3.10. NITROGEN METABOLISM

SYNOPSIS

INTRODUCTION

- Nitrogen is most abundant element in atmosphere. It is the chief component of proteins, enzymes, chlorophyll, nucleic acids etc.
- It's percentage in the atmosphere is 78.
- Stability of N₂ is due to triple bond between two Nitrogen atoms.
- Some Prokaryotes use Nitrogen in gaseous form.
- Higher plants absorb Nitrogen as NO_3^-, NH_4^+ , and urea.
- *NO*₃⁻ is the principle form of Nitrogen absorbed by plants.

Nitrogen Cycle

In Nitrogen cycle, the Nitrogen moves in the following sequence.

 $\begin{array}{l} \text{Atmosphere} \rightarrow \text{Soil} \rightarrow \text{Plants} \rightarrow \text{Animals} \rightarrow \\ \text{Microbes} \rightarrow \text{Atmosphere} \end{array}$

- Nitrogen cycle has Five steps.
- First step of Nitrogen Cycle is Nitrogen Fixation
- Second step of Nitrogen Cycle is Nitrogen Assimilation
- Third step of Nitrogen Cycle is Ammonification
- Fourth step of Nitrogen Cycle is Nitrification
- Fifth step of Nitrogen Cycle is Denitrification
- Dinitrogen from the atmosphere is introduced into the living system during Nitrogen Fixation
- Nitrogen fixation is two types; Abiotic & Biotic
- Abiotic Nitrogen fixation is a physico chemical Process
- Abiotic Nitrogen Fixation is caused by lightening
- During Abiotic Nitrogen fixation the dinitrogen is converted into Nitric oxide and then to Nitrogen dioxide and finally into Nitric acid / Nitrous acid
- Acid rain having Nitric acid / Nitrous acid is nonpolluting acid rain
- Percentage amount of Abiological Nitrogen fixation is less than 30%
- As a result of abiological Nitrogen fixation the atmospheric Nitrogen reaches the soil in the form of soluble nitrates
- The industrial method of abiological nitrogen fixation is **Haber Bosch process**

- Biological dinitrogen fixation is Diazotrophy
- Biological Nitrogen fixation is conversion of atmospheric dinitrogen into NH₂ or NH₄⁺.
- Free living Nitrogen fixing Bacteria are *Azatobactor* and Clostredium
- Symbiotic Nitrogen fixing Bacterium Rhizobium
- Blue green Algae *Nostoc & Anabaena*
- Conversion of Nitrates and ammonia into amino acids, proteins, enzymes, chlorophyll and Nucleic Acids in plant body is Nitrogen Assimilation
- During Nitrogen assimilation the Nitrogen is bound to other elements to produce organic nitrogen
- Ammonification is converting organic Nitrogen in the dead bodies into Ammonia
- Ammonifying bacteria are : Bacillus ramosus, *B. vulgaris, B.mycoides*
- Ammonification is a mineralization process. Oxidation of Ammonia into nitrates is Nitrification
- There are two steps in Nitrification Ammonia \xrightarrow{I} Nitrites \xrightarrow{II} Nitrate
- Nitrification is an oxidation process.Nitrofication is an exergonic process
- Energy liberated during the oxidation of NH₃ into NO₂ is 66,500 Cal.
- Energy liberated during the oxidation of NO⁻₂ into NO⁻₃ is 17,500 cal.
- Nitrifying bacteria are aerobic and chemosynthetic Eg: *Nitrosomonas / Nitrococcus / Nitrobacter*
- Denitrification is also called Nitrate respiration
- Denitrification is exergonic process (11,000 cals of energy is released).
- The denitrifying bacteria use NO_3^- as electron

acceptor in respiration (instead of O_2).

Ex. Denitrifying Bacteria - Thiobacillus denitrificans, Pseudomonas denitrificans, Micrococcus denitrificans.

2. BIOLOGICAL NITROGEN FIXATION

- Bacteria and Cyanobacteria are efficient fixers of Nitrogen.
- Increase in soil fertility due to some bacteria in root nodules of legumes was first established by Baussinganlt (1938).
- Nitrogen fixation by living organisms is called Biological nitrogen fixation.
- Dinitrogen fixation is the modern term for Nitrogen fixation.

- Dinitrogenase is the modern name of Nitrogenase enzyme.
- *Azotobacter* and *Clostridium* are aerobic and anaerobic free living Nitrogen fixing bacteria respectively.
- *Rhodospirillum* is an anaerobic, photosynthetic, free living or non-symbiotic bacterium.
- *Nostoc* and *Anabaena* are examples of Nitrogen fixing Cyanobacteria. They fix nitrogen symbiotically as well as asymbiotically.
- List of symbiotic systems

	Micro -organisms	Symbiotic structures	Host
a)	Bacteria :		
Ĺ	Rhizobium sps	Root nodules	Legume plants
	Rhizobium sps	Root nodules	(non -legume) Parasponia
b)	Actinomycetes :		
,	Frankia sps	Root nodules	Non -leguminous plant-Myrica
b)	Cyanobacteria :		
· ·	Anabena, Nostoc	Lichens	Fungi : some
	Etc.		Actinomycetes and
	Anabaena azollae		Basidiomycetes
	A.cycadacearum	Leaves	Pteridophytes : Azolla
	Nostoc	Coralloid roots	Gymnosperms : Cycas
		Stem glands	Angiosperms : Gunnera

Symbiotic Nitrogen fixation in Legumes

- Mutually beneficial association between two organisms is called Symbiosis.
- The microbe in the symbiotic system is called 'Microsymbiont'.
- Rhizobium Root nodule association is a good example of symbiosis.
- Carbohydrates are the materials supplied by Legume to Rhizobium.
- Fixed nitrogen compounds are the materials supplied to Legume by Rhizobium.
- Legume roots attract bacteria by releasing sugars, Aminoacids and Flavonoids.
- Curling factor causes curling or bending in root hairs.
- Curled root hair is called **shepherd's crook**.
- Lectin protein aids in the recognition of compatible strains of *Rhizobium*.
- Bacterium secretes Cellulase, Pectinase etc. (cell wall degrading enzymes).
- Plasmamembrane of root hair invaginates and gets filled with bacteria. This is called infection thread.
- The infection thread grows into cortex.
- Hormones secreted by cortical cells enhance cell division.
- Swollen bacteria in the root nodule are known as -Bacterioids
- Host membrane covering bacterial cells is called peribacteroid membrane.
- Establishment of vascular connection is the last step in root nodule formation.

Mechanism of biological Nitrogen fixation

- 'Nif' genes direct the synthesis of dinitrogenase.
- Fe-Mo protein and Fe protein are the two proteins of Nitrogenase.
- The summary reaction of Nitrogen fixation is

 $N_2+6\overline{e}+8H^++16ATP\rightarrow 2NH_3+H_2+16ADP+16Pi$

- Leghaemoglobin pigment protects Nitrogenase from Oxygen.
- Heterocyst protects Nitrogenases in Nostoc.
- Ferridoxin is the electron donor for Nitrogenase.
- Respiratory substrates provide electrons to Ferridoxin.

GENETIC CODE

- DNA is the genetic material of all organisms except some viruses.
- It initiates, regulates and controls protein synthesis.
- How the number and sequence of 20 types of aminoacids in a polypeptide chain are determined by DNA / RNA is called **'genetic code'**.
- Codon is a sequence of three nucleotides specifing an amino acid and the position of aminoacid in a polypeptide chain.
- Codons contains three nucleotides hence called 'Triplet'.
- Genetic code contains 61 sensible and 3 non-sense codons.
- UUU, GGG are the codons of phenyle alanine and glycine respectively.
- Genetic code is degenerative because one aminoacid is specified by more than one codon.
- UCU, UCC, UCA, UCG, AGU, AGC are codons of Serine.
- AAA, AAG are codons of Lysine.
- Genetic code is **non-overlapping** because one base of a kind is not used more than once.
- Nucleotides are not wasted between codons hence it is called **commaless or continuous**.
- A codon always specifies only one type of aminoacid. Hence it is called **non-ambiguous**
- AUG and GUG are starting codons. The later is a rare initiation codon.
- AUG is the first codon in almost all mRNA molecules.
- Genetic code is common for all organisms. Hence it is called 'Universal'.
- UAA, UGA, UAG are stop or non-sense codons.

BIOSYNTHESIS OF PROTEINS

Introduction

- Aminoacids are the building blocks of Proteins.
- Poly peptide chain is formed by linear arrangement of aminoacids.
- *R.CH.NH*₂*COOH* is the structural formula of Aminoacids.
- The carboxylic group of one aminoacid is linked to aminogroup of next amino acid by peptide bond.
- Zamecnik explained the role of ribosomes in protein synthesis.
- Protein synthesis takes place on the surface of Ribosomes.
- Many ribosomes attached to one mRNA are called **polysome** or **polyribosome**.
- E.coli ribosomes are 70S. They separate into 50S and 30S subunits.
- Eukaryotic ribosomes are 80S. They separate into 60S and 40S subunits.
- Concentration of Mg^{+2} ions control association and dissociation of ribosome subunits.
- Transcription and translation are the two steps in protein synthesis

Transcription

- The transfer of genetic information in the nucleotide sequence of DNA to complementary sequence in m-RNA is called **Transcription**.
- Nucleus is the site of transcription in Eukaryotes.
- Transcriptase or RNA polymerase is the enzyme required for transcription.
- The strand of DNA acting as template for m-RNA synthesis is called Antisense strand.
- The strand of DNA not acting as template for m-RNA synthesis is called coding sense strand.
- Uracil nucleotide replaces Thyamine nucleotide during transcription of m-RNA.

Translation

- Synthesis of polypeptide chain by binding aminoacids in a sequence according to message of m-RNA is called Translation.
- Ribosomes are the sites of translation. m-RNA Ribosomes, Amino acids, specific t-RNAs participate in translation. The steps of translation are
- 1) Transfer of aminoacids to Ribosomes 2) Initiation of polypeptide chain.

3) Chain elongation and

4) Chain termination

- Amino acids are activated by amynoacyl synthetase enzymes. Each of these enzymes have two binding sites.
- The activated aminoacid is called Amino acyl adenalate complex.
- This complex combines with specific t-RNA to form charged t-RNA.
- N-formyl methionine is the starting aminoacid in prokaryotes.
- The charged f met-tRNA or aminoacyl tRNA moves to Ribosomes.
- Smaller sub-unit of Ribosome (30S) combines with *IF*₃ followed by *IF*₁.
- IF_2 combines with GTP. This joins with 30S ribosome combined with IF_1 and IF_3 .
- $(30S + IF_3) + IF_1 + (IF_2 + GTP)$ combines with mRNA and f met tRNA to form initiation complex.
- The larger subunit of ribosomes combines with smaller subunit. This is accompanied by hydrolysis of GTP and release of IF_1 , IF_2 and IF_3 factors.
- The released IF_1 , IF_2 , IF_3 factors are recycled.
- In the larger sub-unit of Ribosome f-met t-RNA is positioned at 'P' site. The A site is vacant.
- The regular addition of aminoacids increasing the length of polypeptide chain is called chain elongation.
- The second t-RNA carrying activated aminoacid attaches to second codon of m-RNA with its anticodon. This attachment takes place in the presence of EF-T and GTP.
- EF-T factor is released by hydrolysis of GTP.
- Peptide bond is synthesized between carboxyl group of first aminoacid and amino group of second amino acid by the removal of water.
- Peptidyl transferase mediates the synthesis of peptide bond.
- The growth of peptide chain is always from free carboxylic end to free Amino end $(C \rightarrow N)$.
- The t-RNA with dipeptide is at 'A' site.
- The ribosome moves one codon length in $5' \rightarrow 3'$

		UNIT - III :: NIT	ROGEN METABOLISM
direction. This leads to ej	ection of f-met t-RNA	671. Percentage of N, in atmo	sphere
and movement of t-RNA w		1.40% 2.30%	3. 50% 4. 78%
The A site becomes vacant.		672. Conversion of Atmos	pheric Nitrogen into
• The third t-RNA with activation	ated aminoacid attaches	Ammonium is	
to 'A' site in a process similar	to attachment of second	1.Ammonification	2.Nitrogen fixation
t-RNA with aminoacid.		3.Nitrate reduction	4.Nitrification
• The ribosome again move	es one codon length in	673. Nitrogen fixation today is	s also known as
in 5' \rightarrow 3' direction. This lead	ds to ejection of second	1.Nitrate reduction	2.Ammonium synthesis
t-RNA and positioning of t	-RNA with tripeptide at	3.Dinitrogen fixation	4.Nitrification
'P' site.		674. The last step in Nitrogen of	cycle is
• The movement of Riboson	ne relative to m-RNA is	1) Nitrogen Assimilation 2) Denitrification
called translocation. The	is takes place in 5'-3'	3) Nitrification	4) Nitrogen fixation
direction.		675. Haber - Bosch process is	equal to
• The translocation takes plac	e in the presence of EFG	1) Abiological N_2 fixation	2) Biological N_2 fixation
and GTP.		3) Nitrification	4) Denitrificaion
• Number of aminoacids in	1	676. The first intermediate cor	npound formed in Abio-
equals to number of sense of	codons.	logical N_2 fixation	
• Chain termination occurs	when UAA or UAG or	1) Nitrogen dioxide	2) Nitrate
UGA occupy 'A' site. Th	hey are recognised by	3) Nitric oxide	4)Ammonia
RF_1 , RF_2 factors.		677. Nitrate respiration is carri	
• When the stop codon occu	nies the process comes	1) Bacillus ramosus	2) Nitrococcus
to an end.		3) Azatobacter 4) Thiol	bacillus denitrificans
 Release of polypeptide chain from ribosome does 		678. Nitrifying Bacteria are	
not require GTP.		1) Anearobic & photosynt	
1. NITROGEN	CYCLE	2) Aerobic & photosynthe	
LEVEL-I		3) Aerobic & chemosynth	etic4) Aerobic and pho-
665. Most of the plants can ne	ot absorb this form of	tosynthetic	
nitrogen		679. Bacillus ramosus takes p	art in this event of N_2
1. NO ₃	2. NH_4^+	cycle	
3. Dinitrogen	4. Urea	1) Nitrogen fixation	2) Nitrification
666. Nitrogen is available to ma		3)Ammonification	4) Dinitrification
the form of		680. Terminal electron accepto	r during respiration in
$1. N_2 \& NO_3$	2. N ₂ & NH ₄ ⁺	denitrifying bacteria is	
3. N ₂	$4.NO_{3} \& NH_{4}^{+}$	1) O_2 2) H_2S 3) H_2	I_2O 4) NO_3^-
667. Plants most effectively utili		681. Which one of the following	g is added to the soil from
1. NO ₂ ⁻	2. N ₂	volcanic eruptions	-
3. NO_{3}^{2}	4. Urea	1) NO_3^-	2)Ammonia
668. The enzyme needed for c	onversion of Nitrate to	$\frac{1}{3}$ Nitrous oxide	4) Amino acid
Nitrite is		682. Nitrification is conversion	<i>,</i>
1. Nitrate reductase	2. Nitrite reductase		01
3. Nitrite oxidase	4. Nitrate oxidase	1) NO_{3}^{-} to N ₂	
669. The enzyme needed for Ammonium	converting Nitrite to	2) Ammonia to NO_3^-	
1. Nitrate Oxidase	2. Nitrite reductase	3) NO_3^- to Ammonia	4) N_2 to NO_3^-
3. Nitrite oxidase	4. Nitrate reductase	683. Conversion of Ammonia i	nto Amino Acids
670. Proteins are made up of		occurs during	
1. Amino Acids	2.Carboxylic acids	1)Ammonification	2) Denitrification
3. Hydrocarbons	4.Organic acids	3) Nitrogen Assimilation	4) Nitrification
		1	

6	84. The substrate of Ammonific			ng organic Nitrogen into Am-
	1) Organic Nitrogen	2) N ₂	monia is	
	3) NO_{3}^{-}	4) Ammonia	1) Fourth step of N_2	
6	85. Which of the following crop	s increases the soil fer-	2) Third step of N_2 (2) Fifth step of N_2 (2)	
U	tility?	s mereuses the son fer	3) Fifth step of N_2 c 4) Second step of N	
	1) Oil crop	2) Fibre crop	4) Second step of N 697 The end products for	med in the first step of N_2 cycle
	3) Tobacco	4) Legume	are	fined in the mist step of N ₂ cycle
6	586. This is a physico chemical p	rocess	1) Amino acids & p	roteins 2) N_2 and O_2
	1) Abiological N ₂ fixation		3) Nitrates (or) Amn	-
	2) Biological N ₂ fixation		4) Organic Nitrogen	
	3) Any type of N_2 fixation		LEVEL II	
	4) Denitrification		698. These organisms can	n use molecular nitrogen
6	587. This is a type of mineralizati	onprocess	1. Some Prokaryotic	-
Ū	1) N ₂ fixation	2) N_2 assimilation	2. Bryophytes	0
	3) Ammonification	4) Amination	3. Pteridophytes	
6	,	,	4. Gymnosperms	
0	88. Energy released during Den		699. Nitrogen fixing organ	nisms are
	1) 1000 cals	2) 50,000 cals		mbiotic 2.Free living only
6	3) 100 cals	4) 11,000 cals	3.Symbiotic only	4.Heterotrophic
0	89. The correct sequence in wh formed in Abiological N, fix			f Legumes some swollen struc-
	- 2		tures are present.	
	1) $N_2 \rightarrow 2NO_2 \rightarrow HNO_3 \rightarrow$	2NO	1. Bacteroids	2. Nucleoids
	2) $2NO \rightarrow N_2 \rightarrow 2NO_2 \rightarrow P$	HNO3	3. Heterocysts	4. Phelloids
	3) $N_2 \rightarrow 2NO \rightarrow 2NO_2 \rightarrow I$	INO	701. These are exergonic a) Nitrification b) I	
	, <u> </u>	5	c) Biological N ₂ fixat	
4) $2NO_2 \rightarrow N_2 \rightarrow 2NO \rightarrow HNO_3$			ect 2) a & b only are correct	
6	90. This is not a form of organic	•		et 4) b & c only are correct
	1)Ammonia	2) Protein		hich Ammonia is generated in
	3) Amino acid	4) Nucleic Acid	nitrogen cycle are	1
6	91. Soluble Nitrates are formed	in the soil when Nitric	· · · · · · · · · · · · · · · · · · ·	b) Volcanic eruption
	acid combines with 1) Halogen	2)Alkali radicals	c) Nitrogenous excre animals.	etory compounds of
	, <u> </u>	,	The correct combination	ation is
	3) <i>O</i> ₂	4) Water	1) a, b & c	2) a & c only
6	92. Ratio of biological and abiol	e 2	3) a & b only	4)b & c only
	1) 1 : 1	2) 2 : 1	703. Organic nitrogen is f	formed in this step of Nitrogen
6	3) 1:2	4) $7:3$	Cycle	
0	93. Nitrogen from the atmospher living system by the first ste		1) First step	2) Fifth step
	1) One method	2) Many methods	3) Fourth step	4) Second step
	3) Two methods	4) Five methods		nitrogen in the atmosphere is
6	594. The substance used by the 7	· ·	maintained by this st	
	step of N_2 cycle is		1) Ist step	2) III rd step
	1) Ammonia 2) Nitrate 3)	N_2 4) Amino acids	3) V th step	4) IVth step
6	95. The end products of fifth st			ng organism play an important
	come the substrate of this st	tep in $\tilde{N_2}$ cycle	role in the 3rd step o	2
	1) First step	2) Third step	1) Saprophytic	2) Parasitic
	3) Fourth step	4) Second step	3)Autotrophic	4) Symbiotic

1) Fourth step of N_2 cycle	
2) Third step of N_2 cycle	
3) Fifth step of N_2 cycle	
4) Second step of N_2 cycle	
97. The end products formed in t	he first step of N_2 cycle
are	
1) Amino acids & proteins	2) N_2 and O_2
3) Nitrates (or) Ammonia	
4) Organic Nitrogen	
EVEL II	
98. These organisms can use mo	lecular nitrogen
1. Some Prokaryotic microo	rganisms
2. Bryophytes	C
3. Pteridophytes	
4. Gymnosperms	
99. Nitrogen fixing organisms ar	29
1.Free living (or) Symbiotic	
3.Symbiotic only	4.Heterotrophic
0. In the root nodules, of Legum tures are present. They are	ies some swollen struc-
1. Bacteroids	2. Nucleoids
3. Heterocysts	4. Phelloids
)1. These are exergonic process	
a) Nitrification b) Denitrifi	
c) Biological N ₂ fixation	
1) a, b & c are correct 2):	
3) 'a' alone is correct 4)	•
02. The sources from which An	nmonia is generated in
nitrogen cycle are	
a) Mineralisation b) Volc	-
c) Nitrogenous excretory co	mpounds of
animals.	
The correct combination is $1 a b g c$	2) a & c only
1) a, b & c 3) a & b only	4)b & c only
03. Organic nitrogen is formed i	· ·
Cycle	in uns step of Muogen
1) First step	2) Fifth step
3) Fourth step	4) Second step
· -	, 1
)4. The equilibrium of nitrogen	
maintained by this step of ni	
1) Ist step	2) III rd step
3) V th step	4) IVth step
05. Which of the following organ	
role in the 3rd step of N_2 cy	
1) Saprophytic	2) Parasitic
3)Autotrophic	4) Symbiotic

2.Legumes

1.Casuarina and Alnus

720. Nostoc fixes Nitrogen in 706. The use of nitrate by denitrifying Bacteria in their metabolism can be observed in this process 1) absorption of nutrients 2) absorption of water 3) respiration 4) photosynthesis 707. Number of oxygen molecules used by Nitrobacter to produce four nitrate ions is 1) 1 2) 4 3) 2 4) 3 708. Ratio of number of nitrites and number of water generated by Nitrosomonas for oxidation of 2 Ammonia 1) 1:1 2) 2:1 3) 1:2 4) 3:2 709. The end products formed during nitrfication from Ammonia are 1) NO_3^- & H⁺ 2) NO_{3}^{-} 4) NO_3^- , H₂O & H⁺ 3) $H_2O \& HNO_3$ 710. Assertion: Denitrification is an exergonic process Reason: 11,000 calories of energy is liberated in 5th step of Nitrogen Cycle 711. Assertion (A): Fourth step of nitrogen cycle is exergonic process Reason (R): Energy is liberated during nitrification 712. Assertion (A): Denitrification is nitrate respiration Reason (R): Nitrate is the respiratory substrate in denitrification 713. Assertion (A): Ammonification is mineralisation process Reason (R): Microminerals are added to the soil in it 714. Assertion (A): Organic nitrogen is formed in the 1st step of nitrogen cycle Reason (R): Nitrate and Ammonia are converted into proteins during nitrogen assimilation 715. Assertion (A): Bacillus ramosus is ammonifying bacterium Reason (R): Bacillus ramosus is a saprophyte 716. Assertion (A): Nitrogen equilibrium in atmo sphere is maintained by organisms of 5th step of nitrogen cycle Reason (R): Denitrification is nitrate respiration 717. Assertion (A): Soil fertility is increased by legume crops Reason(R): Legumes have nodular roots with rhizobium 718. This is not an Asymbiotic N₂-fixing bacterium 2.Clostridium 1.Rhizobium 3.Rhodospirillum 4.Azatobacter 719. Example of Cyanobacteria 1.Nostoc and Rhizobium 2. Anabaena and Azatobactor 3. Rhizobium and Azatobactor 4.Nostoc and Anabaena

3. <i>Psychotria</i> 4. <i>Gunnera</i> 721. The sequence of compounds during Nitrification is as follows
1) $NO_3^ NH_3 - NO_2^-$
2) $NO_2^ NH_3 - NO_3^-$
$3) NH_3 - NO_3^ NO_2^-$
4) $NH_3 - NO_2^ NO_3^-$
722. Number of H_2O liberated for conversion of
$2NH_3$ into $2NO_3$ is
 1) 2 2) 1 3) 4 4) 3 723. Number of steps involved in the fourth stage of Nitrogen cycle is 1) 2 2) 10 3) 6 4) 3 724. Amount of energy liberated during Nitrification of
ammonia from two molecules of NH_3
1) 60,000 cals 2) 17,500 cals
3) 67,500 cals 4) 84,000 cals
725. These organisms are involved in first, third, fourth
and fifth steps of nitrogen cycle
a) Micrococcus denitrificans
b) Escherechia c) Bacillus vulgaris
d) Nitrosomonas e) Nostoc f) Candida
1) a, b, c, d, e & f 2) a, b, c, d & e 3) a, c & e only 4) a, c, d & e only
726. Number of Oxygen molecules required for the
convertion of atmospheric nitrogen into nitrates dur-
ing biological nitrogen fixation is
1) 2 2) 4 3) 1 4) 3
727. Number of oxidation reactions in Nitrification
1) 3 2) 4 3) 2 4) 1
728. Match the following related to nitrogen cycle.
Table ITable II
1) First stars A) Ossi latis r
1) First step A) Oxidation
2) Third step B) Formation of moleuclar
2) Third step B) Formation of moleuclar
 2) Third step B) Formation of moleuclar nitrogen 3) Fourth step C) Mineralization 4) Fifth step D) Reduction of Dinitrogen
 2) Third step B) Formation of moleuclar nitrogen 3) Fourth step C) Mineralization 4) Fifth step D) Reduction of Dinitrogen 1) 1-D, 2-C, 3-A, 4-B
 2) Third step B) Formation of moleuclar nitrogen 3) Fourth step C) Mineralization 4) Fifth step D) Reduction of Dinitrogen

4) 1-B, 2-A, 3-D, 4-C

2. BIOLOGICAL NITROGEN FIXATION	741. Unique character of legumes is the assimilation of		
LEVEL - I	nitrogen in the form of		
729. The enzyme Nitrogenase is present in	1) Molecular Nitrogen 2) Organic Nitrogen		
1.All green plants and bacteria	3)Ammonia 4) Nitrates		
2.Nitrogen fixing microorganisms	742. Name an aquatic pteridophyte that is useful in		
3.All Bacteria 4.All green plants	nitrogen economy of Indian soils		
730. This is an aerobic asymbiotic Nitrogen fixing	1) Salvinia 2) Marsilea		
bacterium	3) Azolla 4) Isoetes		
1.Clostridium2.Rhizobium3.Glomus4.Azatobactor	743. A non legume plant on whose roots <i>Rhizobium</i> forms nodules is		
731. This is an Anaerobic, Non-photosynthetic,	1) Parasponia 2) Casuarina		
asymbiotic N_2 - fixing bacterium	3) Coriandrum 4) Pisum		
1.Azatobactor2.Clostridium3.Rhodospirillum4.Rhizobium	744. Wheih pigment is essential for nitrogen fixation by leguminous plants		
732. This is an Anaerobic, Photosynthetic Asymbiotic N_2	1)Anthocyanin 2)Phycocyanin		
- fixing bacterium	3) Leghaemoglobin 4) Phycoerythrin		
1. Azatotobactor2. Clostridium3. Rhodospirillum4. Rhizobium	745. Nitrogen in the form of molecular nitrogen is ab- sorbed by		
733. The symbiotic N_2 - fixing bacterium in Legume root nodules is	1. All prokaryotes 2. Some prokaryotes		
	3. All eukaryotes 4. Some eukaryotes		
1. Klebsiella2. Actinomycetes3. Anabaena4. Rhizobium	746. The organic substance obtained by <i>Rhizobium</i> from Fabaceae members is		
734. In Cycas the Nitrogen fixing organisms are found in	1. Nitrate 2. Ammonia $3. N_2$ 4. Sugar		
1. All roots2. Coralloid roots	747. Red pigment present in roots of legumes		
3. Leaves4. Roots and leaves	1. Phycoerythrin 2. Xanthophyll		
735. N_2 - fixing organisms in <i>Cycas</i> are	3. Leg haemoglobin 4. Phytochrome		
1.Klebsiella 2. Rhizobium	748. Rhodospirillum is 1. Aerobic bacterium		
3. Nostoc and Anabaena 4. Actinomycetes	2. Anaerobic, Photosynthetic bacterium		
736. Materials provided by Legume to bacteroids in root nodule are	3. Anaerobic, Photosynthetic Cyanobacterium 4. Symbiotic bacterium		
1. Nitrate2. Carbohydrate	749. Heterocysts are found in		
3. Protein 4. Hormones	1) all diazotrophs 2) all algae		
737. Rhizobium enters the legume root through	3) nitrogenfixing cyanobacteria		
1. Root cap cells 2. Root hairs	4) nitrogen fixing bacteria and bluegreen algae		
3. Meristematic cells 4. Root cap & Root hair	750. Scientist who first described the role of ribosomes		
738. The infection thread streches and reaches	in protein synthesis?		
1. Pericycle 2. Inner cortical cells	1. Chargaff 2. Zamecnik		
3. Phloem 4. Xylem	3. Khorana 4. Ochoa		
739. The formation of Nodule in legume root is due to cell divisions in	751. Infection thread formation in root nodule is by 1. Outward foldings of cell membrane		
1. Cortical cells 2. Pericycle	2. Inward foldings of cell membrane		
3. Epidermis 4. Endodermis	3. Outward foldings of cell wall		
740. The Pigment protecting Nitrogenase by regulating	4. Inward foldings of cell wall		
oxygen concentration in root nodule is	752. Which of the following element plays an important		
1. Xanthophyll 2. Carotene	role in nitrogen fixation? JIPMER 2004		
3. Haemoglobin 4. Leghaemoglobin	1. Zinc2. Molybdenum'3. Manganese4. Copper		
	10		

LEVEL II 753. This is not an asymbiotic N_2 -fixing bacterium 1.Rhizobium 2.*Clostridium* 4.Azatobacter 3.*Rhodospirillum* 754. Example of Cyanobacteria 1.Nostoc and Rhizobium 2. Anabaena and Azatobactor 3. Rhizobium and Azatobactor 4.Nostoc and Anabaena 755. Angiosperm with Nostoc colonies is 1. Casuarina and Alnus 2. Legumes 3.Psychotria 4.Gunnera 756. The substance secreted by roots of legumes 1. Proteins and lipids 2. Hormones and Sugar 3. Sugars and Aminoacids 4. Lipids and Nucleic acids 757. The movement shown by Rhizobium while reaching the root hair 1. Chemotactic 2. Chaemotropic 3. Chaemonastic 4.Geotropic 758. The enzymes secreted by Rhizobium during its entry into root hair 1. Cellulases and Pectinases 2. Cellulases and Phosphotases 3. Pectinases and Phosphotases 4. Proteases and oxidases 759. End products of phosphoroclastic cleavage are 2) Acetyl phosphate 1) Pyruvic acid 3) CO_2 and acetyl phosphate 4) ethyl alcohol and CO₂ 760. Infection thread is 1. An outgrowth on root hair 2. A secretion product of root hair 3. A tubular invagination of cell membrane filled with Rhizobium 4. A secretion product of Rhizobium 761. Infection thread is filled with 1. Excretory substances 2. Secretory substances 3. Dead Rhizobium cells 4. Living Rhizobium cells 762. The enzyme necessary for Nitrogen fixation is found in the 1. Vascular tissues 2. Bacteriods 3. Cortex 4. Endodermis 763. The overall reaction of biological N₂ fixation

1. $N_2 + 9e^- + 8H^+ + 16 \text{ ATP} \rightarrow 2\text{ NH}_4 + 16 \text{ ADP} + 16 \text{ Pi}$ 2. $N_2 + 8e^- + 8H^+ + 8 \text{ ATP} \rightarrow 2 \text{ NH}_3 + 8 \text{ ADP} + 8 \text{ Pi}$ 3. $N_2 + 6e^- + 8H^+ + 16 \text{ ATP} \rightarrow 2\text{ NH}_3 + H_2 + 16 \text{ ADP} + 16 \text{ Pi}$ 4. $N_2 + 8e^- + 8H^+ + 10 \text{ ATP} \rightarrow 2\text{ NH}_3 + H_2 + 10 \text{ ADP} + 10 \text{ Pi}$

764. Number o	f proteir	n compo	onents in	Dinitrog	genase
1.2	•		2.1		
3.4			4.3		
765. The Micro)-elemer	nts pres	ent in Di	nitrogen	ase
1. Fe			2. Mg		
3. Fe & N	ſg		4. Fe &	Mo	
766. Biologica sensitive to	ıl Nitrog o	gen fixa	ation in	legume	roots is
1. CO ₂			2. CO		
3. O ₂ ²			4. H ₂ O		
767. Study the			2		
	Micro			iotic stru	icture
i) Alnus					
ii) Cycas	Azotok	oacter	Coroll	oid root	
iii) Red gram			s Root no	odule	
iv) Gunnera	Nostoc	2	Stem g	land	
Which two he	osts and	l micro	symbio	nts are	correct
combinations			• • • • •		
1. i & ii			2. ii & ii	-	
3. i & iii	• 1	1	4. i & iv		
768. Peribacter					
1. membra				:16	. 1 h
2. membra the bact			g bactero	1d Iorme	aby
			haatara	id form	dhu
3. membra host	ane surre	Junum	guactero	lu lonne	aby
110.00	naofrh	izohiun	- lizzina fi		oil
4. membra			-	cery in s	011
769. Find the correct matching LIST-I LIST-2					
	asponia				
2. Myr	-	,	izobium		
-	nera				
4. <i>Azol</i>		/	abaena		
5. <i>Cyc</i>		<i>,</i>	abaena o	cycadac	
	1	2	3	4	5
1.	А	В	С	D	Е
2.	В	С	А	D	E
3.	В	А	С	D	E
4.	В	С	А	E	D
770. Assertion aerobic ba	(A): R acterium	hizobiı 1	ım is a I	Bacillus	type of
Reason (R): It fixe	s nitrog	en in anac	erobic co	onditions
771. Assertion nitrogen	(A) : C	Corolloi	d roots t	fix atmo	spheric
Reason (F present in					lgae are
772. Assertion (A): Shortage of microelements decreases nitrogen fixation					
Reason (1	R): Nitr	ogenas	e enzym	ie conta	ins iron

and Molybdenum

.....

773. Assertiion (A) : Nitrogen Prokaryotes only	fixtion is carried out by	78
Reason (R) : Nitrogenase 'nif gene	synthesis is directed by	
774. Assertion (A) : Bacteroid by dinitrogenase	respiration is catalysed	78
Reason (R) : Leg haemog oxygen into bacteriod at ca	arefully controlled rates	78
775. Study the following nitroge	n fixing bacteria. Match	
them correctly Table-I Table-I	т	78
	-	/ (
· · · · ·	robic bacterium	
, , , , , , , , , , , , , , , , , , , ,	osynthetic bacterium	-
, 1 , 1		78
D)Azotobacter IV)Aer The correct combination	obic bacterium	
	A-II, B-I, C-III, D-IV	
	A-II, B-I, C-IV, D-I	
776. Assertion (A) : Anabena a croorganism	zollae is symbiotic mi-	78
Reason (R): It is present ir		
777. How many ATP molecules four nitrogen molecules in during diazotrophy		79
	3. 64 4. 128	
778. How many ATP molecule		
NH ₃ molecules from n dinitrogenase enzyme?		L 79
1.8 2.16	3. 32 4. 48	
779. Which is wrong statement	regarding lectins?	
1. The host recognizes con	npatible bacteria	79
2. They are plant lipids	1	
3. They are proteins		
4. They are produced by le	egumes	
780. Bacteriods are	8	
1) Mobile bacteria		-
2) Bacterial cells infected b	ov Viruses	79
3) Nitrosomonas of soil	, j v nabeb	
4) Non motile bacteria pre of legumes	esent in the root nodules	79
781. Nitrogen fixation in soil is	carried out by	
-	2) <i>Thiobacillus</i>	
	4) Nitrobacter	79
	/	/3
782. A Nitrogen fixing prol apogeotropic roots of Cyc	cas	
· · · · · · · · · · · · · · · · · · ·	2) Nostoc	79
3) <i>Azotobacter</i> 4 783. The membrane bound three	4) <i>Clostridium</i> ad in wheih the Rhizohia	
are embedded and which gr is called		79
1) Shepherd's crook	2) Hypertrophy 4) Infection thread	

UNIT - III :: NI	
784. <i>Nostoc</i> makes a symbioti phyte called	c association with a Bryo-
1) Riccia	2) Funaria
3) Azolla	4) Anthoceros
785. Element Molybdenum is	associated with
1) Nitrogen metabolism	2) Fat metabolism
3) Carbohydrate metabol	lism
4) Water absorption	
786. The following is the cons	
1) Magnesium	2) Molybdenum
3) Manganese 787. Which of the following pla	4) Potassium
nitrogen directly	
1) Pea	2) Bean
3) Horse gram	4) Castor
788. In diazotrophs, the 'nif' g producing which part of d	dinitragenase?
I) Mg - protein	II) Mo Protein
III) Fe protein	IV) Mo Fe protein
1) I and IV	2) II and III
3) II and IV	4) III and IV
789. Biological Nitrogen fixat	
sitive to	C
1) <i>CO</i> ₂ 2) CO 3	$(O_1 O_2 = 4) H_2 O_2$
790. Initial infection by Rhizol	bium occurs in
1) Epiblemal cells	2) Root hairs
3) Cortical cells	4) Cuticle
CENETIC	CODE
GENETIC	CODE
GENETIC LEVEL-I	CODE
LEVEL - I	
LEVEL - I 791. Initiating codons are four	nd in
LEVEL - I 791. Initiating codons are four 1. m RNA 3. t-RNA	nd in 2. DNA 4. r -RNA
LEVEL - I 791. Initiating codons are four 1. m RNA 3. t-RNA 792. The codon at which the p	nd in 2. DNA 4. r -RNA
LEVEL - I 791. Initiating codons are four 1. m RNA 3. t-RNA 792. The codon at which the p synthesis begins is	nd in 2. DNA 4. r -RNA rocess of polypetide chain
LEVEL - I 791. Initiating codons are four 1. m RNA 3. t-RNA 792. The codon at which the pr synthesis begins is 1. Non-ambiguous codo	nd in 2. DNA 4. r -RNA rocess of polypetide chain
LEVEL - I 791. Initiating codons are four 1. m RNA 3. t-RNA 792. The codon at which the p synthesis begins is 1. Non-ambiguous codo 2. Degenarate codon	nd in 2. DNA 4. r -RNA rocess of polypetide chain
LEVEL - I 791. Initiating codons are four 1. m RNA 3. t-RNA 792. The codon at which the p synthesis begins is 1. Non-ambiguous codor 2. Degenarate codon 3. Universal codon	nd in 2. DNA 4. r -RNA rocess of polypetide chain n
LEVEL - I 791. Initiating codons are four 1. m RNA 3. t-RNA 792. The codon at which the pr synthesis begins is 1. Non-ambiguous codor 2. Degenarate codon 3. Universal codon 4. Initiating codon (Starti	nd in 2. DNA 4. r -RNA rocess of polypetide chain n
LEVEL - I 791. Initiating codons are four 1. m RNA 3. t-RNA 792. The codon at which the p synthesis begins is 1. Non-ambiguous codo 2. Degenarate codon 3. Universal codon 4. Initiating codon (Starti 793. The starting codons are	nd in 2. DNA 4. r -RNA rocess of polypetide chain n
LEVEL - I 791. Initiating codons are four 1. m RNA 3. t-RNA 792. The codon at which the p synthesis begins is 1. Non-ambiguous codo 2. Degenarate codon 3. Universal codon 4. Initiating codon (Starti 793. The starting codons are 1. AUG & UAA	nd in 2. DNA 4. r -RNA rocess of polypetide chain n ing codon) 2. GUG & AUG
LEVEL - I 791. Initiating codons are four 1. m RNA 3. t-RNA 792. The codon at which the pr synthesis begins is 1. Non-ambiguous codor 2. Degenarate codon 3. Universal codon 4. Initiating codon (Starti 793. The starting codons are 1. AUG & UAA 3. UAA & GUG	nd in 2. DNA 4. r -RNA rocess of polypetide chain n ing codon) 2. GUG & AUG 4. UAA & UGA
LEVEL - I 791. Initiating codons are four 1. m RNA 3. t-RNA 792. The codon at which the present synthesis begins is 1. Non-ambiguous codor 2. Degenarate codon 3. Universal codon 4. Initiating codon (Starti 793. The starting codons are 1. AUG & UAA 3. UAA & GUG 794. A codon that will not codor	nd in 2. DNA 4. r -RNA rocess of polypetide chain n ing codon) 2. GUG & AUG 4. UAA & UGA
LEVEL - I 791. Initiating codons are four 1. m RNA 3. t-RNA 792. The codon at which the p synthesis begins is 1. Non-ambiguous codo 2. Degenarate codon 3. Universal codon 4. Initiating codon (Starti 793. The starting codons are 1. AUG & UAA 3. UAA & GUG 794. A codon that will not coo 1. Terminating codon	nd in 2. DNA 4. r -RNA rocess of polypetide chain n ing codon) 2. GUG & AUG 4. UAA & UGA
LEVEL - I 791. Initiating codons are four 1. m RNA 3. t-RNA 792. The codon at which the pr synthesis begins is 1. Non-ambiguous codor 2. Degenarate codon 3. Universal codon 4. Initiating codon (Starti 793. The starting codons are 1. AUG & UAA 3. UAA & GUG 794. A codon that will not coo 1. Terminating codon 2. Degenarate codon	nd in 2. DNA 4. r -RNA rocess of polypetide chain n ing codon) 2. GUG & AUG 4. UAA & UGA de for any amino acid is
LEVEL - I 791. Initiating codons are four 1. m RNA 3. t-RNA 792. The codon at which the present synthesis begins is 1. Non-ambiguous codor 2. Degenarate codon 3. Universal codon 4. Initiating codon (Starti 793. The starting codons are 1. AUG & UAA 3. UAA & GUG 794. A codon that will not coor 1. Terminating codon 2. Degenarate codon 3. Starting codon	nd in 2. DNA 4. r -RNA rocess of polypetide chain n ing codon) 2. GUG & AUG 4. UAA & UGA de for any amino acid is 4. Initiating codon
LEVEL - I 791. Initiating codons are four 1. m RNA 3. t-RNA 792. The codon at which the p synthesis begins is 1. Non-ambiguous codo 2. Degenarate codon 3. Universal codon 4. Initiating codon (Starti 793. The starting codons are 1. AUG & UAA 3. UAA & GUG 794. A codon that will not coo 1. Terminating codon 2. Degenarate codon 3. Starting codon are	nd in 2. DNA 4. r -RNA rocess of polypetide chain n ing codon) 2. GUG & AUG 4. UAA & UGA de for any amino acid is 4. Initiating codon are
LEVEL - I 791. Initiating codons are four 1. m RNA 3. t-RNA 792. The codon at which the p synthesis begins is 1. Non-ambiguous codo 2. Degenarate codon 3. Universal codon 4. Initiating codon (Starti 793. The starting codons are 1. AUG & UAA 3. UAA & GUG 794. A codon that will not coo 1. Terminating codon 2. Degenarate codon 3. Starting codon are	nd in 2. DNA 4. r -RNA rocess of polypetide chain n ing codon) 2. GUG & AUG 4. UAA & UGA de for any amino acid is 4. Initiating codon are
LEVEL - I 791. Initiating codons are four 1. m RNA 3. t-RNA 792. The codon at which the present synthesis begins is 1. Non-ambiguous codor 2. Degenarate codon 3. Universal codon 4. Initiating codon (Starti 793. The starting codons are 1. AUG & UAA 3. UAA & GUG 794. A codon that will not coor 1. Terminating codon 2. Degenarate codon 3. Starting codon	nd in 2. DNA 4. r -RNA rocess of polypetide chain n ing codon) 2. GUG & AUG 4. UAA & UGA de for any amino acid is 4. Initiating codon are
LEVEL - I 791. Initiating codons are four 1. m RNA 3. t-RNA 792. The codon at which the present synthesis begins is 1. Non-ambiguous codor 2. Degenarate codon 3. Universal codon 4. Initiating codon (Starti 793. The starting codons are 1. AUG & UAA 3. UAA & GUG 794. A codon that will not coor 1. Terminating codon 2. Degenarate codon 3. Starting codon 795. The terminating codons ar 1. UAA,UAG,AUG 3. UAA,UAG,GUG	nd in 2. DNA 4. r -RNA rocess of polypetide chain n ing codon) 2. GUG & AUG 4. UAA & UGA de for any amino acid is 4. Initiating codon are 2. UAA,AUG,GUG 4. UAA,UAG,UGA
LEVEL - I 791. Initiating codons are four 1. m RNA 3. t-RNA 792. The codon at which the p synthesis begins is 1. Non-ambiguous codo 2. Degenarate codon 3. Universal codon 4. Initiating codon (Starti 793. The starting codons are 1. AUG & UAA 3. UAA & GUG 794. A codon that will not coo 1. Terminating codon 2. Degenarate codon 3. Starting codon are	nd in 2. DNA 4. r -RNA rocess of polypetide chain n ing codon) 2. GUG & AUG 4. UAA & UGA de for any amino acid is 4. Initiating codon are 2. UAA,AUG,GUG 4. UAA,UAG,UGA tic code is universal

97. Assertion (A): An mRNA of 64 triplet codons codes for only 63 aminoacids Reason (R): One non-sense codon will be at the

end of mRNA

798. The central dogma of molecular biology was proposed by

1)Beadle	2) Crick
3) Lederberg	4) Ingram

LEVEL II

		U		
799. The genetic information from ce one generation to next generation	R 811. A R			
1. RNA 2. DNA 3. Protein 4. zDNA				
800. A codon is a set of	012			
1. Nitrogen bases coding for 3 Ar	812. A			
	2. Two Nitrogen bases coding for one Amino Acid			
3. Three Nitrogen bases coding for Thr		R c		
 Three successive nitrogen bases amino acid 		813. A		
801. According to Triplet code the sensible codons	total number of	R 814. A		
1.64 2.16 3.61	4.3			
802. The number of different types of a	mino acids taking	e R		
part in Protein synthesis	Ũ	n n		
1.16 2.20 3.64	4.32	815.H		
803. When one amino acid is coded b	by more than one	015.1		
codon it is		-		
	nmaless	816.0		
3. Degenarate 4. Acco	5	1		
804. In Non- over lapping code one N	litrogen base will	d		
be a part of 1.3 codons 2.2 co	dons	2		
3.4 codons 4.1 co		g		
805. All organisms have the same gen		3 1a		
is known as				
1. Non-overlapping code 2. Ov	verlapping code	4		
3. Universal code 4. Deg	817.F			
06. This Nitrogen base normally found in RNA but is				
absent in starting and Terminating	absent in starting and Terminating codons			
1. Thymine 2. Cyt	tosine	1		
3. Both Thymine and Cytosine	4. Uracil	3		
807. When one nitrogen base cannot p than one codon, it is called	articipate in more	818. A R		
	10	819. T		
2. Genetic code is non-overlappi	1. Genetic code is non-ambiguous			
3. Genetic code is universal	··· •			
4. Genetic code is degenerative		1		
808. Genetic code is universal. Which	one of the follow-	2		
ing justifies the property		3		
1. No letters are wasted in betwee	een the codons	4		
2. One amino acid may have mor	re than one codon	0		
3. One codon codes for the same ami		820. A		
4. m-RNA of plant can form same pr	<u>^</u>	R		

809. Assertion (A): The genetic code is degenerate.
Reason (R): UUU codes for phenylalanine in all
living organisms
810. Assertion (A): UAA, UGA and UAG are non-sense
codons
Reason (R): They do not specify any aminoacid
811. Assertion (A): Genetic code is universal
Reason (R): Genetic code is in the form of triplet codon
812. Assertion (A): Genetic code is in the form of triplet
codons
Reason (R): In singlet and doublet codons, total
codons formed are less than types of amino acids
813. Assertion (A) : One amino acid may be coded by
more than one codon
Reason (R): Genetic code is universal
814. Assertion (A): The number of polypeptide chains is
equal to number of initiator codons.
Reason (R): The number of polypeptide chains may
not be equal to number of nonsense codons
815. How many codons do not specify any amino acid
1. 61 2. 64 3. 3 4. 20
816. Genetic code is
1. Triplet, universal, ambiguous and over lapping degenerate
2. Triplet, universal, non-ambiguous and non-de-
generate
3) Triplet, universal, non-ambiguous and non-over-
lapping degenerate
4) Triplet, universal, ambiguous and non-degenerate
817. From six nitrotgenous base sequence of AUGUUU
only two codons are formed, this property of ge-
netic code is called
1) Universality of code 2) Commaless
3) Non-overlapping 4) Commaless & overlapping
818. Assertion (A): Genetic code is degenerate
Reason(R): 20 codons made up of 60 nucleotides
819. The genetic code that directs protein synthesis in
humans is found in
1)All animals, but not in plants
2) Virtually all organisms
3) All animals, but not in plants
4) All multicellular organisms but not in unicellular
organisms

820. Assertion (A): Genetic code is degenerate Reason (R): All the codons code for a type of amino acid

- 821. Assertion (A): A polynucleotide chain of RNA with 30 nitrogen bases has ten codonsReason (R): A set of 3 nitrogen bases coding for an amino Acid is a triplet
- 822. Assertion (A): Codons are present in the polynucleotide chain of DNA and RNA Reason (R): A set of 3 nitrogen bases coding for an amino acid is a triplet
- 823. Consider the following codons
 a) GGG b) AGC c) AGU d) AUG
 e) UUU f) UCU
 How many of these codons recognise serine?
 1) 3 2) 1
 3) 2 4) 6

BIOSYNTHESIS OF PROTEINS

LEVEL-I

824. The amino acid coded by initiating codon is 2. Valine 1. Glycine 3. N - formyl Methionine 4. Tryptophan 825. The chemical bond formed between amino acids in a polypeptide chain 1. Phosphotidic bond 2. Glucosidic bond 3. Sulphydril bond 4. Peptide bond 826. In Eukaryotes transcription - the first stage of protein synthesis - takes place in 1. Cytoplasm 2. Ribosomes 3. Nucleus 4. Nucleolus 827. During translation m RNA is attached to 1. Larger sub unit of ribosome 2. Smaller sub unit of ribosome 3.70 s ribosome 4. Either to larger/smaller sub unit 828. Activation of amino acid requires this enzyme 1. Amino acid phosphorylase 2. Aminoacyl t- RNA synthetase 3. t RNA phosphorylase 4. Peptidyl transferase 829. Amino acid is attached to this part of t RNA 1. DHU loop 2. Central loop 3.5' terminal 4.3' terminal 830. Number of active sites on Amino acyl t - RNA synthetase is 1.0 2.1 3.2 4. Many 831. The two active sites of Amino acyl t- RNA synthetase are occupied by 1. One amino acid and one t RNA 2. Two amino acids 3. Two t RNA 4. Two amino acids and two t RNA

ı	832. The Anticodon of t RNA is complementary to			
	codon in			
1	1. m RNA 2. Ribosome 3. DNA 4. B-DNA			
-	833. Energy for chain elongation is supplied in the form of			
	1. Free energy 2. Inorganic phosphate			
1	3.ATP 4. GTP			
	834. Decoding site in ribosome is			
	1. Peptidyl transferese 2. P - site			
	3. A - site 4. A,P sites			
	835. Transfer of genetic information from DNA molecule to m-RNA is called			
	1. Transcription 2. Transgenesis			
	3. Translation 4. Transformation 836. During protein synthesis, amino acid gets attached			
	to t-RNA with the help of (JIPMER 1998)			
	1. m-RNA 2. amino acyl synthetase			
	3. Transmutase 4. r-RNA			
	837. Which one of the following is considered as an in- terpreter of genetic code?			
	1) Adaptor RNA 2) Messenger RNA			
1	1) Adaptor RNA 2) Messenger RNA 3) Ribosomal RNA 4) hn - RNA			
	LEVEL II			
ı	838. Terminating codons are useful for terminating the synthesis of			
	1. DNA 2. RNA			
	3. Polypeptide chain 4. Amino acid			
	839. These are found in transcription			
	1. DNA & m RNA 2. DNA & r RNA			
	3. m RNA & r RNA 4. DNA & t RNA			
	840. Transcription enzyme is			
	1. DNA polymerase2. RNA polymerase3. Peptidyl transferase4. Helicase			
	841. Idenfity the correct statement regarding protein synthesis			
	1) ATP are formed during the activation of amino acid			
	2) GTP is required for translocation step			
	3) Terminating codon is present at the end of polypeptide chain			
	4) CCA' end of t-RNA identifies codon on			
	m-RNA			
	842. This will bind with smaller sub unit of ribosomes initially.			
	1. RF_{1} 2. RF_{2}			
	3. $RF_1 \& RF_2$ 4. RF_3			

843. Activation of amino acid is	852. Aminoacyl tRNA binds with
1. Amino acid combining with ATP	1. t-RNA 2. Ribosomes
2. Amino acid combining with r RNA	3. m-RNA 4. DNA
3. Amino Acid combining with enzyme	853. Which of the following are bound together by hy-
4. Amino acid combining with t RNA	drogen bonds
844. In tRNA CCA sequence is found at	1. t-RNA and m-RNA 2. t-RNA and amino acid
1. 3rd' loop 2. 3' terminal	3. amino acid and amino acid
3.5' terminal 4. Anticodon loop	4. Adenine and sugar
845. The triplet of nitrogen bases in the central loop of t	854. Decoding site is
RNA	1. Peptidyl site of ribosome
1. Codon 2. Genetic code	2. Acylation site of ribosome
3. Anticodon 4. Terminal codon	3. Anticodon of t-RNA
846. Peptide bond between first and second amino acids	4. Second site of Amino acyl t-RNA synthetase
is formed between	855. Which enzyme is not associated with protein syn-
1. COOH of first amino acid and COOH of second	thesis
amino acid	1. Amino acyl t-RNA synthetase
2. COOH of first amino acid with amino group of	2. Peptidyl transferase3. DNA polymerase4. RNA polymerase
second amino acid	3. DNA polymerase 4. RNA polymerase 856. Which doesn't participate in peptide bond forma-
3. Amino group of first amino acid with amino group	tion
of second	1. COOH of 1^{st} amino acid
4. Amino group of first with COOH of second amino	2. NH, of last amino acid
acid	$3. \mathrm{NH}_{2}^{2}$ of first amino acid
	4. COOH of second amino acid
847. A Dipeptide has	857. In the cells that are actively synthesizing proteins,
1. Two amino acids and one peptide bond	ribosomes are held together to form groups by
2. Two amino acids and two peptide bonds	$1. Mg^{++}$ $2. Ca^{++}$
3. Three amino acids and two peptide bonds	3. m-RNA 4. Polypeptide chain
4. Two amino acids and three peptide bonds	858. COOH group of amino acid joins with which nucle-
848. Peptidyl transferase is useful for	otide of t-RNA
1. transfering t RNA to m RNA	1. Adenine nucleotide 2. Guanine nucleotide
2. transfering amino acid to t RNA	3. Uracil nucleotide 4. Cytosine nucleotide
-	859. GTP is converted into GDP and $ip = during$
3. joining t RNA with m RNA	1. conversion of GAP to 1, 3 BPGA
4. Combining two amino Acids	2. Conversion of fumaric acid to malic acid
849. Terminating codons are useful for ending the process of	3. conversion of RuP to RuBP
1. Translation 2. Transcription	4. Translocation of t-RNA
3. Translocation 4. Replication	860. Last t-RNA in protein synthesis moves from
850. This group is free in the last amino acid of	1. A site to P site with dipeptide
polypeptide chain	2. P site to A site with polypeptide
1. Amino group 2. Methyl group	3. A site to P site with polypeptide
	4. A site to P site without amino acid
3. Carboxyl group 4. Nitrate group	861. Releasing factors help in
851. In biosynthesis of proteins energy in the form of GTP	1. Translocation
is needed for	2. Termination of polypeptide chain
i) Translocation	3. Initiation of polypeptide chain
ii) Formation of initiation complex	4. Elongation of polypeptide chain
iii) Release of polypeptide	862. In E.coli, a furnished polypeptide has 163 amino
iv)Activation of aminoacid	acids of which the first amino acid. How many nucle-
1. I & II 2. III & IV	otides of DNA are required to code this polypep-
3. III & I 4. I, II & IV	tide $(1) 492 = 2) 489 = 3) 54 = 4) 486$
	1) 492 2) 489 3) 54 4) 486

863. Assertion (A): Anticodon in any t-RNA is UAC		this base sequence AUG UUA
Reason (R): All m-RNAs start with AUG triplet		A The 5 th nitrogen base from
864. Assertion (A): Peptide bond formation takes places	the left is deleted	l. The chain has
always in 50S Ribosomes	1.5 amino acids	5
Reason (R) : Peptidyle transferase is located in 50S ribosome.	• • •	hain is not formed
	3.4 Amino Acid	
865. Assertion (A): Translation takes place on ribosome surface	876. Translocation real. Transport of v	
Reason (R) : Synthesis of polypeptide is catalysed by peptidyl transferase	2. Movement of	organic substances in phloem ribosome over m-RNA
866. Assertion (A) : Ochre, amber and opal are non-	-	organic substances in phloem and
sense codons		osomes on mRNA
Reason (R): Terminating codons will not specify		NA having nitrogen base sequence
any amino acids	TAC TCC CCA	AAA is transcribed into m-
867. Assertion (A): Every charged tRNA will beccme		e nitrogen base sequence on anti-
peptidyl tRNA	codon of 2 nd t-R	
Reason (R): All charged tRNAs have amino acid	1.AGG	2. C C A
attached to them	3. U C C	4. G G T
868. Assertion (A): Peptidyl tRNA is formed at A site in	878. Find the true ma 1. N and N	A) Hydrogen bonds
Ribosome	2. AA - AA	B) Ester bonds
Reason (R) : P site is the peptidyl site in Ribosome		nticodon C) Covalent bonds
869. Assertion (A): Second amino acid can bind with	4. tRNA-AA	,
COOH of first amino acid	1. 1-D, 2-C,	/ I
Reason (R): The amino group of methionine	2. 1-D, 2-C,	3-A, 4-B
is blocked by formyl group in prokaryotes	3. 1-С, 2-Е,	3-В, 4-А
870. Assertion (A): Movement of Ribosome on mRNA	4. 1-C, 2-D,	3-A, 4-B
is in 5' \rightarrow 3' direction	879. LIST-I	LIST-II
Reason (R): EFG is needed for Translocation	A) IF-3	Z)Activation of Amino acid
871. Assertion (A): IF_1 , $IF_2 \& IF_3$ are proteins	B) EF-G	Y) Translocation
Reason (R) : IF_1 , IF_2 & IF_3 are needed for chain	C) RF-2	X) Termination
initiation	D) IF-1	W) 30 S Ribosomes
872. Assertion (A): tRNA has pseudohelix structures	E)ATP	V) m-RNA-30s +fmet r-RNA
Reason (R) : Purines and Pyrimidines in tRNA are	Correct mate	<i>'</i>
in equal proportion		, C-Y, D-W, E-Z
LEVEL III		X, C-Y, D-V, E-Z
873. The number of codons in m RNA that can be coded	/ /	, C-X, D-V, E-Z
at a time in ribosome is		C-X, D-W, E-Z
1. Two codons 2. One codon	880. Study the foll	
3. 3 codons 4. Many	Table - I	Table - II
5	A) t-RNA	I) Proteins
874. m RNA has this base sequence AUG AAA GCG UAU AGUThe first, fourth and sixth nitrogen bases	B) m-RNA	II) Pigment
are deleted. The polypeptide chain formed on this	C) Leghaemoglobin	III) Decider of amino acid
m RNA will have	c) <u>208</u>	position
	D) Lectins	IV) Carrier of amino acid
1. 4 amino acids 2. 5 amino acids	Correct match is	
3. Three amino acids	1. A-IV, B-III, C-II,	D-I 2. A-IV, B-III, C-I, D-II
4. Polypeptide chain is not formed	3. A-II, B-III, C-IV,	
	···· ···, ··· ···, ····, ····,	

881.	Identify the correct sequence of events in biosynthesis of proteins	3. 3 rd t-RNA with tri P site	
	I) Transcription II) Activation of amino acid	4. 3 rd t-RNA with tr A site	
	III) Initiation of polypeptide chain IV) Formation of charged t-RNA	888. Pick up the wrong s	
	1. I, II, III & IV 2. IV, III, II, I	1. amino acid is atta	
	3. I, II, IV & III 4. III, IV, I	2. One lateral loop of	
	Heterocysts are formed in	+ RNA synthetase 3. t-RNA transfers a	
	1. Anabaena 2. Rhizopus sexualis	ribosomes	
	3. Spirogyra farlowii 4. Spirogyra jogensis	4. COOH group of s	
	The correct sequence of	in first peptide bond	
	(A) Types of nitrogen bases in DNA	889. Select the wrong sta	
	(B) Types of nitrogen bases in RNA	1.61 codons code f	
	(C) Types of AA take part in protein synthesis	amino acids	
	(D) Types of functional codons	2. Least number of	
	(E) Types of proteins is	synthesis is 20 3. 20 types of amino	
	1. 4 - 4 - 20 - 61 - Many	proteins	
	2. 4 - 4 - 20 - 64 - Many	4. m-RNA is linear a	
	3. 5 - 5 - 20 - 61 - Many	890. Which is true	
	4. 4 - Many - 20 - 61 - Many	1. Number of amino	
884.	A polypeptide chain with 21 amino acids is synthe-	2. Number of function	
	sized in E.coli. What could be the length of m-RNA	3. Number of types	
	forming it including non-sense codon?	trogen bases in code	
	1. 224.4 A° 2. 244.4 A°	4. Total codons = F	
	3. 448.8 A° 4. 444.4 A°	891. Nitrobacter converts 1) Nitrates into mole	
885.	There are 99 nitrogen bases present in mRNA of	2) Nitrites into nitrat	
	E.Coli. If this mRNA is translated, then what will	3) Ammonia into nitr	
	be the number of amino acids in the resulting polypeptide chain?	892. An important consti	
	1) 33 2) 31 3) 92 4) 32	\mathbf{S}	
	What is true	1) Mo 2) P 893. Assertion (A) : Any	
		Reason (R):Anticoc	
	1. Total codons formed by doublet $codon = 64$	894. Assertion (A): Azo	
	2. Total codons formed by triplet $codon = 61$	Reason (R): Mitoch	
	3. The pink pigment leg - haemoglobin prevents oxygen reaching dinitrogenase	895. The P site of large st cupied directly by a	
	4. There are 20 types of proteins in cell	1. Serine	
	Which is true after second translocation in protein synthesis	3) Phenyl alanine 896. If a cell is treated with	
	1. 2 nd t-RNA moves from A site to P site	acid synthesis whic	
	2. 3 rd t-RNA with dipeptide moves from A-site to	would be effected fin 1) DNA replication	
	Psite	3) mRNA synthesis	
		-,	

3. 3 rd t-RNA with tripeptide moves from A-site to P site				
4. 3 rd t-RNA with tripeptide moves from P-site to A site				
Pick up the wrong statem	nent			
1. amino acid is attached				
2. One lateral loop of t-RNA recognizes Amino acyl + RNA synthetase				
3. t-RNA transfers amino acids from cytoplasm to ribosomes				
4. COOH group of second amino acid participates in first peptide bond formation				
Select the wrong stateme	nt			
1. 61 codons code for 20				
amino acids	J 1			
2. Least number of t-RN synthesis is 20	As required for proteins			
•				
3. 20 types of amino acids can form thousands of proteins				
4. m-RNA is linear and sh	nort lived			
Which is true				
1. Number of amino acids = Peptide bonds				
2. Number of functional codons=Total codons+1				
3. Number of types of nit trogen bases in codon + 1	-			
4. Total codons = Functi				
	ollar codolis - 1			
Nitrobacter converts	•.			
1) Nitrates into molecular	nitrogen			
2) Nitrites into nitrates3) Ammonia into nitrite	1) Hydroxyl amine			
An important constituent				
is	or proteins unter errory			
1) Mo 2) P	3) S 4) Mn			
Assertion (A): Any mRN	/ /			
Reason (R) : Anticodons exist on tRNA				
Assertion (A): Azotobacter is aerobic bacterium				
Reason (R) : Mitochondria are present in it				
The P site of large subunit of ribosome can be oc-				
cupied directly by a tRNA with				
1. Serine	2) Proline			
3) Phenyl alanine	4) Methionine			
If a cell is treated with a chemical that blocks nucleic				
acid synthesis which of the following processes				
would be effected first				
1) DNA replication	2) tRNA synthesis			

4) Protein synthesis