{r}$		4) It cannot be predicted.
	<i>u</i> =: <i>u</i> 2=:	28.	An electron and a proton enter a magnetic field at
	3) $B = \frac{\mu_0}{4\pi} \frac{\pi l}{r}$ 4) $B = \frac{\mu_0}{4\pi} \frac{2\pi l}{r}$		right angle to the field with same kinetic energy.
21	A long straight thin conductor has a current of i'		The correct statement is
21.	ampere. The magnetic induction B away from the		1) I rajectory of electron is less curved
	conductor at a distance 'r' from its axis varies as		2) I rajectory of proton is less curved 2) Doth are equally surred
	shown in		4) Both move along straight line paths
		29	A proton and an electron enter a region with equal
	B B	27.	speed in which a magnetic field is suddenly
	<u> </u>		switched on. The force experienced by them are
			1) Equal and opposite
	a) b)		2) Different in magnitude but same in direction
	(0,0) r $(0,0)$ r		3) in the ratio of 1840
			4) Same in magnitude and direction
	в В	30.	The following cases in which no force is exerted
	ř r		by a magnetic field on a charge is
	N II		1) Moving with constant velocity
	c) d)		2) Moving in a circle.
		21	3) At rest 4) Moving along a curved path.
		31.	I wo streams of electrons are moving parallel to
	1) a 2) b 3) c 4) d		1) Attract each other 2) Repaired as ther
22.	If the angular momentum of an electron revolving		3) Cancel the electric field of each other
	in a cirular orbit is L, then its magnetic moment is		4) Cancel the magnetic field of each other
	1) eLm 2) eL/m 3) eL/2m 4) zero	32.	A magnetic field exerts no force on
23.	An electron is projected parallel to electric and	0.2.	1) a stream of electrons
	uniform magnetic fields acting simultaneously in the		2) a stream on protons
	same direction. The electron		3) Unmagnetised piece of iron
	1) gains kinetic energy 2) loses kinetic energy		4) Stationary charge.
	3) moves along a norsholig noth	33.	An electron beam is moving from left to right of the
24	A proton is rotating along a circular path with		observer and magnetic field is acting vertically
<u> </u> ∠¬.	kinetic energy K in a uniform magnetic field R If		upwards the direction of force acting on electron is
	the magnetic field is made four times, the kinetic		1) Towards the observer
	energy of rotation of proton is		2) Away from the observer
	1) 16K 2) 8K 3) 4K 4) K		3) Downwards 4) Upwards.
	. , , ,		

34.	A charged particle enters into a uniform magnetic	43.	A charge q is moving with a velocity parallel to a
	field the parameter that remains constant is		magnetic field. Force on the charge due to
	1) Velocity 2) Momentum		magnetic field is
	3) Kinetic energy 4) All the above.		1) Q VB 2) QB/V 3) Zero 4) Bv/q
35.	A charge moving with velocity V in X direction is	44.	If the direction of the initial velocity of the charged
	subjected to a field of magnetic induction in the		particle is perpendicular to the magnetic field, the
	negative X direction. As a result the charge will		orbit will be
	1) Remain unaffected		1) A straight line 2) An ellipse
	2) Start moving in a circular path in y-z plane		3) A circle 4) A helix
	3) retard along X - axis	45.	If the direction of the initial velocity of a charged
	4) Move along a helical path around X - axis.		particle is neither along nor perpendicular to that
36.	The mono energetic beams of electrons moving		of the magnetic field, then the orbit will be
	along +y direction enter a region of unform electric		1) A straight line 2) An ellipse
	and magnetic fields. If the beam goes straight		3) A circle 4) A helix.
	through these simultaneously then field B and E	46.	A free charged particle moves through a magnetic
	are directed respectively along		field. The particle may undergo a change in
	1) -y axis and -z axis 2)+z axis and -x axis		1) Speed 2) Energy
	3) + x axis and - x axis 4)-x axis and -v axis.		3) Direction of motion
37.	A unit N-pole is placed on the axis of a circular		4) Magnitude of the velocity
	coil carrying current in anti-clockwise direction. It	47.	Particles having positive charge occasionally come
	experiences a force		with high velocity from the sky towards the earth
	1) Towards the coil 2) Perpendicular to the coil		on account of magnetic field of earth, they would
	3) Away from the coil 4) Parallel to the coil.		be deflected towards the
38.	An α - particle moves from E to W in a magnetic		1)North 2)South 3)East 4)West
	field perpendicular to the plane of the paper and	48.	An electron of mass 'm' is accelerated through a
	into the paper. The particle is deflected towards		potential difference of V and then it enters a
	1) East 2) West 3) South 4) North		magnetic field of induction B. normal to the lines
39.	Two streams of protons move parallel to each		of force. Then the radius of the circular path is
	other in the same direction. They will		
	1) Attract each other 2) Repel each other		1) $\frac{2eV}{2}$ 2) $\frac{2Vm}{2}$ 3) $\frac{2Vm}{4}$ 4) $\frac{2Vm}{2}$
	3) Neither attract nor repel 4) Rotate.		$(1) \sqrt{m} \sqrt{2} \sqrt{eB^2} \sqrt{eB} \sqrt{eB} \sqrt{e^2B}$
40.	A charged particle moving in a magnetic field	49	A rectangular loop carrying current I is located
	experiences a resultant force		near an infinite long straight conductor carrying
	1) In the direction opposite to that of field.		current I as shown in the figure. The loop,
	2) In the direction opposite to that of its velocity.		
	3) In the direction perpendicular to both field &		
	its velocity		↑ ↑ ↓
	4) In the direction parallel to the field.		
41.	An electron is projected in the same direction of		
	uniform magnetic field. Then		1) remain stationary
	1) The electron turns to right		2) is attracted towards the wire
	2) The electron turns to left		3) is repelled away from the wire
	3) The electron velocity remains constant	60	4) will rotate about an axis parallel to the wire
	4) The electron velocity decreases in magnitude.	50.	A current carrying wire is placed along east and
42.	The force acting on a charge 'q' moving with a		west in a magnetic field directed north wards. If
	velocity V in a magnetic field of induction B is		the current in the wire is directed east wards, the
	given by		direction of force on the wire is
			1) Due west 2) Due south
	1) $\frac{\Psi}{\Xi}$ 2) $\frac{\nabla \mathbf{X}\mathbf{B}}{\Sigma}$ 3) $\mathbf{q}(\nabla \mathbf{X}\mathbf{B})$ 4) $(\overline{V}, \overline{B})q$		3) vertically upwards 4) vertically downwards
	VxB q		
L			

68.	A galvanometer may be converted into ammeter	77.	Energy in a current carrying coil is stored in the
	or a voltmeter. The resistance of the device so		form of
	obtained will be the largest in case of		1) electric field 2) magnetic field
	1) Ammeter of range 1A		3) dielectirc strength 4) heat.
	2) Ammeter of range 10A	78.	A current loop placed in a magnetic field behaves
	3) Voltmeter of range 1V		like a
	4) Voltmeter of range 10V		1) magnetic dipole 2) magnetic substance
69.	To increase the range of an ammeter, we need to		3) magnetic pole 4) all are true.
	connect a suitable:	79.	Among the following the false statement is
	1) Low resistance in parallel		1) Ammeter is connected in series and maximum
	2) Low resistance in series		current flows through it.
	3) High resistance in parallel		2) Voltmeter is connected in parallel and potential
	4) High resistance in series.		ismaximum
70.	The galvanometer constant of a tangent		3) Ammeter is connected in series and current
	galvanometer depends upon		through it is negligible
	1) Earth's magnetic field 2)Current in the coil		4) Voltmeter is connected in parallel and current
	3) Magnetic field of the coil 4) None of the above.		through it is negligible.
71.	To increase the range of a voltmeter we need to	80.	A galvanometer with a shunt in parallel is used in
	connect a suitable.		series in a circuit. It is called.
	1) high resistance in series		1) Ammeter 2) Voltmeter
	2) high resistance in parallel		3) Ohmmeter 4) Multimeter
	3) low resistance in series	81.	What is the relation between voltage sensitivity
	4) low resistance in parallel		σ_{v} and the current sensitivity σ_{z} of a moving coil
72.	A wire of length 'L' is made in the form of a coil in		galvammeter? Given that G is the resistance of the
	a moving coil galvanometer. To have maximum		galvanometer
	sensitiveness the shape of the coil is		
	1) Circular 2) Elliptical		1) $\sigma_V = G \sigma_i$ 2) $\sigma_V = \sigma_i / G$
	3) Rectangular 4) Square		3) $\sigma_V \sigma_i = G$ 4) $\sigma_V \sigma_i = 1/G$
73.	In a moving coil galvanometer a radial magnetic	82.	When a current carrying coil is placed in a uniform
	field is applied with concave magnetic poles, to		magnetic field of induction B, then a torque t acts
	nave		on it. If j is the current, n is the number of turns
	1) Uniform magnetic field		and A is the face area of the coil and the normal
	2) The plane of the coll parallel to field 2) Deth 1 and 2 (1) Noith and 1 and 2		to the coil makes an angle θ with B. Then
74	5) Doin 1 and 2 4) Neither 1 nor 2 Depending the connections of connector or 1		1) $t = B \ln A$ 2) $t = B \ln A \sin A$
/4.	regarding the connections of ammeter and a		2) t = D L = A = -2 A t + D L = A t = -2
	1) A mmeter is connected in parallel and voltmeter	02	$S_{J} \iota = B \ln A \cos \theta + 4 \iota = B \ln A \tan \theta$
	in series	83.	A moving coil type of galvanometer is based upon
	2) Ammeter is connected in parallel and voltmeter		1) A soil comming comment constrained to
	in parallel		1) A concarrying current experiences a torque in
	3) Ammeter is connected in series and voltmeter		2) A apil comming common the dupped a magnetic
	in narallel		2) A concarrying current produces a magnetic
	4) Ammeter is connected in series and voltmeter		2) A coil compling summent experiences impulse in
	in series.		a magnetic field
75	The sensitiveness of tangent galvanmmeter will be		a magnetic netu.
, 5.	maximum if deflection in it is tending to	81	A current carrying coil tends to get itself
	$1) 0^{0}$ 2) 30^{0} 3) 45^{0} 4) 60^{0}	04.	1) parallel to an external magnetic field
76	The resistance of an ideal voltmeter is		2) Derallel to its over magnetic field.
, 0.	1) zero 2) infinity		2) I at all CI to Its OWII III agriculto Itelu 3) Demondicular to the external magnetic field
	3) finite, very small 4) finite and large		A)Perpendicular to the geographic meridian
	c, million, et j shan i j millio and huige		- ji cipendicular to the geographic mendian

85.	If a galv	anometer	is shunte	d then wl	nich of the		NEW PATTERN QUESTIONS
	followin	g is not tru	le?			1.	A flat circular coil carrying current has a
	1) Effect	tive range	increases				magnetic moment μ .
	2) Equiv	valent resis	stance dec	reases.			a. μ has only magnitude, it does not
	3) Galva	nometer b	becomes n	nore sensit	tive		have direction
	4) Galva	nometer b	becomes n	nore prote	ctive.		b. The direction of μ is along the normal
86.	A condu	acting circ	ular loop o	of radius '	r' carries a		to the plane of the coil
	constan	t current	ʻi' It is p	laced in a	a uniform		c. The direction of μ depends on the
	magneti	c field \overline{B}_{0}	such that	\overline{B}_{0} is per	pendicular		direction of current flow
	to the n ls	one of the l	oon Ther	naonetic f	orce acting		d. The direction of μ does not change if
	on the lo	on is	loop. 11 0 1	nagnetie i	oree deting		the current in the coil is reversed
	1) ir B	2) 2π	riB_{3}	zero 4)	πriB		1) a only correct
87.	A coil of	farea A. ti	rns N and	carrying	current i is		2) b and c are correct
0,1	placed w	vith its face	parallel to	the lines of	of magnetic		3) d only correct
	inductio	n B. The	work don	e in rotati	ng the coil		4) b and d are correct
	through	an angle c	of 180º is		0	2.	Assertion (A): The plane of the coil of tangent
	1) iNAl	B 2)2iN	AB 3) i	NAB/2	4) zero		galvanometer should be parallel to the magnetic
88.	The res	storing c	ouple in	the mo	ving coil		meridian
	galvano	meter is du	ue to		-		Reason (R): It makes the magnetic field of the coil
	1) Curre	ent in the c	oil				perpendicular to the horitzontal component of
	2) Magn	etic field o	of the mag	net.			earth's magnetic field so that
	3) Mater	rial of the	coil.				tangent law can be applicable
	4) Twist	produced	l in the sus	pension w	vire.		1) A and R are true and R is a correct explanation
89.	A voltm	eter has a	resistance	eofgohm	and range		ofA
	of V vol	t. The val	ue of resis	stance use	d in series		2) A is true and R is true
	to conve	ert it into v	oltmeter o	f range n v	volt is		3) both A and R are false
	l)ng	2) (n-	1)g_3)g/1	n 4)g	/n-l		4) A and R are true and R is not a correct
90.	An amm	leter has a 1	resistance	of G ohm	and a range		explanation of A
	01 1 al	mpere. 1r	ie value o	i resistan		3.	If a charged particle is projected perpen dicular
	parallel,	to conver	t into an a	mmeter	range m		to uniform magnetic field, then
	1) nG	(15)	(G_{2})	(n 1) ($\frac{1}{2}$		a) force experienced will be perpendicular
	1) 110	2)(II-1	KEV	II 4) (J/11-1		to the magnetic field and initial velocity.
	1) 1	2) 4	3)4	4) 1	5) 3		b) force experienced will be perpendicular
	6)1	7)1	8) 3	9) 3	10)1		to the magnetic field and instantaneous velocity.
	11)3	12)1	13) 4	14) 3	15)4		d) the particle experiences both radial and
	16) 3	17)3	18) 2	19)1	20)2		a) use particle experiences bour radiar and tangential accelerations
	21)4	22) 3	23)2	24)4	25) 3		1) a b c are correct d is wrong
	26) 2	27) 3	28) 2	29)1	30) 3		2) all are correct
	31) 2	32) 4	33) 2	34) 3	35) 1		3) a hare correct c dare wrong
	36) 2	37)3	38) 3	39) 2	40) 3		4) a b c are wrong d is correct
	41) 3	42) 3	43) 3	44) 3	45)4	4.	Four particles (proton, deuteron, alpha particle and
	46) 3	47) 3	48) 2	49) 2	50) 3		positron) are projected perpendicular to uniform
	51) 1	52) 3	53) 3	54) 1	55)4		magnetic field with same momentum. The
	56) 2	57) 2	58) 2	59) 2	60) 4		decreasing order of curvature of their paths is
	61)2	62) 1	63) 3	64) 3	65) 3		1) positron, proton, alpha particle, deuteron
	66) l	67)2 72)1	68) 4 72) 2	69) l	70)4		2) proton, positron, deuteron, alpha particle
	/1)1 76)2	/2) I	/3)3 79)1	74) 3 70) 2	/3)3 80)1		3) alpha particle, deuteron, positron, proton
	70)2 81)2	11)2 82) 2	/ð) l 82) 1	19)5 81)2	0U) I 85) 2		4) positron, alpha particle, deuteron, proton
	01)2 86)3	02)2 87)2	03/1 88\4	04/3 8017	0 <i>3) 3</i> 00) <i>1</i>		
	3075	07)2	0074	07)2	JU) 1		

5.	If a charged particle is projected perpen -dicular	10.	Assertion (A): In M.C.G., the deflection $'\theta'$ is
	to a uniform magnetic field, then		directly proportional to the strength of the current
	a) it revolves in circular path		Reason (R): In M.C.G., the the torque
	b) its K.E. remains constant		experienced by the loop is $BiANcos A$
	c) its momentum remains constant		1) A is correct R is correct reason of Δ
	d) its path is spiral		2) Both are wrong
	1) only a, b are correct 2) only a, c are correct		3) Both A and R are correct and R is not the
	3) only b, d are correct 4) only a, d are correct		correct reason of A
6.	A proton is travelling due north. If a uniform		4) A is correct. R is wrong
	magnetic field is applied vertically down then the	11.	A charged particle is projected perpendicu
	particle		lar to a uniform magnetic field. Arrange the
	a) deflected towards west		following in correct order.
	b) revolves in anti clock wise direction		A) The direction of momentum of the
	c) acquires acceleration		particle changes
	d) comes to rest		B) The particle experiences a force
	1) a, b, c are correct 2) a, d are wrong 2) b, d are wrong 4) b, c d are wrong		C) The particle revolves in a circular path.
7	5) 0, 0 are wrong 4) 0, c, d are correct		1) A,B,C 2) B,A,C 3) C,B,A 4) C,A,B
/.	in a current carrying loop is placed in non uniform	12.	A proton, an alpha particle and an electron
	a) experiences a force b) experiences a torque		are projected perpendicularly into uniform
	c) will develop induced current		transverse electric and magnetic fields. It is
	d) oscillates		observed that proton travel underflected. Then
	1) a c are correct 2) a b c are correct		a) deflection for alpha particle > deflection
	3) b.c.d are correct 4) a.b.d are correct		for proton
8.	Consider the following statements:		b) alpha particle travels in clockwise, and electron $\frac{1}{2}$
	A) Time period of a charged particle in uniform		in anti-clockwise directions.
	magnetic field is independent of K.E of the particle.		deflection
	B) Time period of a charged particle in uniform		d) alpha partiala gata deflacted but not alastron
	magnetic field depends on the angle		1) Only a is correct 2) Only b. c are wrong
	between velocity and magnetic field.		3) Only d is correct 4) a b d are wrong
	C) Time period of a charged particle in uniform	13	Singly ionized helium (x), ionized deuteron(y)
	magnetic field is inversely propor tional to specific	10.	alpha(z) particles are projected into a uniform
	charge.		manetic field $3x \ 10^{-4}$ tesla with velocities 10^5 ms^{-1}
	1) A, B are correct and C is wrong		1 , 0.4 x 10 ⁴ ms ⁻¹ and 2 x 10 ³ ms ⁻¹ respectively.
	2) A is correct, B and C are wrong		The increasing order of ratio of angular momentum
	3) A, C are correct and B is wrong		to magnetic moment is
	4) All are correct		1) $x > y > z$ 2) $x < y < z$
9.	Assertion (A): The magnetic field due to infinite		3) $y < x < z$ 4) $z > x > y$
	nong current carrying conductor is inversely	14.	Resistance of galvanometer Shunt resistance
	given point		A) 200 Ω a) 50 Ω
	Reason (R): According to Riot-Savart's law		B) 100 Ω b) 20 Ω
			C) 300 Ω c) 50 Ω
	$B \alpha \frac{1}{2}$		The increasing order of sensitivity of ammete
	r^2		r constructed is
	1) A is correct, R is correct but not the correct		1) A, B, C 2) A, C, B 3) C, B, A 4) C, A, B
	explanation of A	15.	Consider the following lists and choose the
	2) Both are wrong 3) A is correct, R is wrong		correct matching
	4) A is correct, K is correct and it is the correct		List - I List - II
	explanation of A		a) Iviinimum sensitivity e) Ideal ammeter
			o) waximum resistance I) Ammeter

	c) Zero resistance g) Ideal voltmeter	8. A wire carrying a current of 4 A is in the form of a
	d) Infinite resistance h) Galvanometer	circle. It is necessary to have a magnetic field of
	1) $a \rightarrow e, b \rightarrow f, c \rightarrow g, d \rightarrow h$	induction $\pi \times 10^{-5}$ T at the centre. The radius of the
	2) $a \rightarrow e, b \rightarrow h, c \rightarrow e, d \rightarrow g$	circle must be
	3) $a \rightarrow h, b \rightarrow g, c \rightarrow f, d \rightarrow a$	1)0.08 cm 2)0.8 cm
	4) $a \rightarrow f, b \rightarrow h, c \rightarrow g, d \rightarrow a$	3)8 cm $4)80 cm$
	.) ,, ,, ,,	9. Two concentric circular loops of radii r and r carry
	KEV	clockwise and anticlockwise currents i, and i. If
		the centre is a null point, i/i, must be equal to $\frac{1}{2}$
	6_{-1} 7_{-2} 8_{-4} 9_{-1} 10_{-3}	1) r/r , 2) r^{2}/r^{2} , 3) r^{2}/r^{2} , 4) r/r .
	11_2 12_4 13_2 14_1 15_2	10. A circular current carrying coil has a radius r. It's
		magnetic dipole moment is proportional to
	NUMERICAL OUESTIONS	1) r^{2} 2) r^{2} 3) $1/r^{2}$ 4) $1/r^{2}$
	I EVEL I	11. A straight wire of length 0.5 metre and carrying a
		current of 1.2 ampere is placed in a uniform magnetic
1	A straight vertical conductor corries a current At a	field of induction 2 tesla. If the magnetic field is
1.	point 5 cm due north of it the magnetic induction is	perpendicular to the length of the wire, the force
	found to be 20 uT due east. The magnetic induction	acting on the wire is
	at a point 10 cm east of it will be	1) 2.4 N 2) 1.2 N
	1) 5 uT north 2) 10 uT north	3) 3.0 N 4) 2.0 N
	$\begin{array}{c} 2 \\ 3 \\ 5 \\ \mu \\ T \\ south \\ 4 \\ 10 \\ \mu \\ T \\ south \\ 4 \\ 10 \\ \mu \\ T \\ south \\ \end{array}$	12. A proton is fired with a speed of 2×10^6 m/s at an
2	The magnitude of a current in a long straight conductor	angle of 60° to the X- axis. If a uniform magnetic
2.	to produce a flux density of 2 µ T at a distance of	field of 0.1 tesla is applied along the Y- axis, the
	10 cm from the conductor is	force acting on the proton is
	1) 0.5 A 2) 1.0 A	1) $1.6\sqrt{3} \times 10^{-14}$ N 2) 1.6×10^{-14} N
	3) 0.25 A 4) 2.0 A	3) $3.2\sqrt{3} \times 10^{-14}$ N 4) 3.2×10^{-14} N
3.	A current of 5 A is flowing through a long straight copper	13. If the distance as well as the current in each of two
	wire. The ratio of the magnetic inductions at distances	parallel current carrying wires is doubled, the force
	of 1.0 cm and 2.0 cm from the wire is	per unit length acting between them becomes
	1) 1 : 2 2) 1 : 4 3) 2 : 1 4) 4 : 1	1) doubled 2) remains same
4.	A long straight cable contains 7 strands of wire each	3) quadrupled 4) halved
	carrying a current of 5 A. The magnetic induction at a	14. Two conductors each of length 12 m are parallel to
	distance of 2 cm from the axis of the cable is	each other in air. The centre to centre distance between
	1) 5×10^{-5} T 2) 3.5×10^{-6} T	the two conductors is 15 cm and the current in each
	3) $3.5 \times 10^{-4} \text{ T}$ 4) $1.1 \times 10^{-3} \text{ T}$	conductor is 500 amperes. The force in newtons
5.	A wire is bent in the form of a semi circle of radius	1 + 0 + 144 = 0 + 1 + 44 = 0
	'r' and carries a current of 'i'. The magnetic induction	$\begin{array}{c} 1 \\ 1 \\ 3 \\ 14 \\ 4 \\ N \\ 4 \\ 1 \\ 0 \\ 12 \\ N \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
	at the centre of the semi circle is	15 The force per unit length between two long straight
	1) $\mu_1/2r$ 2) $\mu_1/8r$	conductors carrying currents 3 A each in the same
	$3) \mu_0 1/4r$ $4) \mu_0 1/r$	direction and separated by a distance of 2.0 cm is
6.	A circular coll of radius 11 cm, carries a current of 2.5	$1) 9 \times 10^{-7} \text{ N/m}$ $2) 9 \times 10^{-6} \text{ N/m}$
	amperes. If it has 700 turns, the flux density at the	$3) 9 \times 10^{-5} \text{ N/m}$ $4) 9 \times 10^{-4} \text{ N/m}$
	$\frac{1}{20} \text{ mT} \qquad 210 \text{ mT}$	16. A particle of mass 'm' and carrying a charge 'e' is
	2) 5 mT $(1) 0 1 mT$	fired perpendicular to a uniform magnetic induction
7	The intensity of magnetic induction at the center of a	B with a velocity v. The time period of revolution for
/ ·	circular coil carrying a current is R If the number of	the subsequent motion is given by
	turns and radius are doubled, the intensity of magnetic	1) $2\pi B/me$ 2) $2\pi e/Bm$
	induction at the center with the same current will be	$3) 2\pi m/Be \qquad 4) 2\pi Be/m$
	1)2B 2)4B 3)B 4)B/2	
	, , -, .,	

17 A must m of a second (1.2) and the second (1.2) is find the second se	
17. A proton of mass m and charge e is fired parallel	is I_2 and the total current into the combination is I_3 ,
to a uniform magnetic field of induction B. The	then the ratio $I_1: I_2: I_3$ is 1) 1 + 10 + 11 = 2) 10 + 1 + 11
radius of curvature of the path of the particle in the f_{-11}	$\begin{array}{c} 1)1:10:11 \\ 2)10:1:11 \\ 2)11.10.1 \\ 4)10.11.1 \\ \end{array}$
	3) 11: 10: 1 4) 10: 11: 1
1) Be/mv 2) mv/Be	25. The ratio of the resistances of a galvanometer and a
3) zero 4) infinity	shunt connected to it is 50 : 1. The ratio of the
18. A particle of mass 'm' and charge 'q' is fired	currents in the galvanometer and the shunt when the
perpendicular to a uniform magnetic field of induction	combination is used as an ammeter is
'B'. While the particle moves in a circular path in	1) $49:1$ 2) $1:49$ 3) $1:50$ 4) $50:1$
the filed, its angular velocity is	26. A galvanometer with a coil resistance of 100Ω gives
m Bm Ba a	a full scale deflection when a current of 1 mA is passed
$1)\frac{1}{Ba} = 2)\frac{1}{a} = 3)\frac{Bq}{m} = 4)\frac{q}{Bm}$	through it. The resistance of the shunt needed in ohm
Dq q m Bm	units to convert this galvanometer into an ammeter
19. A circular coil of 1 turn and area 0.01 m^2 carries a	of range 10 A is nearly
current of 10 A. It is placed in a uniform magnetic	1) 0.01 2) 0.001 3) 0.1 4) 0.099
field of induction 0.1 tesla such that the plane of the	27. The resistance of an ammeter measuring 1
circle is perpendicular to the direction of the field,	ampere is 0.018 Ω . It can be converted to an
the torque acting on the coil is	ammeter measuring 10 ampere by connecting
1) 0.1 N m 2) 0.001 N m	1) 0.18 ohm in series 2) 0.18 ohm in parallel
3) 0.01 Nm 4) Zero	3) 0.002 ohm in series $4) 0.002$ ohm in parallel
20. A rectangular coil of wire of area 400 cm^2 contains	28. A galvanometer having a total resistance of 8 ohm is
500 turns. It is placed in a magnetic field of induction	shunted by a wire of resistance 2 ohm to convert it
4×10^{-5} 1 and it makes an angle 60° with the field. A	in to an ammeter. If the total current in to the meter
current of 0.2 A is passed through it. The torque on the	is I, then the part of the current I_s flowing through the
	shunt is
1) $8\sqrt{3} \times 10^{-3}$ N m 2) 8×10^{-3} N m	1) $I_s = 0.2 I$ 2) $I_s = 0.8 I$
3) $8\sqrt{3} \times 10^{-4}$ N m 4) 8×10^{-4} N m	3) $I_s = 2 I$ 4) $I_s = 8 I$
21. A rectangular coil of wire carrying a current is	29. A galvanometer of resistance 100 ohms is shunted
suspended in a uniform magnetic field. The plane of	so that only 1/11 of the main current flows through
the coil is making an angle of 30° with the direction	the galvanometer. The resistance of the shunt is
of the field and the torque experienced by it is τ_1 and	1) 1 ohm 2) 11 ohms
when the plane of the coil is making an angle of 60°	3) 10 ohms 4) 9 ohms
with the direction of the field the torque experienced	30. A galvanometer has a resistance of 49 Ω . If 2% of
by it is τ_2 . Then the ratio	the main current is to be passed through the meter,
$\tau_1 : \tau_2$ is	what should be the value of the shunt
$1) 1: \sqrt{3} 2) \sqrt{3}: 1 3) 1: 3 4) 3: 1$	1) 2 Ω 2) 1 Ω 3) $\frac{1}{2}\Omega$ 4) $\frac{1}{4}\Omega$
22. The area of the coil in a moving coil galvanometer is 80	31. A galvanometer of resistance 5 Ω gives full scale
cm^2 and it has 200 turns. The magnetic induction	deflection for a current of 2 mA with a series
of the radial field is 0.2 I and the couple per unit	resistance of 995 Ω it can be used as
twist of the suspension wire is 2×10^{-6} Nm per degree.	1) a micro ammeter reading up to 20 mA
If the deflection is 4° , the current passing through it is	2) a voltmeter reading up to 0.2 V
$1) 0.25 \mu A$ $2) 2.5 \mu A$ $2) 25 \mu A$ $4) 250 A$	3) an ammeter reading up to 2 A
$\begin{array}{c} 3) 25 \ \mu A \\ 22 \ A \ control = 0 \\ $	4) a voltmeter reading up to 2 V
25. A gaivanometer has a resistance 5052 and is shunted	32. A voltmeter has an internal resistance of 1000
by a 0.5 12 resistor. The fraction of the main current	Ω and gives full scale deflection when 2 V is
that nows through the galvanometer is $1 > 1/100$	applied across the terminals. Now a resistance of
$\begin{array}{ccc} 1) 1/100 & 2) 1/101 \\ 2) 1/10 & 4) 1/11 \end{array}$	4000Ω is connected in series with it. Then it gives
$\begin{array}{cccc} 3) 1/10 & 4) 1/11 \\ 24 & A = 2 \\ 1 & 1 \\ 24 & A = 2 \\ 1 & 1 $	full scale deflection with
24. A gaivanometer of coll resistance 100Ω is connected	1) 8 V 2) 10 V 3) 6 V 4) 4 V
the appropriate $\frac{1}{2}$ the approximately $\frac{1}{2}$ the approximately $\frac{1}{2}$	
the garvanometer is I_1 , the current through the shunt	

- 33. A voltmeter has internal resistance 'r' ohms and range 'V' volts. The value of resistance used in series to convert it into a voltmeter of range "4 V" volts is 1)4r 2) r/4 3) 3r 4) r/3
- 34. A maximum current of 5 mA can be passed through a galvanometer of resistance 40Ω . The resistance to be connected in series to convert it into a volt meter of range 0 - 50 V is
 - 1) 960 Ω 2) 9960 Ω

 $3)99,960 \Omega$ 4) 19,960 Ω

- 35. A tangent galvanometer properly adjusted gives a deflection of 30° when a certain current is passed through it. When the current is changed, then it gives a deflection of 45°. The ratio of the currents in the two cases is
 - 1)2:32) 1: $\sqrt{2}$

4) $\sqrt{3}:1$ 3) 1: $\sqrt{3}$

36. In a tangent galvanometer a deflection of 30° is obtained with a certain current flowing thorough the coil. If the current is trebled, the deflection obtained will be

 $1)45^{\circ}$ $2)60^{\circ}$ 3)90° 4) 30°

- 37. In a properly adjusted tangent galvanometer, the deflection for 1 A current is found to be 30°. Now the coil is turned through 90° about the vertical axis, the deflection for the same current will be 1) 60° 2) 30° 3)90° 4) 0°
- 38. Two tangent galvanometers are connected in series across a battery. The deflections in them are found to be 30° and 60° respectively. The ratio of their reduction factors is

1) $\sqrt{3}:1$	2) 1: $\sqrt{3}$
3) 3 : 1	4) 1 : 3
A	

39. A tangent galvanometer carrying a current of 0.8 A gave a deflection of 30°. If the earth's horizontal component of magnetic induction were to suddenly become one third of the usual value, the deflection for the same current will be

1) 60° 2) 45° 3)90° 4) 30°

40. In a tangent galvanometer, the magnetic induction produced by the coil of wire situated in the magnetic meridian is found to be equal to the horizontal component of the earth's magnetic field. The deflection produced in it will be

 $1)30^{\circ}$ $2)60^{\circ}$ 3) 45° 4) 90°

41. Two tangent galvanometers are connected in series and a current is passed through the combination. If the deflections in them are θ_1 and θ_2 , the ratio of their reduction factors is

- 1) $\theta_2 : \theta_1$ 2) $\tan \theta_1 : \tan \theta_2$
- 3) $\tan \theta_2 : \tan \theta_1$ 4) $\sin \theta_2 : \sin \theta_1$
- 42. The flux linked with a coil of 100 turns each of area 100 cm² when placed in a uniform magnetic field of induction 0.2 T is found to be 0.1 Wb. The angle made by the field with the plane of the coil is 1) 60° 2) 30° 3)90° $4)0^{\circ}$
- 43. A flux of 8.66 milliweber passes through a strip having an area $A = 0.02 \text{ m}^2$. The plane of the strip is at an angle of 60° to the direction of the magnetic field B. The value of B is

1) 0.5 T 2) 0.866 T 3) 0.25 T 4) 0.433 T

- 44. If a flat circular coil of wire situated in a uniform magnetic field is to be linked with maximum flux, the normal to the plane of the coil must make an angle θ with the magnetic field, then the value of θ is 1) 0° 2) 60° 3)90° $4)30^{\circ}$
- 45. In a magnetic filed of induction is 0.9 Weber $/m^2$ a linear conductor of 0.4 meter length is moving with a velocity of 7 m/s. The value of maximum induced emf will be

1) 2.52 volt	2) 5.26 volt
2)	1) 0 2 (1)

3) 6.28 volt 4) 0.26 volt AMPERE'S LAW, BIOT - SAVART'S LAW &

APPLICATIONS

- 46. Two concentric circular coils A and B have radii 25 cm and 15 cm and carry currents 10A and 15A respectively. A has 24 turns and B has 18 turns. The direction of currents are in opposite order. The magnetic induction at the common centre of the coil is
 - 1) 120 $\mu_0 T$ 2) 480 μ_0 T
 - 3) 420 μ_0 T 4) μ_0
- 47. A wire of length 44cm is bent into a circle and a current of 9.8A is passed through it. The intensity of magnetic induction at the centre of the circle is 1) $8.8 \times 10^{-6} T$ 2) 8.8x10⁻⁵T 4) 44x10⁻⁶T. 3) 8.4x10⁻⁶T
- A long wire carries a steady current. It is bent in to 48. a circle of one turn and the magnetic field at the centre of the coil is B. It is then bent into a circular loop of n turns. The magnetic field at the centre of the coil will be

2) n^2B 1) nB 3) 2nB 4) $2n^{2}B$. 49 A circular coil of radius R carries a current i. The magnetic field at its centre is B. The distance from the centre on the axis of the coil where the magnetic field will be B/8 is

> 1) $\sqrt{2}R$ 2) $\sqrt{3}R$ 3) 2R 4) 3R

SR. PHYSICS

50.	A coil of radius π meters, 100 turns carries a	F	ORCE ON A MOVING CHARGE
	current of 3A. The magnetic induction at a point		IN A MAGNETIC FIELD
	on its axis at a distance equal to $\sqrt{3}$ times its radius	60)	A proton and an α -particle enter a uniform
	from its centre is		magnetic field at right angles to the field with same
	1) 7.2X10 ⁻⁶ wbm ⁻² 2) 7.4X10 ⁻⁶ wbm ⁻²		speed. The ratio of the periods of α -particle and
	3) 7.5X10 ⁻⁶ wbm ⁻² 4) 7.83X10 ⁻⁶ wbm ⁻²		proton is
51.	The magnetic moment of a single turn coil of radius		1) 1:1 2) 1:4 3) 1:2 4) 2:1
	1 cm carrying a current of $(1/\pi)$ A is (in S.I Units)	61.	A Proton enters a magnetic field with a velocity of
	1) 100 2) 10^{-2} 3) 10^{-4} 4) 10^{4}		$2.5 \times 10^7 \text{ms}^{-1}$ making an angle 30^0 with the
52.	The coils A and B having the radii in the ratio 1:2		magnetic field. The force on the proton is (B=25T)
	carrying currents in the ratio 5:1 and have the		$1)1.25X10^{-11}N 2)2.5X10^{-11}N$
	number of turns in the ratio 1:5. The ratio of	62	3) $5.0 \times 10^{-11} \text{N}$ 4) $7.5 \times 10^{-11} \text{N}$
	magnetic inductions at their centres is	02.	A proton moving with a velocity of 2×10 ms ⁻
52	1) 1:2 2) 2:1 3) 1:5 4) 5:1 Two simular soils are used a after identical wines		The speed of an α - particle to describe a circle
35.	of same length and carry same current. If the		of same radius in the same magnetic field is
	number of turns of the two coils are 4 and 2 then		1) $1 \times 10^6 \text{m/s}$ 3) $2 \times 10^6 \text{m/s}$
	the ratio of magnetic induction at the centres will		$3)4X10^{6}m/s$ 4) $8X10^{6}m/s$
	he	63.	A proton takes 10 ⁻¹² s to complete one revolution
	1) 2:1 2) 1:2 3) 1:1 4) 4:1		in uniform magnetic field. The time taken in another
54.	The magnetic induction at a point at a large distance		orbit of double the radius in the same field is
	d on the axial line of circular coil of small radius		1) $0.5X10^{-12}$ sec 2) $2X10^{-12}$ sec
	carrying current is 120 μ T. At a distance 2d the		3) $4X10^{-12}sec$ 4) $10^{-12}sec$
	magnetic induction would be		FORCE ON A CONDUCTOR
	1) $60 \mu \mathrm{T}$ 2) $30 \mu \mathrm{T}$ 3) $15 \mu \mathrm{T}$ 4) $240 \mu \mathrm{T}$	CA	RRYING CURRENT PLACED IN A
55.	Two circular coils have diameters 10cm and 20cm		MAGNETIC FIELD
	with same number of turns. The ratio of the	64	Two parallel wires carrying current I and 2I in same
	magnetic field induction produced at the centre of		direction have magnetic field B at the midpoint
	the colls when connected in series is 1 + 1 + 2 = -2 + 2 + 1 + 2 + 4 + 1 + 4 + 1 + 4		between them. If the current 2I is switched off, the
56	1) 1.2 2) 2.1 3) 4.1 4) 1.4 The magnetic induction at a point $0.1m$ away from		magnetic field at that point will be $1 \ge D/2 = 2 \ge 2D = -4 \ge 2D$
50.	a long wire which carries a current of	65	1) $B/2$ 2) B 3) 2 B 4) 3 B . Two long straight horizontal nerallal wires and
	10A(x - 4 - 107 G J J J	03.	two long straight norizontal parallel wires one
	$10A(\mu_0 = 4\pi \times 10^{-7} \text{ S.I. Units})$ is		If the wires carry equal currents in opposite
	1) $2X10^{-5}T$ 2) $4X10^{-5}T$ 3) $10^{-5}T$ 4) $6X10^{-5}T$		directions. The magnitude of the magnetic induction
57.	The magnetic induction at a point 1 cm away from		in the plane of the wires at a distance 'a' above the
	a straight, long current carrying conductor is found to be $1 \times 10^{-5} \text{wb/m}^2$. The current that is passing		upper wire is
	through the conductor is		
	1) $1A$ 2) $0.5A$ 3) $1.5A$ 4) $2A$		1) $\frac{\mu_{o'}}{2\pi a}$ 2) $\frac{\mu_{o'}}{2\pi a} + \frac{\mu_{o'}}{4\pi a}$
58.	A circular coil of radius 5cm has 169 turns carries		
	a current of 2.6A. The magnetic induction at a		$3)\frac{\mu_o l}{2\pi a} - \frac{\mu_o l}{4\pi a} \qquad 4) \frac{\mu_o l}{3\pi a}$
	point on the axis at a distance of 12cm from the	66	Two straight narallel wires carry currents of
	centre of the coil is		200 mA and 1A in opposite directions. If the wires
	1) 2T 2) 4.2T 3) 3.14X10 ⁻⁴ T 4) 3.14X10 ⁻² T		are 20cm apart, the distance of the neutral point
59.	A circular coil has a radius of 16 cm and contains		from the 1A wire is(in cm)
	50 turns. If a current of 2amp is passed through		1) 5 2) 15 3) 20 4) 25
	the coll, the magnetic flux density at its centre is 1) 2 0×10^{4} T 2) 2×10^{4} T	67.	The force on the linear conductor in magnetic field
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		is half the maximum value when it makes an angle
	5/5.2A10 I 7/2.0A10 I		of with the field
SR. F	PHYSICS	181	ELECTRO MAGNETISM

	1) 30° 2) 60° 3) 45° 4) 15°	77.	A current of 0.5 A produces a deflection of 60° in
68.	Two long straight conductors are held parallel to		a tangent galvanometer. The current that produces
	each other at a distance 0.3m. If the conductors		a deflection of 30° in the same galvanometer is
	carry currents 2A and 8A in opposite directions,		1) 0.5/2 A 2) 0.5/3 A
	the distance of the neutral point from the conductor		$3) 0.5/\sqrt{2} A$ $4) 0.5/\sqrt{3} A$
	carrying smaller current is	78.	A rectangular coil of length 10cm and breadth 20cm
	1)0.06m 2)0.24m 3)0.18m 4)0.1m		is placed in uniform magnetic field of induction 20
69.	Two long straight conductors are held parallel to		Whm^{-2} A current of 2A is passed through the
	each other 7cm apart. The conductors carry		acil If it consists of 100 turns, the torque
	currents of 9A and 16A in opposite directions. The		experienced is
	distance of neutral point from the conductor		1) 40 Nm = 2) 80 Nm = 3) 4000 Nm = 4) 8000 Nm
	carrying 16A current is 1) 0 and 2) 16 and 2) 25 and 4) 62/25 and	79	If a resistance of $20 \circ$ is connected parallel to a
70	1) 9cm 2) 10cm 3) 25cm 4) 63/25cm	/).	ralvanometer of internal resistance 100 ohm the
/0.	The distance between two parallel whes carrying current of 1 A is 1 m . The force per unit length		part of the current in the circuit passes through
	between the conductors is		galvanometer is
	1) $2 \times 10^7 \text{Nm}^{-1}$ 2) $2 \times 10^{-7} \text{Nm}^{-1}$		1) 1/6 2) 1/4 3) 1/5 4) 1/8
	$3) 4X10^7 \text{Nm}^{-1}$ $4) 4X10^{-7} \text{Nm}^{-1}$	80.	The maximum potential that can be measured with
71.	Two long straight parallel conductors are 2cm apart		a voltmeter of resistance 1000 Ω is 6V.
	and carry currents of 5A and 10A in opposite		Resistance that must be connected to measure a
	directions. The force per unit length of each		potential of 30V with it is
	conductor is		1) 4000_{Ω} in Series 2) 6000_{Ω} in Series
	1) $5X10^{-6}Nm^{-1}$ 2) $5X10^{-4}Nm^{-1}$		3) 12000_{Ω} in Series 4) 2000_{Ω} in Series
	$3) 2X10^{-6} Nm^{-1} \qquad 4) 5X10^{-8} Nm^{-1}$	81.	The resistance of a galvanometer is 100_{Ω} . A
72.	In an electric motor, wires carrying a current of		shunt of 5_{Ω} is connected to it to convert it into an
	5A are placed at right angles to a magnetic field of		ammeter. The internal resistance of the ammeter
	induction 0.8 T. If each wire has length of 20cm,		is
	then the force acting on each wire is $1 + 0 = 2 + 0 = 4 + 1 = 2 + 0 = 4 + 1 = 0 = 2 + 0 = 4 + 1 = 0 = 2 + 1 = 0 = 0 = 2 + 1 = 0 = 0 = 1 = 0 = 0 = 0 = 0 = 0 = 0 =$		1) 5.2Ω 2) 4.8Ω 3) 4.6Ω 4) 4.2Ω
	1) 0.2N 2) 0.4N 3) 0.6N 4) 0.8N	82.	A galvanometer of 100Ω resistance gives a full
	ICG, AMINETER, VOLTMETER & IG		scale deflection for one milliampere. The value of
/3.	is increased by 10 times. The shuntused is		the shunt to be connected so that it can be used to
	(2) is increased by 10 times. The shuft used is		measure a current of 10 ampere is
74	1) $100(\Omega 2) 120(\Omega 3) 110(\Omega 4) 50(\Omega$		1) $100/99_{\Omega}$ 2) $100/999_{\Omega}$
/4	A current of 10° A produces a deflection of 10° in a moving coil galvanometer. A current of 10° cm		3) $10/9999_{\Omega}$ 4) $100/9999_{\Omega}$
	in the same galvanometer produces a deflection	83.	A galvanometer of 25Ω internal resistance is joined
	of		with a shunt of 0.5Ω . If the combination is used as
	1) 1^{0} 2) 0.1^{0} 3) 10^{0} 4) $(1/100)^{0}$		an ammeter, the ratio of the currents flowing through
75.	When a high resistance 'R' is connected in series		the galvanometer and the shuft is $1 + 50 + 1 = 2 + 1 + 50 = 2 + 1 + 100 = 4 + 100 + 1$
	with a voltmeter of resistance G, the range of the	81	1) 50.1 2) 1:50 5) 1:100 4) 100:1 To convert a voltmeter manufing 15 V intera
	voltmeter increases 5 times. Then G:R will be	04.	voltmeter measuring 150V if the resistance of the
	1) 4:1 2) 1:2 3) 8:1 4) 1:4		voltmeter is 1000 the resistance to be
76.	The coils in two moving coil galvanometers have		connected is
	their areas in the ratio of 2:3 and number of turns		1) 10.000 \circ in Series 2) 9.000 \circ in Series
	in the ratio 4:5. These two coils carry the same		3) 11.000 \cap in Series 4) 8.000 \cap in Series
	current and are situated in the same field. The	85	A galvanometer has a resistance of 990. It is
	deflections produced by these two coil will be in		shunted with one ohm resistance. The ratio of the
	$\frac{1}{2} (2 + 2) (2 +$		currents flowing through the galvanometer and
	1) 0.15 2) 15:0 5) 8:1 4) 1:4		through the shunt is
			1) 1:99 2) 99:1 3) 1:100 4) 100:1
			. , , , ,

86.	A galvanometer has a resistance of 500Ω . It is	1) 4X10 ⁻³ N-m 2) Zero
	shunted so that 1/101 th of the total current flows	3) 2X10 ⁻³ N-m 4) 10 ⁻³ N-m
	through it. The shunt resistance is	
	1) 2 Ω 2) 4 Ω 3) 5 Ω 4) 6 Ω	KEY
87.	If a shunt is to be applied to a galvanometer of	01) 4 02) 2 03) 3 04) 3 05) 3 06) 2
	resistance 50_{Ω} so that only 5% of total current	07) 3 08) 3 09) 4 10) 2 11) 2 12) 2
	passes through the galvanometer. The resistance	13) 1 14) 2 15) 3 16) 3 17) 4 18) 3
	of shunt should be	19) 4 20) 2 21) 2 22) 3 23) 2 24) 1
	1) 1.63_{Ω} 2) 4.2_{Ω} 3) 3.5_{Ω} 4) 2.63_{Ω}	25) 3 26) 1 27) 4 28) 2 29) 3 30) 2
88.	A galvanometer of internal resistance 100_{Ω} has	31) 4 32) 2 33) 3 34) 2 35) 3 36) 2
	a full scale deflection current of 1mA. To convert	37) 4 38) 3 39) 1 40) 3 41) 3 42) 2
	it into a voltmeter of range 0-10V, the resistance	43) 1 44) 1 45) 1 46) 3 47) 2 48) 2
	to be connected is	49)2 50)3 51)3 52)2 53)4 54)3
	1) 9000 Ω in Series 2) 10,000 Ω in Series	55) 2 56) 1 57) 2 58) 3 59) 1 60) 4
	3) 9,900 Ω in Series 4) 9,800 Ω in Series	61) 3 62) 1 63) 4 64) 2 65) 4 66) 4
89.	The ratio of a shunt resistance and the resistance	67) 1 68) 4 69) 2 70) 2 71) 2 72) 4
	of a galvanometer is 1:499. If the full scale	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	deflection current of the galvanometer is 2mA, the	$\begin{array}{c} 79 & 1 & 80 & 1 & 81 & 2 & 82 & 4 & 83 & 2 & 84 & 2 \\ 85 & 1 & 86 & 2 & 87 & 4 & 88 & 2 & 80 & 4 & 60 & 2 \\ \end{array}$
	range of the ammeter is	85) 1 86) 3 87) 4 88) 3 89) 4 90) 2 01) 1 02) 2 02) 1 04) 1 05) 2
	1)2A 2)1.4A 3)1.6A 4)1A	91)1 92)2 93)1 94)1 95)2
90.	A voltmeter has a range of 50V and has an internal	
	resistance of 10°ohm. To convert it into a	1. A current of 5 A flows downwards in a long straight
	volumeter to read up to 100 v, the resistance to be	vertical conductor and the earth's norizontal flux density is 2×10^{-5} T. Then the neutral point is
	$\frac{1}{2} \frac{2}{106} = \frac{2}{106} \frac{106}{100} = \frac{2}{106} \frac{106}{100} = \frac{1000}{100} = \frac{1000}{100$	density is 2×10^{-1} . Then the neutral point is 1) due north and 10 cm from the wire
	$\frac{1}{2} \frac{2}{10^6} \frac{\Omega}{\Omega} = \frac{1}{2} \frac{1}{10^6} \frac{\Omega}{\Omega}$	(1) due not in and 10 cm from the wire
01	$5)5X10^{\circ}\Omega$ 4)0.5X10^{\circ}\Omega	3) due east and 5 cm from the wire
91.	An animeter has a range of 1A and an internal resistance of 0.1 A. If another shunt of 0.1 A is	4) due west and 5 cm from the wire
	connected across its terminals, its new range is	2. Two long parallel conductors are placed at right
	1) 2A = 2) 1 5A = 3) 1 8A = 4) 2 4A	angles to a metre scale at the 2cm and 6 cm marks,
92	A milliammeter of 10° internal resistance has a	as shown in the figure.
, , , , , , , , , , , , , , , , , , , ,	full scale deflection current of 10 mA . To read up	
	to 10 A, the resistance to be connected is	Y
	$1)100/999 $ Ω in parallel	
	$2)10/999 \Omega$, in parallel	
	3)10/99 , in parallel 4)100/90 , in parallel	
93.	The internal resistance of an ammeter is 0.2Ω .	> X
	Its full scale deflection current is 10A. The P.D.	O 2 cm 6 cm
	across the terminals when a current of 5A is flowing	They carry currents of 1 A and 3 A respectively
	through it is	They will produce zero magnetic field at the (ignore
	1) 1V 2) 1.6V 3) 1.2V 4) 1.4V	the earth's magnetic field)
94.	In a tangent galvanometer when a current of	1) 5 cm mark 2) 3 cm mark
	$(2/3)$ A passes, the deflection is 30° . If the deflection	3) 1 cm mark $4)$ 8 cm mark
	is 60°, the current that is passing is	3. A square loop of side 'L' carries a clockwise current
	1)2A 2)1.6A 3)1.8A 4)1.2A	'i' in all the sides. The magnetic induction at the
95.	A vertical rectangular coil of sides 5cm X 2cm has	center of the square is
	10turns and carries a current of 2A.The	$1 16\sqrt{2}i 18\sqrt{2}i 19\sqrt{2}i$
	torque(couple) on the coil when it is placed in a	1)zero 2) $\frac{\mu_o}{4\pi} \frac{10\sqrt{2t}}{I}$ 3) $\frac{\mu_o}{4\pi} \frac{3\sqrt{2t}}{I}$ 4) $\frac{\mu_o}{4\pi} \frac{2\sqrt{2t}}{I}$
	uniform horizontal magnetic field of 0.11 with its	$4\pi L 4\pi L 4\pi L$
	plane perpendicular to the field is	

SR. PHYSICS

4	A straight wire of length 'I' corrige a current of 'i'	12 A length of wire carries a steady current. It is first
4.	A subject when of length L carries a current of 1	12. A lengul of whe carries a steady current. It is first
	amperes. A point P when joined with the ends of	beni to form a circular coll of one turn. The same
	the wire forms an equilateral triangle. The magnetic	length is now bent more sharply to give a loop of
	induction at 'P' will be	two turns of smaller radius. The magnetic field at the
	$\mu_{o}i$ $\mu_{o}i$ $\mu_{o}i$ $\mu_{o}i$	centre caused by the same current now will be
	1) $\frac{1}{2\sqrt{3}\pi I}$ 2) $\frac{1}{\sqrt{3}\pi I}$ 3) $\frac{1}{4\sqrt{3}\pi I}$ 4) $\frac{1}{4\pi I}$	1) a quarter of its first value
5	$2\sqrt{3\pi E} \sqrt{3\pi E} + \sqrt{3\pi E} + \pi E$	2) same as that of the first value
3.	A wire of length 10 cm is bent into an arc of a circle	3) four times the first value 4) double of its first value
	such that it subtends an angle of 1 radian at the centre.	13. Two points P and Q are on the axis at distances r
	If a current of 1 A is passed through the wire, the	and 3r from the centre of a circular coil of radius r
1	magnetic induction at the centre of the circle will be	and carrying a current. The ratio of magnetic
	1) 2×10^{-4} tesla 2) 1×10^{-6} tesla	inductions at P and Q is
	3) 1×10^{-4} tesla 4) 2×10^{-6} tesla	1) 3 : 1 2) 1 : $5\sqrt{5}$ 3) $5\sqrt{5}$: 1 4) 1 : 3
6.	The ends of a circular coil of radius 'r' and number	14. The earth's magnetic induction at a certain point is 7
	of turns 'n' is connected to the two terminals of a	$\times 10^{-5}$ T. This field is to be annulled by the magnetic
	cell. The magnetic field at the centre of the coil is B.	induction at the centre of a circular conducting loop
	If the number of turns be made '2n' keeping the	5.0 cm in radius. The required current is nearly
1	radius same, the magnetic field at the centre of the	1) 0.56 A 2) 5 6 A 3) 56 A 4) 28 A
	coil will be	15. A straight conductor carrying a current i is split into
	1) B 2) 2B 3) B/2 4) 4B	identical semicircular turns of radius 'r' as shown
7.	A circular coil of wire is connected to a battery of	What is the magnetic induction at the centre C of the
1	negligible internal resistance and has magnetic	circular loop?
	induction 'B' at its centre. If the coil is unwound and	
1	rewound to have double the number of turns, and is	i r i
	connected to the same battery, then the magnetic	
	induction at the centre is	
	1) 2B 2) 4B 3) B 4) B/2	1) $\mu_i/4r$ 2) $\mu_i/8r$ 3) $\mu_i/2r$ 4) zero
8.	A wire of length '1' is bent into a semi circle and	16. A proton moving with a velocity of $(6i + 8j) \times 10^5$
	carries a current 'i'. The magnetic induction at the	ms ⁻¹ enters uniform magnetic field of induction $5k \times$
	centre of the semi circle is	10^{-3} tesla. The magnitude of the force acting on the
	1) $\mu \pi i/2$ 1 2) $\mu \pi i/4$ 1	proton is (i, j and k are unit vectors forming a right
	$\frac{1}{\mu_0} \frac{1}{\mu_0} \frac{1}$	handed triad)
0	A straight conductor corrying a current is kept in a	1) zero 2) 8 \times 10 ⁻¹⁶ N
	uniform magnetic field so as to experience maximum	3) 3×10^{-16} N 4) 4×10^{-16} N
	force. If now the conductor is turned in its own plana	17. A circular loop of radius 5 cm carries an electric
	such that the force acting on it is half of the maximum	current. Let P and Q be two points on the axis of the
	force then the angle made by the conductor in the	loop at distance 1 m and 2 m respectively from the
	final position with respect to the field is	center. If the magnetic field at P due to the current is
	111111111111111111111111111111111111	16µT, that at Q will be about
10	A north note of strength π A m is moved around a	$1) 8 \mu T 2) 4 \mu T 3) 2 \mu T 4) 1 \mu T$
10.	circle or radius 10 cm which lies around a long streight	18. A uniform copper wire of length "L" is bent into a
	and a torn a communication of the second straight	circular coil of two turns and a current "i" is passed
'	is nearly ing a current of 10 A. The work done	through it. The coil now behaves like a magnetic
	1 + 4 + 1 = 2 + 40 + 1 = 2 + 400 + 1 = 4 + 0 = 4 + 1	dipole of moment
11	1) $+\mu J = 2$ $+0$ $\mu J = 3$ $+00$ $\mu J = 4$ $+0.4$ $\mu J = 4$	1) i $L^2/16 \pi$ 2) i $L^2/8 \pi$
	A wire carrying a current of V3 amperes is benumto the	$3) i L^2 / 4 \pi$ $4) i L^2 / 2 \pi$
	distance of 10 cm on the second secon	19. A charge 'e' moves round a circle of radius 'r' with
l '	uisiance of 10 cm on the axis passing through the centre	a uniform speed 'v' The magnitude of the magnetic
	or the coil and perpendicular to its plane is 12.9×10^{-3} T	induction at the centre of the circle is
	1) $\delta\pi \times 10^{-5}$ 1 2) $4\pi \times 10^{-5}$ T	1) $\mu ev/4\pi r$ 2) $\mu ev/4\pi r^2$
	3) $8\pi \times 10^{-5}$ T 4) $4\pi \times 10^{-5}$ T	$\frac{1}{2} \mu_0 c v / \pi \mu = \frac{2}{2} \mu_0 c v / \pi \mu$
		$\int \mu_0 c v + \pi u = - \frac{1}{2} \mu_0 c u + \pi v$

SR. PHYSICS

SR. PHYSICS

- 34. A charged particle moving at right angles to a uniform magnetic field and starts moving along a circular arc of radius of curvature 'r'. In the field it now penetrates a layer of lead and loses 3/4th of its initial kinetic energy. The radius of curvature of its path now will be
 - 1) 4r 2) 2r 3) r/4 4) r/2
- 35. Acceleration experienced by a particle with specific charge 1×10^7 C/kg when fired perpendicular to a magnetic field of induction 100 μ T with a velocity 10^5 ms⁻¹ is
 - 1) $10^8 \, \text{ms}^{-2}$ 2) $10^{-6} \, \text{ms}^{-2}$

 $\begin{array}{c} 2,10^{-1} \text{ ms}^{-2} \\ 3) 10^{14} \text{ ms}^{-2} \\ 4) 10^{-8} \text{ ms}^{-2} \end{array}$

36. An electron of charge 'e' and mass 'm' describes a circular path of radius 'r' when it is projected with a velocity 'v' perpendicular to a uniform magnetic field of induction 'B'. An expression for its frequency of revolution is

1)
$$\frac{1}{2\pi}\sqrt{\frac{Be}{m}}$$
 2) $\frac{1}{2\pi}\frac{Be}{m}$
3) $\frac{1}{2\pi}\frac{m}{Be}$ 4) $\frac{1}{2\pi}\frac{me}{2}$

37. An alpha particle in an electric field of intensity E experiences the same force as when it moves perpendicular to a magnetic field of induction B. The magnitude of its velocity in the magnetic field is given by

1) B/E 2) E/B 3) B^2/E 4) E^2/B

38. A galvanometer has a coil resistance "R" and a safe current of "i". If it is to be converted to an ammeter with a range of "n i", then which of the following will be suitable? Connect

1) R/(n-1) in series 2) R(n-1) in series

3) R(n-1) in parallel 4) R/(n-1) in parallel 39. The magnetic induction of a uniform field is given

by $\overline{B} = 3\hat{i} + 4\hat{j} - 2\hat{k}T$. A coil of 2 turns in the

field has an area given by
$$\overline{A} = 2\hat{i} - \hat{j} - 3\hat{k}m^2$$
.

The magnetic flux linked with the coil is

1) 8 Wb 2) 4 Wb

- 3) 16 Wb 4) 32 Wb
- 40. Ions of same charge and velocity but of different masses pass through a uniform transverse magnetic field, the radii of the paths depends on the masses.(This is the principle of a mass spectrograph). Which of the following is the correct relation between the radius and mass ?

1) r \propto 1/m	2) r $\propto 1/\sqrt{m}$
3) $\mathbf{r} \propto \mathbf{m}$	4) r $\propto \sqrt{m}$

41. Different types of charged particles are fired at right angles to a uniform magnetic field with same velocity. The curvature of their circular orbits in the field are proportional to (specific charge)^X, then the value of X is

1) 1 2) -1 3) 2

AMPERE'S LAW, BIOT-SAVART'S LAW & APPLICATIONS

An infinite long straight wire is bent into a semicircle of radius R, as shown in the figure. A current I is sent through the conductor. The magnetic field at the centre of the semicircle is.

(1)Infinite

(2) Zero

(4) - 2

43 The magnetic field at the centre of circular loop in the circuit shown below is

$$1) \frac{\mu_{0}}{4\pi} \frac{2I}{r} (1+\pi) = 2) \frac{\mu_{0}}{4\pi} \frac{2I}{r} (\pi-1)$$

$$3) \frac{\mu_{0}}{4\pi} \frac{2I}{r} = 4) \frac{\mu_{0}}{4\pi} \frac{I}{r} (\pi+1)$$