Chapter 7

Electrodynamics

7.1 Electromotive Force

7.1.1 Ohm’s Law

To make a current flow, you have to push on the charges. How fast they move, in response
to a given push, depends on the nature of the material. For most substances, the current
density J is proportional to the force per unit charge, f:

J =of. (7.1)

The proportionality factor o (not to be confused with surface charge) is an empirical con-
stant that varies from one material to another; it’s called the conductivity of the medium.
Actually, the handbooks usually list the reciprocal of o, called the resistivity: p = 1/
(not to be confused with charge density—I'm sorry, but we’re running out of Greek let-
ters, and this is the standard notation). Some typical values are listed in Table 7.1. Notice
that even insulators conduct slightly, though the conductivity of a metal is astronomically
greater—by a factor of 10?2 or so. In fact, for most purposes metals can be regarded as
perfect conductors, with o = oo.

In principle, the force that drives the charges to produce the current could be anything—
chemical, gravitational, or trained ants with tiny harnesses. For our purposes, though, it’s
usually an electromagnetic force that does the job. In this case Eq. 7.1 becomes

J=0(E+v xB). (7.2)
Ordinarily, the velocity of the charges is sufficiently small that the second term can be

ignored:
3

(However, in plasmas, for instance, the magnetic contribution to f can be significant.)
Equation 7.3 is called Ohm’s law, though the physics behind it is really contained in
Eq. 7.1, of which 7.3 is just a special case.
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Material Resistivity | Material Resistivity
Conductors: Semiconductors:

Silver 1.59 x 1078 | Salt water (saturated) 4.4 x 1072
Copper 1.68 x 1078 | Germanium 4.6 x 107!
Gold 221 x 10~® | Diamond 2.7
Aluminum  2.65 x 1078 | Silicon 2.5 x 10°
Iron 9.61 x 1078 | Insulators:

Mercury 9.58 x 107 | Water (pure) 2.5 % 107
Nichrome  1.00 x 107% | Wood 108 — 10"
Manganese  1.44 x 107® | Glass 1010 — 1014
Graphite 1.4 x 1073 | Quartz (fused) ~ 1016

Table 7.1 Resistivities, in ohm-meters (all values are for 1 atm, 20° C).
Source: Handbook of Chemistry and Physics, 78th ed.
(Boca Raton: CRC Press, Inc., 1997).

I know: you’re confused because I said E = 0 inside a conductor (Sect. 2.5.1). But
that’s for stationary charges (J = 0). Moreover, for perfect conductors E = J/o = 0 even
if current is flowing. In practice, metals are such good conductors that the electric field
required to drive current in them is negligible. Thus we routinely treat the connecting wires
in electric circuits (for example) as equipotentials. Resistors, by contrast, are made from
poorly conducting materials.

Example 7.1

A cylindrical resistor of cross-sectional area A and length L is made from material with
conductivity o. (See Fig. 7.1; as indicated, the cross section need not be circular, but I do
assume it is the same all the way down.) If the potential is constant over each end, and the
potential difference between the ends is V, what current flows?

L

Figure 7.1

Solution: As it turns out, the electric field is uniform within the wire (I'll prove this in a
moment). It follows from Eq. 7.3 that the current density is also uniform, so
oA

I=JA=0cEA=—V.
L
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Example 7.2

Two long cylinders (radii a and b) are separated by material of conductivity o (Fig. 7.2). If
they are maintained at a potential difference V, what current flows from one to the other, in a
length L?

L

Figure 7.2

Solution: The field between the cylinders is
T 2meps

where X is the charge per unit length on the inner cylinder. The current is therefore

1:/J-da=afE.da=ixL.
€0

(The integral is over any surface enclosing the inner cylinder.) Meanwhile, the potential
difference between the cylinders is

a A b
V=- E-dl= In{ -},
b 2meg a

_ 2no L v
_ln(b/a) '

SO

As these examples illustrate, the total current flowing from one electrode to the other
is proportional to the potential difference between them:

V =1IR. (74)

This, of course, is the more familiar version of Ohm’s law. The constant of proportionality
R is called the resistance; it’s a function of the geometry of the arrangement and the
conductivity of the medium between the electrodes. (In Ex. 7.1, R = (L/o A); in Ex. 7.2,
R =1In(b/a)/2no L.) Resistance is measured in ohms (£2): an ohm is a volt per ampere.
Notice that the proportionality between V and [ is a direct consequence of Eq. 7.3: if you
want to double V, you simply double the charge everywhere—but that doubles E, which
doubles J, which doubles I.
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For steady currents and uniform conductivity,
1
V.E=-V.J=0, (7.5
o

(Eq. 5.31), and therefore the charge density is zero; any unbalanced charge resides on the
surface. (We proved this long ago, for the case of srarionary charges, using the fact that
E = 0; evidently, it is still true when the charges are allowed to move.) It follows, in
particular, that Laplace’s equation holds within a homogeneous ohmic material carrying
a steady current, so all the tools and tricks of Chapter 3 are available for computing the
potential.

Example 7.3

I asserted that the field in Ex. 7.1 is uniform. Let’s prove it.

Solution: Within the cylinder V obeys Laplace’s equation. What are the boundary conditions?
At the left end the potential is constant—we may as well set it equal to zero. At the right end
the potential is likewise constant—all it V. On the cylindrical surface, J - i = 0, or else
charge would be leaking out into the surrounding space (which we take to be nonconducting).
Therefore E - i = 0, and hence 8V /dn = 0. With V or its normal derivative specified on all
surfaces, the potential is uniquely determined (Prob. 3.4). But it’s easy to guess one potential
that obeys Laplace’s equation and fits these boundary conditions:

Voz
V()= —,
L
where z is measured along the axis. The uniqueness theorem guarantees that this is the solution.

The corresponding field is
E=-vv=_"0;
L

which is indeed uniform.  ged
e - ’

I—

Figure 7.3

Contrast the enormously more difficult problem that arises if the conducting material is
removed, leaving only a metal plate at either end (Fig. 7.3). Evidently in the present case
charge arranges itself over the surface of the wire in just such a way as to produce a nice
uniform field within.!

1Calculating this surface charge is not easy. See, for example, J. D. Jackson, Am. J. Phys. 64, 855 (1996). Nor
is it a simple matter to determine the field outside the wire—see Prob. 7.57.
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1 don’t suppose there is any formula in physics more widely known than Ohm’s law, and
yet it’s not really a true law, in the sense of Gauss’s law or Ampere’s law; rather, it is a “rule
of thumb” that applies pretty well to many substances. You’re not going to win a Nobel
prize for finding an exception. In fact, when you stop to think about it, it’s a little surprising
that Ohm’s law ever holds. After all, a given field E produces a force gE (on a charge
q), and according to Newton’s second law the charge will accelerate. But if the charges
are accelerating, why doesn’t the current increase with time, growing larger and larger the
longer you leave the field on? Ohm’s law implies, on the contrary, that a constant field
produces a constant current, which suggests a constant velocity. Isn’t that a contradiction
of Newton’s law?

No, for we are forgetting the frequent collisions electrons make as they pass down the
wire. It’s a little like this: Suppose you’re driving down a street with a stop sign at every
intersection, so that, although you accelerate constantly in between, you are obliged to start
all over again with each new block. Your average speed is then a constant, in spite of the
fact that (save for the periodic abrupt stops) you are always accelerating. If the length of a
block is A and your acceleration is a, the time it takes to go a block is

2
t=.—,

a

1 ; Aa
v = — = —_.
ave = 5T =y 5

But wait! That’s no good either! It says that the velocity is proportional to the square
root of the acceleration, and therefore that the current should be proportional to the square
root of the field! There’s another twist to the story: The charges in practice are already
moving quite fast because of their thermal energy. But the thermal velocities have random
directions, and average to zero. The net drift velocity we’re concerned with is a tiny extra
bit (Prob. 5.19). So the time between collisions is actually much shorter than we supposed;
in fact,

and hence the average velocity is

A

1= N
Uthermal

and therefore

ai
Vave = —af = —————.
2 2Vthermal

If there are n molecules per unit volume and f free electrons per molecule, each with charge
g and mass m, the current density is

F rq?
J=nfqvae = nfah —=< nfq )E (7.6)

2Uthermat M 2m Vthermal

1don’t claim that the term in parentheses is an accurate formula for the conductivity,2 but it

2This classical model (due to Drude) bears little resemblance to the modern quantum theory of conductivity.
See, for instance, D. Park’s Introduction to the Quantum Theory, 31d ed., Chap. 15 (New York: McGraw-Hill,
1992).
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does indicate the basic ingredients, and it correctly predicts that conductivity is proportional
to the density of the moving charges and (ordinarily) decreases with increasing temperature.

As a result of all the collisions, the work done by the electrical force is converted into
heat in the resistor. Since the work done per unit charge is V and the charge flowing per
unit time is I, the power delivered is

P=VI=1IR. (7.7

This is the Joule heating law. With / in amperes and R in ohms, P comes out in watts
(joules per second).

Problem 7.1 Two concentric metal spherical shells, of radius a and b, respectively, are separated
by weakly conducting material of conductivity o (Fig. 7.4a).

(a) If they are maintained at a potential difference V, what current flows from one to the other?
(b) What is the resistance between the shells?

(c) Notice that if b > a the outer radius (b) is irrelevant. How do you account for that? Exploit
this observation to determine the current flowing between two metal spheres, each of radius
a, immersed deep in the sea and held quite far apart (Fig. 7.4b), if the potential difference
between them is V. (This arrangement can be used to measure the conductivity of sea water.)

(a) (b)

Figure 7.4

Problem 7.2 A capacitor C has been charged up to potential Vj; at time ¢ = 0 it is connected
to a resistor R, and begins to discharge (Fig. 7.5a).

(a) Determine the charge on the capacitor as a function of time, Q(¢). What is the current
through the resistor, I (£)?
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= D) ik

(a)

(QII

Figure 7.5

(b) What was the original energy stored in the capacitor (Eq. 2.55)? By integrating Eq. 7.7,
confirm that the heat delivered to the resistor is equal to the energy lost by the capacitor.

Now imagine charging up the capacitor, by connecting it (and the resistor) to a battery of
fixed voltage Vp, at time r = O (Fig. 7.5b).

(c) Again, determine Q(¢) and I (1).
(d) Find the total energy output of the battery ([ VoI dt). Determine the heat delivered to the

resistor. What is the final energy stored in the capacitor? What fraction of the work done by
the battery shows up as energy in the capacitor? [Notice that the answer is independent of R!]

Problem 7.3

(a) Two metal objects are embedded in weakly conducting material of conductivity o (Fig. 7.6).
Show that the resistance between them is related to the capacitance of the arrangement by

€
R=-2
oC
(b) Suppose you connected a battery between | and 2 and charged them up to a potential
difference V{y. If you then disconnect the battery, the charge will gradually leak off. Show that
V() = Vge /7, and find the time constant, 7, in terms of €y and .

o
Figure 7.6

Problem 7.4 Suppose the conductivity of the material separating the cylinders in Ex. 7.2 is
not uniform; specifically, o (s) = k/s. for some constant k. Find the resistance between the
cylinders. [Hint: Because o is a function of position, Eq. 7.5 does not hold, the charge density
is not zero in the resistive medium, and E does not go like 1/s. But we do know that for steady
currents / is the same across each cylindrical surface. Take it from there.]
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7.1.2 Electromotive Force

If you think about a typical electric circuit (Fig. 7.7)—a battery hooked up to a light bulb,
say—there arises a perplexing question: In practice, the current is the same all the way
around the loop, at any given moment; why is this the case, when the only obvious driving
force is inside the battery? Off hand, you might expect this to produce a large current in
the battery and none at all in the lamp. Who’s doing the pushing in the rest of the circuit,
and how does it happen that this push is exactly right to produce the same current in each
segment? What’s more, given that the charges in a typical wire move (literally) at a snail s
pace (see Prob. 5.19), why doesn’t it take half an hour for the news to reach the light bulb?
How do all the charges know to start moving at the same instant?

N\

Figure 7.7 Figure 7.8

Answer: If the current is not the same all the way around (for instance, during the first
split second after the switch is closed), then charge is piling up somewhere, and—here’s the
crucial point—the electric field of this accumulating charge is in such a direction as to even
out the flow. Suppose, for instance, that the current info the bend in Fig. 7.8 is greater than
the current out. Then charge piles up at the “knee,” and this produces a field aiming away
from the kink. This field opposes the current flowing in (slowing it down) and promotes the
current flowing out (speeding it up) until these currents are equal, at which point there is
no further accumulation of charge, and equilibrium is established. It’s a beautiful system,
automatically self-correcting to keep the current uniform, and it does it all so quickly that,
in practice, you can safely assume the current is the same all around the circuit even in
systems that oscillate at radio frequencies.

The upshot of all this is that there are really two forces involved in driving current around
a circuit: the source, f;, which is ordinarily confined to one portion of the loop (a battery,
say), and the electrostatic force, which serves to smooth out the flow and communicate the
influence of the source to distant parts of the circuit:

f=f +E. (7.8)

The physical agency responsible for f; can be any one of many different things: in a battery
it’s a chemical force; in a piezoelectric crystal mechanical pressure is converted into an
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electrical impulse; in a thermocouple it’s a temperature gradient that does the job; in a
photoelectric cell it’s light; and in a Van de Graaff generator the electrons are literally
loaded onto a conveyer belt and swept along. Whatever the mechanism, its net effect is
determined by the line integral of f around the circuit:

5Ej£f.d1=j£fs-d1. (1.9)

(Because 55 E - dl = 0 for electrostatic fields, it doesn’t matter whether you use f or f;.)
£ is called the electromotive force, or emf, of the circuit. It’s a lousy term, since this is
not a force at all—it’s the integral of a force per unit charge. Some people prefer the word
electromotance, but emf 1s so ingrained that I think we’d better stick with it.

Within an ideal source of emf (a resistanceless battery,3 for instance), the net force on
the charges is zero (Eq. 7.1 with ¢ = 00), so E = —f;. The potential difference between
the terminals (a and b) is therefore

b b
V=—/ E~dl=/fs~dl=ffs-dl=5 (7.10)

(we can extend the integral to the entire loop because f; = 0 outside the source). The
function of a battery, then, is to establish and maintain a voltage difference equal to the
electromotive force (a 6 V battery, for example, holds the positive terminal 6 V above the
negative terminal). The resulting electrostatic field drives current around the rest of the
circuit (notice, however, that inside the battery f; drives current in the direction opposite to
E).

Because it’s the line integral of fy, £ can be interpreted as the work done, per unit charge,
by the source—indeed, in some books electromotive force is defined this way. However,
as you’ll see in the next section, there is some subtlety involved in this interpretation, so I
prefer Eq. 7.9.

Problem 7.5 A battery of emf £ and internal resistance r is hooked up to a variable “load”
resistance, R. If you want to deliver the maximum possible power to the load, what resistance
R should you choose? (You can’t change £ and r, of course.)

Problem 7.6 A rectangular loop of wire is situated so that one end (height /) is between the
plates of a parallel-plate capacitor (Fig. 7.9), oriented parallel to the field E. The other end
is way outside, where the field is essentially zero. What is the emf in this loop? If the total
resistance is R, what current flows? Explain. [Warning: this is a trick question, so be careful;
if you have invented a perpetual motion machine, there’s probably something wrong with it.]

3Real batteries have a certain internal resistance, r. and the potential difference between their terminals is
& — Ir, when a current 7 is flowing. For an illuminating discussion of how batteries work, see D. Roberts, Am.
J. Phys. 51, 829 (1983).
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- ,__/77??

Figure 7.9

E

7.1.3 Motional emf

Inthe last section I listed several possible sources of electromotive force in a circuit, batteries
being the most familiar. But I did not mention the most common one of all: the generator.
Generators exploit motional emf’s, which arise when you move a wire through a magnetic
field. Figure 7.10 shows a primitive model for a generator. In the shaded region there is a
uniform magnetic field B, pointing into the page, and the resistor R represents whatever it
is (maybe a light bulb or a toaster) we're trying to drive current through. If the entire loop
is pulled to the right with speed v, the charges in segment ab experience a magnetic force
whose vertical component gvB drives current around the loop, in the clockwise direction.
The emf is

5=j£fmag.d1=v3h, (711

where £ is the width of the loop. (The horizontal segments bc and ad contribute nothing.
since the force here is perpendicular to the wire.)

Notice that the integral you perform to calculate £ (Eq. 7.9 or 7.11) is carried out at one
instant of time—take a “snapshot” of the loop, if you like, and work from that. Thus dl. for
the segment ab in Fig. 7.10, points straight up, even though the loop is moving to the right.
You can’t quarrel with this—it’s simply the way emf is defined—but it is important to be
clear about it.

Figure 7.10
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uB fpu“

Figure 7.11

In particular, although the magnetic force is responsible for establishing the emf, it is
certainly not doing any work—magnetic forces never do work. Who, then, is supplying the
energy that heats the resistor? Answer: The person who’s pulling on the loop! With the
current flowing, charges in segment ab have a vertical velocity (call it u) in addition to the
horizontal velocity v they inherit from the motion of the loop. Accordingly, the magnetic
force has a component qu B to the left. To counteract this, the person pulling on the wire
must exert a force per unit charge

fpull =uB

to the right (Fig. 7.11). This force is transmitted to the charge by the structure of the wire.
Meanwhile, the particle is actually moving in the direction of the resultant velocity w, and
the distance it goes is (h/ cos 8). The work done per unit charge is therefore

h
/fpull -dl = (uB) (—) sin@ =vBh=¢&
cos@

(sin @ coming from the dot product). As it turns out, then, the work done per unit charge
is exactly equal to the emf, though the integrals are taken along entirely different paths
(Fig. 7.12) and completely different forces are involved. To calculate the emf you integrate
around the loop at one instant, but to calculate the work done you follow a charge in its
motion around the loop; fyuy contributes nothing to the emf, because it is perpendicular to
the wire, whereas fi, contributes nothing to work because it is perpendicular to the motion
of the charge.*

There is a particularly nice way of expressing the emf generated in a moving loop. Let
® be the flux of B through the loop:

¢E/B-da. (7.12)

For the rectangular loop in Fig. 7.10,

b = Bhx.

4For further discussion, see E. P. Mosca, Am. J. Phys. 42,295 (1974).
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b _ c b _ c
h A /
h/cos 9
al
a - d a a N d
(a) Integration for computing (b) Integration path for calculating work
£ (follow the wire at one instant done (follow the charge around the loop).
of time).
Figure 7.12

As the loop moves, the flux decreases:

do dx

— = Bh— = —Bhv.

d dr Y

(The minus sign accounts for the fact that dx/dr is negative.) But this is precisely the
emf (Eq. 7.11); evidently the emf generated in the loop is minus the rate of change of flux
through the loop:

do
E=——. A3
7 (7.13)

This is the flux rule for motional emf. Apart from its delightful simplicity, it has the virtue
of applying to nonrectangular loops moving in arbitrary directions through nonuniform
magnetic fields; in fact, the loop need not even maintain a fixed shape.

Proof: Figure 7.13 shows a loop of wire at time 7 and also a short time dt later.
Suppose we compute the flux at time 7, using surface S, and the flux at time
t + dt, using the surface consisting of S plus the “ribbon” that connects the
new position of the loop to the old. The change in flux, then, is

dq):@(t-i-dt)—q)(t):q)ﬁbbon:/ B-da.
ribbon

Focus your attention on point P: in time d¢ it moves to P’. Let v be the velocity
of the wire, and u the velocity of a charge down the wire; w = v 4+ u is the
resultant velocity of a charge at P. The infinitesimal element of area on the
ribbon can be written as

da = (vxdl)dt
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Surface S

Loopat Loopat
time ¢ time (7 + dr)
Enlargement of da

Figure 7.13

(see inset in Fig. 7.13). Therefore

é—?:%B-(vxdl).
Since w = (v + u) and u is parallel to dl, we can also write this as
%:%B(wxdl).
Now, the scalar triple-product can be rewritten:
B (wxdl)=—(wxB)-dl,
SO

dod
—=—7§(wa)-611.
dt

But (w x B) is the magnetic force per unit charge, finag, sO

do
= Pl

and the integral of fy,,g is the emf
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There is a sign ambiguity in the definition of emf (Eq. 7.9): Which way around the
loop are you supposed to integrate? There is a compensatory ambiguity in the definition
of flux (Eq. 7.12): Which is the positive direction for da? In applying the flux rule, sign
consistency is governed (as always) by your right hand: If your fingers define the positive
direction around the loop, then your thumb indicates the direction of da. Should the emf
come out negative, it means the current will flow in the negative direction around the circuit.

The flux rule is a nifty short-cut for calculating motional emf’s. It does nof contain any
new physics. Occasionally you will run across problems that cannot be handled by the flux
rule; for these one must go back to the Lorentz force law itself.

Example 7.4

A metal disk of radius a rotates with angular velocity o about a vertical axis, through a uniform
field B, pointing up. A circuit is made by connecting one end of a resistor to the axle and the
other end to a sliding contact, which touches the outer edge of the disk (Fig. 7.14). Find the
current in the resistor.

(Sliding contact)

J 1
Figure 7.14

Solution: The speed of a point on the disk at a distance s from the axis is v = ws, so the force
per unit charge is fmag = v x B = ws BS. The emf is therefore

a a BaZ
8=f fmagds=wa sds = = ,
0 0 2
and the current is
& wBad?
R~ 2R~

The trouble with the flux rule is that it assumes the current flows along a well-defined path.
whereas in this example the current spreads out over the whole disk. It’s not even clear what
the “flux through the circuit” would mean in this context. Even more tricky is the case of eddy
currents. Take a chunk of aluminum (say), and shake it around in a nonuniform magnetic
field. Currents will be generated in the material, and you will feel a kind of “viscous drag”™—as
though you were pulling the block through molasses (this is the force I called iy in the
discussion of motional emf). Eddy currents are notoriously difficult to calculate,® but easy
and dramatic to demonstrate. You may have witnessed the classic experiment in which an

5See, for example, W. M. Saslow, Am. J. Phys., §0, 693 (1992).
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(a) (b)

Figure 7.15

aluminum disk mounted as a pendulum on a horizontal axis swings down and passes between
the poles of a magnet (Fig. 7.15a). When it enters the field region it suddenly slows way down.
To confirm that eddy currents are responsible, one repeats the process using a disk that has
many slots cut in it, to prevent the flow of large-scale currents (Fig. 7.15b). This time the disk
swings freely, unimpeded by the field.

Problem 7.7 A metal bar of mass m slides frictionlessly on two paraliel conducting rails a
distance / apart (Fig. 7.16). A resistor R is connected across the rails and a uniform magnetic
field B, pointing into the page, fills the entire region.

R § ! -

Figure 7.16
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(a) If the bar moves to the right at speed v, what is the current in the resistor? In what direction
does it flow?

(b) What is the magnetic force on the bar? In what direction?

(c) If the bar starts out with speed vg at time ¢ = 0, and is left to slide, what is its speed at a
later time ¢?

(d) The initial kinetic energy of the bar was, of course, %m v02. Check that the energy delivered

to the resistor is exactly %mvoz.

Problem 7.8 A square loop of wire (side @) lies on a table, a distance s from a very long straight
wire, which carries a current 7, as shown in Fig. 7.17.

(a) Find the flux of B through the loop.

(b) If someone now pulls the loop directly away from the wire, at speed v, what emf is
generated? In what direction (clockwise or counterclockwise) does the current flow?

(c) What if the loop is pulled to the right at speed v, instead of away?

a0y ]

~Y

Figure 7.17

Problem 7.9 An infinite number of different surfaces can be fit to a given boundary line, and
yet, in defining the magnetic flux through a loop, ® = [ B da, I never specified the particular
surface to be used. Justify this apparent oversight.

Problem 7.10 A square loop (side @) is mounted on a vertical shaft and rotated at angular
velocity w (Fig. 7.18). A uniform magnetic field B points to the right. Find the £(¢) for this
alternating current generator.

Problem 7.11 A square loop is cut out of a thick sheet of aluminum. Tt is then placed so that the
top portion is in a uniform magnetic field B, and allowed to fall under gravity (Fig. 7.19). (In
the diagram, shading indicates the field region; B points into the page.) If the magnetic field
is 1 T (a pretty standard laboratory field), find the terminal velocity of the loop (in m/s). Find
the velocity of the loop as a function of time. How long does it take (in seconds) to reach, say.
90% of the terminal velocity? What would happen if you cut a tiny slit in the ring, breaking
the circuit? [Nore: The dimensions of the loop cancel out; determine the actual numbers. in
the units indicated.]
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Figure 7.19

-

.2 Electromagnetic Induction

7.2.1 Faraday’s Law

In 1831 Michael Faraday reported on a series of experiments, including three that (with
some violence to history) can be characterized as follows:

Experiment 1. He pulled a loop of wire to the right through a magnetic field (Fig. 7.20a).

A current flowed in the loop.

a current flowed in the loop.

Once again, current flowed in the loop.

@ (b)

Figure 7.20

Experiment 2. He moved the magnet to the left, holding the loop still (Fig. 7.20b). Again,

Experiment 3. With both the loop and the magnet at rest (Fig. 7.20c), he changed the
strength of the field (he used an electromagnet, and varied the current in the coil).

changing
magnetic field
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The first experiment, of course, is an example of motional emf, conveniently expressed by

the flux rule:
do

dt
I don’t think it will surprise you to learn that exactly the same emf arises in Experiment 2—
all that really matters is the relative motion of the magnet and the loop. Indeed, in the light
of special relativity is kas to be so. But Faraday knew nothing of relativity, and in classical
electrodynamics this simple reciprocity is a coincidence, with remarkable implications. For
if the loop moves, it’s a magnetic force that sets up the emf, but if the loop is stationary.
the force cannot be magnetic—stationary charges experience no magnetic forces. In that
case, what is responsible? What sort of field exerts a force on charges at rest? Well, electric
fields do, of course, but in this case there doesn’t seem to be any electric field in sight.
Faraday had an ingenious inspiration:

A changing magnetic field induces an electric field.

It is this “induced” electric field that accounts for the emf in Experiment 2.° Indeed, if (a
Faraday found empirically) the emf is again equal to the rate of change of the flux,

do
E=E.-dl=——, 7.14)
% dt (
then E is related to the change in B by the equation

oB
%E-dl:—/——-da. (7.15
at

This is Faraday’s law, in integral form. We can convert it to differential form by applying
Stokes’ theorem:

VXE=——. (7.16)
at

Note that Faraday’s law reduces to the old rule f E - dl = 0 (or, in differential form.
V x E = 0) in the static case (constant B) as, of course, it should.

In Experiment 3 the magnetic field changes for entirely different reasons, but according
to Faraday’s law an electric field will again be induced, giving rise to an emf —d®/dr.
Indeed, one can subsume all three cases (and for that matter any combination of them) into
a kind of universal flux rule:

Whenever (and for whatever reason) the magnetic flux through a loop changes,

an emf
dd
E=—— (7.17)
dt

will appear in the loop.

5You might argue that the magnetic field in Experiment 2 is not really changing—just moving. What I mean i~
that if you sit at a fixed location, the field does change, as the magnet passes by.
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Many people call this “Faraday’s law.” Maybe I"'m overly fastidious, but 1 find this confus-
ing. There are really fwo totally different mechanisms underlying Eq. 7.17, and to identify
them both as “Faraday’s law” is a little like saying that because identical twins look alike
we ought to call them by the same name. In Faraday’s first experiment it’s the Lorentz force
law at work; the emf is magnetic. But in the other two it’s an electric field (induced by
the changing magnetic field) that does the job. Viewed in this light, it is quite astonishing
that all three processes yield the same formula for the emf. In fact, it was precisely this
“coincidence” that led Einstein to the special theory of relativity—he sought a deeper un-
derstanding of what is, in classical electrodynamics, a peculiar accident. But that’s a story
for Chapter 12. In the meantime I shall reserve the term “Faraday’s law” for electric fields
induced by changing magnetic fields, and I do nat regard Experiment 1 as an instance of
Faraday’s law. '

Example 7.5

A long cylindrical magnet of length L and radius a carries a uniform magnetization M parallel
toits axis. It passes at constant velocity v through a circular wire ring of slightly larger diameter
(Fig. 7.21). Graph the emf induced in the ring, as a function of time.

Figure 7.21

Solution: The magnetic field is the same as that of a long solenoid with surface current
Kj, = M . So the field inside is B = #oM, except near the ends, where it starts to spread
out. The ﬂux through the ring is zero when the magnet is far away; it builds up to a maximum
of m)Mna as the leading end passes through; and it drops back to zero as the trailing end
emerges (Fig. 7.22a). The emf is (minus) the derivative of & with respect to time, so it consists
of two spikes, as shown in Fig. 7.22b.

Keepmg track of the signs in Faraday’s law can be a real headache. For instance, in
Ex. 7.5 we would like to know which way around the ring the induced current flows. In
principle, the right-hand rule does the job (we called ® positive to the left, in Fig. 7.22a, so
the positive direction for current in the ring is counterclockwise, as viewed from the left:
since the first spike in Fig. 7.22b is negative, the first current pulse flows clockwise, and the
second counterclockwise). But there’s a handy rule, called Lenz’s law, whose sole purpose
is to help you get the directions right:’

"Lenz’s law applies to motional emf’s, 100, but for them it is usually easier to get the direction of the current
from the Lorentz force law.
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Figure 7.22

Nature abhors a change in flux.

The induced current will flow in such a direction that the flux iz produces tends to cancel the
change. (As the front end of the magnet in Ex. 7.5 enters the ring, the flux increases, so the
current in the ring must generate a field to the right—it therefore flows clockwise.) Notice
that it is the change in flux, not the flux itself, that nature abhors (when the tail end of the
magnet exits the ring, the flux drops, so the induced current flows counterclockwise, in an
effort to restore it). Faraday induction is a kind of “inertial” phenomenon: A conducting
loop “likes” to maintain a constant flux through it; if you try to change the flux, the loop
responds by sending a current around in such a direction as to frustrate your efforts. (It
doesn’t succeed completely; the flux produced by the induced current is typically only a
tiny fraction of the original. All Lenz’s law tells you is the direction of the flow.)

Example 7.6

The “jumping ring” demonstration. If you wind a solenoidal coil around an iron core (the
iron is there to beef up the magnetic field), place a metal ring on top, and plug it in, the ring
will jump several feet in the air (Fig. 7.23). Why?

Solution: Before you turned on the current, the flux through the ring was zero. Afterward a
flux appeared (upward, in the diagram), and the emf generated in the ring led to a current (in
the ring) which, according to Lenz’s law, was in such a direction that izs field tended to cancel
this new flux. This means that the current in the loop is opposite to the current in the solenoid.
And opposite currents repel, so the ring flies off.8

8For further discussion of the jumping ring (and the related “floating ring”), see C. S. Schneider and J. P. Ertel.
Am. J. Phys. 66, 686 (1998).
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Figure 7.23

Problem 7.12 A long solenoid, of radius a, is driven by an alternating current, so that the field
inside is sinusoidal: B(¢) = B cos(wr) 2. A circular loop of wire, of radius a/2 and resistance
R, is placed inside the solenoid, and coaxial with it. Find the current induced in the loop, as a
function of time.

Problem 7.13 A square loop of wire, with sides of length a, lics in the first quadrant of the
xy plane, with one corner at the origin. In this region there is a nonuniform time-dependent
magnetic field B(y, 1) = ky3r2 & (where k is a constant). Find the emf induced in the loop.

Problem 7.14 As a lecture demonstration a short cylindrical bar magnet is dropped down a
vertical aluminum pipe of slightly larger diameter, about 2 meters long. Tt takes several seconds
to emerge at the bottom, whereas an otherwise identical piece of unmagnetized iron makes the
trip in a fraction of a second. Explain why the magnet falls more slowly.

7.2.2 The Induced Electric Field

What Faraday’s discovery tells us is that there are really two distinct kinds of electric fields:
those attributable directly to electric charges, and those associated with changing magnetic
fields.” The former can be calculated (in the static case) using Coulomb’s law; the latter
can be found by exploiting the analogy between Faraday’s law,

B

VXE=——,
ot

9You could, I suppose, introduce an entirely new word to denote the field generated by a changing B. Electro-
dynamics would then involve three fields: E-fields, produced by electric charges [V -E = (1/ €g)p, VXE =0];
B-fields, produced by electric currents [V - B = 0, V x B = uJ]; and G-fields, produced by changing magnetic
fields [V -G = 0, V x G = —9B/dr]. Because E and G exert forces in the same way [F = q(E + G)], it is tidier
to regard their sum as a single entity and call the whole thing “the electric field.”
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and Ampére’s law,
V x B = pol.

Of course, the curl alone is not enough to determine a field—you must also specify the
divergence. But as long as E is a pure Faraday field, due exclusively to a changing B (with

o = 0), Gauss’s law says
V.-E=0,

while for magnetic fields, of course,
V-B=0

always. So the parallel is complete, and I conclude that Faraday-induced electric fields are

determined by —(9B/dt) in exactly the same way as magnetostatic fields are determined

by pod.
In particular, if symmetry permits, we can use all the tricks associated with Ampere’s

law in integral form,

%B ~dl = prolenc,

only this time it’s Faraday’s law in integral form:

dd
E d=——. 7.18
?{ dt ( '

The rate of change of (magnetic) flux through the Amperian loop plays the role formerly
assigned to pto/enc.

Example 7.7

A uniform magnetic field B(¢), pointing straight up, fills the shaded circular region of Fig.
7.24. If B is changing with time, what is the induced electric field?

Solution: E points in the circumferential direction, just like the magnetic field inside a long
straight wire carrying a uniform current density. Draw an Amperian loop of radius s, and
apply Faraday’s law:

o d g/ ,dB
f d1= E@rs) = === = - (rrs B(t)) ms? =

Therefore

If B is increasing, E runs clockwise, as viewed from above.

Example 7.8

Aline charge 4 is glued onto the rim of a wheel of radius b, which is then suspended horizontally.
as shown in Fig. 7.25, so that it is free to rotate (the spokes are made of some nonconducting
material—wood, maybe). In the central region, out to radius «, there is a uniform magnetic
field By, pointing up. Now someone turns the field off. What happens?
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Figure 7.24 Figure 7.25

Solution: The changing magnetic field will induce an electric field, curling around the axis of
the wheel. This electric field exerts a force on the charges at the rim, and the wheel starts to
turn. According to Lenz’s law, it will rotate in such a direction that ifs field tends to restore
the upward flux. The motion, then, is counterclockwise, as viewed from above.

Quantitatively, Faraday’s law says

dod ,dB
E dl=-— = _ga?°",
dr di

Now, the torque on a segment of length dl is (r x F), or bAE d!. The total torque on the wheel
is therefore

dB
N =b,\7§Ed1 = —bAna2d—t,

and the angular momentum imparted to the wheel is

0
/ Ndi = —jma’b / dB = Ama’bBy.
By

It doesn’t matter how fast or slow you turn off the field; the ultimate angular velocity of the
wheel is the same regardless. (If you find yourself wondering where this angular momentum
came from, you’re getting ahead of the story! Wait for the next chapter.)

A final word on this example: It’s the electric field that did the rotating. To convince you of
this I deliberately set things up so that the magnetic field is always zero at the location of the
charge (on the rim). The experimenter may tell you she never put in any electric fields—all she
did was switch off the magnetic field. But when she did that, an electric field automatically
appeared, and it’s this electric field that turned the wheel.
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I must warn you, now, of a small fraud that tarnishes many applications of Faraday’s law:
Electromagnetic induction, of course, occurs only when the magnetic fields are changing.
and yet we would like to use the apparatus of magnetostatics (Ampere’s law, the Biot-Savart
law, and the rest) to calculate those magnetic fields. Technically, any result derived in this
way is only approximately correct. But in practice the error is usually negligible unless the
field fluctuates extremely rapidly, or you are interested in points very far from the source.
Even the case of a wire snipped by a pair of scissors (Prob. 7.18) is static enough for
Ampere’s law to apply. This régime, in which magnetostatic rules can be used to calculate
the magnetic field on the right hand side of Faraday’s law, is called quasistatic. Generally
speaking, it is only when we come to electromagnetic waves and radiation that we must
worry seriously about the breakdown of magnetostatics itself.

Example 7.9

An infinitely long straight wire carries a slowly varying current / (¢). Determine the induced
electric field, as a function of the distance s from the wire. 10

~Y

Figure 7.26

Solution: In the quasistatic approximation, the magnetic field is (ugl/2ms), and it circles
around the wire. Like the B-ficld of a solenoid, E here runs parallel to the axis. For the
rectangular “Amperian loop™ in Fig. 7.26, Faraday’s law gives:

d
fEdl = E(so)l — E@)l = —— [ B-da
poldl (51 ol dI
= 20Ty = 20T ns — insp).
adr Jyy o 2 dg 1T I0)
Thus ar
E(s) = [g—;zlns + K] Z, (7.19)

where K is a constant (that is to say, it is independent of s—it might still be a function of
t). The actual value of K depends on the whole history of the function 7 (¢)—we’ll see some
examples in Chapter 10.

10This example is artificial, and not just in the usual sense of involving infinite wires, but in a more subtle respect.
It assumes that the current is the same (at any given instant) all the way down the line. This is a safe assumption
for the short wires in typical electric circuits, but not (in practice) for long wires (transmission lines), unless you
supply a distributed and synchronized driving mechanism. But never mind—the problem doesn’t inquire how you
would produce such a current; it only asks what fields would result if you did. (Variations on this problem are
discussed in M. A. Heald, Am. J. Phys. 54, 1142 (1986), and references cited therein.)
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Equation 7.19 has the peculiar implication that E blows up as s goes to infinity. That can’t
be true ... What's gone wrong? Answer: We have overstepped the limits of the quasistatic
appr0x1matlon As we shall see in Chapter 9, electromagnetic “news” travels at the speed of
light, and at large distances B depends not on the current now, but on the current as it was at
some earlier time (indeed, a whole range of earlier times, since different points on the wire are
different distances away). If t is the time it takes / to change substantially, then the quasistatic
approximation should hold only for

§ L cT, (7.20)

and hence Eq. 7.19 simply does not apply, at extremely large s.

Problem7.15A long solenoid with radius 2 and » turns per unit length carries a time- -dependent
current I (¢) in the ¢ direction. Find the electric field (magnitude and direction) at a distance
s from the axis (both inside and outside the solenoid), in the quasistatic approximation.

Problem 7.16 An alternating current / = I; cos (wr) flows down a long straight wire, and
returns along a coaxial conducting tube of radius a.

(2) In what direction does the induced electric field point (radial, circumferential, or longitu-
dinal)?

(b) Assuming that the field goes to zero as s — oo, find E(s, 1). [Incidentally, this is not at
all the way electric fields actually behave in coaxial cables, for reasons suggested in footnote
10. See Sect. 9.5.3, or J. G. Cherveniak, Am. J. Phys., 54, 946 (1986), for a more realistic
treatment. |

Problem 7.17 A long solenoid of radius a, carrying » turns per unit length, is looped by a wire
with resistance R, as shown in Fig. 7.27.

(a) If the current in the solenoid is increasing at a constant rate (d1/dt = k), what current
flows in the loop, and which way (left or right) does it pass through the resistor?

(b) If the current / in the solenoid is constant but the solenoid is pulled out of the loop and
reinserted in the opposite direction, what total charge passes through the resistor?

i
-

1) L)

Figure 7.27
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Figure 7.28

Problem 7.18 A square loop, side a, resistance R, lies a distance s from an infinite straight
wire that carries current / (Fig. 7.28). Now someone cuts the wire, so that I drops to zero. In
what direction does the induced current in the square loop flow, and what total charge passes a
given point in the loop during the time this current flows? If you don’t like the scissors model.
turn the current down gradually:

) =anl, for0 <t <1/a,
I(I)_{ 0, fort > 1/a.

Problem 7.19 A toroidal coil has a rectangular cross section, with inner radius a, outer radius
a + w, and height k. It carries a total of N tightly wound turns, and the current is increasing
at a constant rate (d1/dt = k). If w and h are both much less than a, find the electric field at a
point z above the center of the toroid. [Hint: exploit the analogy between Faraday fields and
magnetostatic fields, and refer to Ex. 5.6.]

7.2.3 Inductance

Suppose you have two loops of wire, at rest (Fig. 7.29). If you run a steady current /,
around loop 1, it produces a magnetic field B;. Some of the field lines pass through loop
2; let @, be the flux of B; through 2. You might have a tough time actually calculating B).
but a glance at the Biot-Savart law,

dl) x %
B, =@1.f LX2
47 22

reveals one significant fact about this field: Ir is proportional to the current Iy. Therefore.
s0 too is the flux through loop 2:

o, = [Bl -day.
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Bl
o— Loop2 dl,
Loop 2
Bl Bl
2
o— Loop 1 Loop 1
11\ dl,
Figure 7.29 Figure 7.30
Thus
&y = M1, (7.21)

where M3 is the constant of proportionality; it is known as the mutual inductance of the
two loops.

There is a cute formula for the mutual inductance, which you can derive by expressing
the flux in terms of the vector potential and invoking Stokes’ theorem:

<I>2=fB1-dazzf(VxA1)~da2=fA1-dl2.

Now, according to Eq. 5.63,
Al = poly [ dly

47 a’
and hence J a
@, = KOt (% —1) -dly.
4 2
Evidently
dl; - dl
My =20 ff aaa (1.22)
4 2

This is the Neumann formula; it involves a double line integral—one integration around
loop 1, the other around loop 2 (Fig. 7.30). It’s not very useful for practical calculations,
but it does reveal two important things about mutual inductance:

1. M3 is a purely geometrical quantity, having to do with the sizes, shapes, and relative
positions of the two loops.

2. Theintegralin Eq. 7.22 is unchanged if we switch the roles of loops 1 and 2; it follows
that
My = M. (7.23)
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This is an astonishing conclusion: Whatever the shapes and positions of the loops,
the flux through 2 when we run a current I around 1 is identical to the flux through 1
when we send the same current I around 2. We may as well drop the subscripts and
call them both M.

Example 7.10

A short solenoid (length [ and radius a, with r21 turns per unit length) lies on the axis of a very
long solenoid (radius b, ny turns per unit length) as shown in Fig. 7.31. Current / flows in the
short solenoid. What is the flux through the long solenoid?

P R A e

Figure 7.31

Solution: Since the inner solenoid is short, it has a very complicated field; moreover, it puts
a different amount of flux through each turn of the outer solenoid. It would be a miserable
task to compute the total flux this way. However, if we exploit the equality of the mutual
inductances, the problem becomes very easy. Just look at the reverse situation: run the current
I through the outer solenoid, and calculate the flux through the inner one. The field inside the
long solenoid is constant:

B = ugnyl!

(Eq. 5.57), so the flux through a single loop of the short solenoid is
Bra? = ,u,onzlrra2.

There are 1!/ turns in all, so the total flux through the inner solenoid is
o= uoﬂa2n1n2ll.

This is also the flux a current / in the short solenoid would put through the long one, which is
what we set out to find. Incidentally, the mutual inductance, in this case, is

M= ,uorra2n1nzl.

Suppose now that you vary the current in loop 1. The flux through loop 2 will vary
accordingly, and Faraday’s law says this changing flux will induce an emf in loop 2:
dd; dly
b=—-"F=-M—. 7.24)
? dt dt (
(In quoting Eq. 7.21—which was based on the Biot-Savart law—I am tacitly assuming that
the currents change slowly enough for the configuration to be considered quasistatic.) What
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Figure 7.32

a remarkable thing: Every time you change the current in loop 1, an induced current flows
in loop 2—even though there are no wires connecting them!

Come to think of it, a changing current not only induces an emf in any nearby loops, it
also induces an emf in the source loop itself (Fig 7.32). Once again, the field (and therefore
also the flux) is proportional to the current:

®=LI. (7.25)

The constant of proportionality L is called the self-inductance (or simply the inductance)
of the loop. As with M, it depends on the geometry (size and shape) of the loop. If the
current changes, the emf induced in the loop is
dI
E=—-L—. 7.26
7 (7.26)

Inductance is measured in henries (H); a henry is a volt-second per ampere.

Example 7.11

Find the self-inductance of a toroidal coil with rectangular cross section (inner radius a, outer
radius b, height &), which carries a total of N turns.

Solution: The magnetic field inside the toroid is (Eq. 5.58)

NI
p=HT
2ms

The flux through a single turn (Fig. 7.33) is

b h
/B-da=M0—NIh/ —ds:M]n 4 .
2n e S 2n a

The total flux is N times this, so the self-inductance (Eq.7.25) is

2
b
L=V, (-) (7.27)

2 a
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Figure 7.33

Inductance (like capacitance) is an intrinsically positive quantity. Lenz’s law, which is
enforced by the minus sign in Eq. 7.26, dictates that the emf is in such a direction as to
oppose any change in current. For this reason, it is called a back emf. Whenever you try
to alter the current in a wire, you must fight against this back emf. Thus inductance plays
somewhat the same role in electric circuits that mass plays in mechanical systems: The
greater L is, the harder it is to change the current, just as the larger the mass, the harder it
is to change an object’s velocity.

Example 7.12

Suppose a current / is flowing around a loop when someone suddenly cuts the wire. The
current drops “instantaneously” to zero. This generates a whopping back emf, for although
I may be small, d//dt is enormous. That’s why you often draw a spark when you unplug
an iron or toaster—electromagnetic induction is desperately trying to keep the current going.
even if it has to jump the gap in the circuit.

Nothing so dramatic occurs when you plug in a toaster or iron. In this case induction
opposes the sudden increase in current, prescribing instead a smooth and continuous buildup.

Suppose, for instance, that a battery (which supplies a constant emf &) is connected to a circuit
of resistance R and inductance L (Fig. 7.34). What current flows?

2R
80-[

Figure 7.34
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Figure 7.35

Solution: The total emf in this circuit is that provided by the battery plus that resulting from
the self-inductance. Ohm’s law, then, says11
dl
& —L— =1IR.
0T "
This is a first-order differential equation for / as a function of time. The general solution, as
you can easily derive for yourself, is

Ity= % + ke~ R/

where £ is a constant to be determined by the initial conditions. In particular, if the circuit is
“plugged in” at time ¢ = 0 (so 1(0) = 0), then k has the value —&p/R, and

_ %[, _ R
10 == [1 e ] (7.28)

This function is plotted in Fig. 7.35. Had there been no inductance in the circuit, the current
would have jumped immediately to £/ R. In practice, every circuit has some self-inductance,
and the current approaches £y/R asymptotically. The quantity = L/R is called the time
constant; it tells you how long the current takes to reach a substantial fraction (roughly two-
thirds) of its final value.

Problem 7.20 A small loop of wire (radius a) lies a distance z above the center of a large loop
(radius b), as shown in Fig. 7.36. The planes of the two loops are parallel, and perpendicular
to the common axis.

(a) Suppose current I flows in the big loop. Find the flux through the little loop. (The little
loop is so small that you may consider the field of the big loop to be essentially constant.)

{b) Suppose current I flows in the little loop. Find the flux through the big loop. (The little
loop is so small that you may treat it as a magnetic dipole.)

(c) Find the mutual inductances, and confirm that My, = Mo;.

! Notice that —L(d1/dr) goes on the left side of the equation—it is part of the emf that (together with £)
establishes the voltage across the resistor (Eq. 7.10).
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Figure 7.36 Figure 7.37

Problem 7.21 A square loop of wire, of side a, lies midway between two long wires, 3a apart.
and in the same plane. (Actually, the long wires are sides of a large rectangular loop, but the
short ends are so far away that they can be neglected.) A clockwise current / in the square
loop is gradually increasing: dI/dt = k (a constant). Find the emf induced in the big loop.
Which way will the induced current flow?

Problem 7.22 Find the self-inductance per unit length of a long solenoid, of radius R, carrying
n turns per unit length.

Problem 7.23 Try to compute the self-inductance of the “hairpin” loop shown in Fig. 7.37.
(Neglect the contribution from the ends; most of the flux comes from the long straight section.)
You’ll run into a snag that is characteristic of many self-inductance calculations. To get a
definite answer, assume the wire has a tiny radius €, and ignore any flux through the wire itself.

Problem 7.24 An alternating current Iy cos(wt) (amplitude 0.5 A, frequency 60 Hz) flows
down a straight wire, which runs along the axis of a toroidal coil with rectangular cross section
(inner radius 1 cm, outer radius 2 cm, height 1 cm, 1000 turns). The coil is connected to a 500
€2 resistor.

(a) In the quasistatic approximation, what emf is induced in the toroid? Find the current, 7, (1).
in the resistor.

(b) Calculate the back emf in the coil, due to the current I;(r). What is the ratio of the
amplitudes of this back emf and the “direct” emf in (a)?

Problem 7.25 A capacitor C is charged up to a potential V and connected to an inductor L.
as shown schematically in Fig. 7.38. Attime ¢t = O the switch S is closed. Find the current in
the circuit as a function of time. How does your answer change if a resistor R is included in
series with C and L?
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Figure 7.38

7.2.4 Energy in Magnetic Fields

It takes a certain amount of energy to start a current flowing in a circuit. I'm not talking
about the energy delivered to the resistors and converted into heat—that is irretrievably lost
as far as the circuit is concerned and can be large or small, depending on how long you let
the current run. What I am concerned with, rather, is the work you must do against the back
emf to get the current going. This is a fixed amount, and it is recoverable: you get it back
when the current is turned off. In the meantime it represents energy latent in the circuit; as
we’ll see in a moment, it can be regarded as energy stored in the magnetic field.

The work done on a unit charge, against the back emf, in one trip around the circuit is
—& (the minus sign records the fact that this is the work done by you against the emf, not
the work done by the emf). The amount of charge per unit time passing down the wire is /.
So the total work done per unit time is

daw dl
— =-EI=L]—.
dt dt

If we start with zero current and build it up to a final value /, the work done (integrating
the last equation over time) is

1 2
W=LI% (7.29)

It does not depend on how long we take to crank up the current, only on the geometry of
the loop (in the form of L) and the final current /.

There is a nicer way to write W, which has the advantage that it is readily generalized
to surface and volume currents. Remember that the flux & through the loop is equal to L/
(Eq. 7.25). On the other hand,

<I>=/B~da=/(VxA)-da=?§A~dl,
S S P

where P is the perimeter of the loop and S is any surface bounded by P. Thus,

L]:%A~dl,
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and therefore )
W=-I¢A.dl
2 ?{

The vector sign might as well go on the I:
1
W= Eff(A-I)dl. (7.30)

In this form, the generalization to volume currents is obvious:

W:l/(A.J)dr. (71.31)
2Jy

But we can do even better, and express W entirely in terms of the magnetic field:
Ampere’s law, V x B = pplJ, lets us eliminate J:

1
W=— [ A-(VxB)dr. (7.32)
210

Integration by parts enables us to move the derivative from B to A; specifically, product
rule 6 states that
V- (AxB)=B-(VxA)—A (VxB),

SO
A- (WVxB)=B-B—V.(AxB).

W o= —I—[/Bzdt—/v-(AXB)dT}
2u0

L[/ B2dt—¢.(AxB)-da], (7.33)
2uo LJy S

where S is the surface bounding the volume V.

Now, the integration in Eq. 7.31 is to be taken over the entire volume occupied by the
current. But any region larger than this will do just as well, for J is zero out there anyway.
In Eq. 7.33 the larger the region we pick the greater is the contribution from the volume
integral, and therefore the smaller is that of the surface integral (this makes sense: as the
surface gets farther from the current, both A and B decrease). In particular, if we agree to
integrate over all space, then the surface integral goes to zero, and we are left with

Consequently,

1

= —— B%dr. (7.34)
2uo Jan space

In view of this result, we say the energy is “stored in the magnetic field,” in the amount
(B?/2u0) per unit volume. This is a nice way to think of it, though someone looking at
Eq. 7.31 might prefer to say that the energy is stored in the current distribution, in the
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amount %(A - J) per unit volume. The distinction is one of bookkeeping; the important
quantity is the total energy W, and we shall not worry about where (if anywhere) the energy
is “located.”

You might find it strange that is takes energy to set up a magnetic field—after all,
magnetic fields zhemselves do no work. The point is that producing a magnetic field, where
previously there was none, requires changing the field, and a changing B-field, according
to Faraday, induces an electric field. The latter, of course, can do work. In the beginning
there is no E, and at the end there is no E; but in between, while B is building up, there is an
E, and it is against this that the work is done. (You see why I could not calculate the energy
stored in a magnetostatic field back in Chapter 5.) In the light of this, it is extraordinary
how similar the magnetic energy formulas are to their electrostatic counterparts:

1
Wetee = 3 /(V,o)dt = %O/E2dt, (2.43 and 2.45)

1 1
Wmag = 5/(A J) dr = % / B2 drt. (731 and 734)

Example 7.13

A long coaxial cable carries current 7 (the current flows down the surface of the inner cylinder,
radius a, and back along the outer cylinder, radius &) as shown in Fig. 7.39. Find the magnetic
energy stored in a section of length /.

Figure 7.39

Solution: According to Ampere’s law, the field between the cylinders is

pol -
B=-_—"—¢.
2ns¢

Elsewhere, the field is zero. Thus, the energy per unit volume is

L (rol\_ nol?
2up \2ms 87252

The energy in a cylindrical shell of length /, radius s, and thickness ds, then, is

2 2
mol e _ koltl fds
<—8n252> 2rlsds = s > )
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Integrating from a to b, we have:

1’ (b
W = Ho In <—) .
4 a

By the way, this suggests a very simple way to calculate the self-inductance of the cable.
According to Eq. 7.29, the energy can also be written as %Ll 2, Comparing the two expres-

12
/ b
L= “—Oln <—>
2 a

This method of calculating self-inductance is especially useful when the current is not confined
to a single path, but spreads over some surface or volume. In such cases different parts of the
current may circle different amounts of flux, and it can be very tricky to get L directly from
Eq. 7.25.

sions,

Problem 7.26 Find the energy stored in a section of length / of a long solenoid (radius R.
current /, n turns per unit length), (a) using Eq. 7.29 (you found L in Prob. 7.22); (b) using
Eq. 7.30 (we worked out A in Ex. 5.12); (¢) using Eq. 7.34; (d) using Eq. 7.33 (take as your
volume the cylindrical tube from radius @ < R out to radius b > R).

Problem 7.27 Calculate the energy stored in the toroidal coil of Ex. 7.11, by applying Eq. 7.34.
Use the answer to check Eq. 7.27.

Problem 7.28 A long cable carries current in one direction uniformly distributed over its
(circular) cross section. The current returns along the surface (there is a very thin insulating
sheath separating the currents). Find the self-inductance per unit length.

Problem 7.29 Suppose the circnit in Fig. 7.40 has been connected for a long time when
suddenly, at time ¢ = 0, switch S is thrown, bypassing the battery.

A l S
B
L
o
R
Figure 7.40

1ZNotice the similarity to Eq. 7.27—in a sense, the rectangular toroid is a short coaxial cable, turned on its side.
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ay

a

Figure 7.41

(a) What is the current at any subsequent time ¢?

(b) What is the total energy delivered to the resistor?

(c) Show that this is equal to the energy originally stored in the inductor.

Problem 7.30 Two tiny wire loops, with areas a; and ap, are situated a displacement 2 apart
(Fig. 7.41).

(a) Find their mutual inductance. [Hint: Treat them as magnetic dipoles, and use Eq. 5.87.] Is
your formula consistent with Eq. 7.23?

(b) Suppose a current /7 is flowing in loop 1, and we propose to turn on a current I, in loop
2. How much work must be done, against the mutually induced emf, to keep the current 7
flowing in loop 1? In light of this result, comment on Eq. 6.35.

7.3 Maxwell’s Equations

7.3.1 Electrodynamics Before Maxwell

So far, we have encountered the following laws, specifying the divergence and curl of
electric and magnetic fields:

i V-E=—p (Gauss’s law),
(i1) V-B=0 (no name),

oB
(i) VxE= v (Faraday’s law),

(iv VxB=pugJ (Ampere’s law).

These equations represent the state of electromagnetic theory over a century ago, when
Maxwell began his work. They were not written in so compact a form in those days, but
their physical content was familiar. Now, it happens there is a fatal inconsistency in these
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formulas. It has to do with the old rule that divergence of curl is always zero. If you apply
the divergence to number (iii), everything works out:

B d
VA(VXE)=V.|—— | =—-—(V.B).
vV xE) ( ot > az( )
The left side is zero because divergence of curl is zero; the right side is zero by virtue of
equation (ii). But when you do the same thing to number (iv), you get into trouble:

V- (VXB)=pup(V-J); (7.35)

the left side must be zero, but the right side, in general, is not. For steady currents, the
divergence of J is zero, but evidently when we go beyond magnetostatics Ampere’s law
cannot be right.

There’s another way to see that Ampére’s law is bound to fail for nonsteady currents.
Suppose we’re in the process of charging up a capacitor (Fig. 7.42). In integral form.
Ampere’s law reads

%B ~dl = polenc.

I want to apply it to the Amperian loop shown in the diagram. How do I determine 7.,
Well, it’s the total current passing thiough the loop, or, more precisely, the current piercing
a surface that has the loop for its boundary. In this case, the simplest surface lies in the
plane of the loop—the wire punctures this surface, so I, = /. Fine—but what if I draw
instead the balloon-shaped surfate in Fig. 7.427 No current passes through rhis surface, and
I'conclude that Jen. = 0! We never had this problem in magnetostatics because the conflict
arises only when charge is piling up somewhere (in this case, on the capacitor plates). But
Jfor nonsteady currents (such as this one) “the current enclosed by a loop” is an ill-defined
notion, since it depends entirely onh what surface you use. (If this seems pedantic to you—
“obviously one should use the planar surface”—remember that the Amperian loop could
be some contorted shape that doesn’t even lie in a plane.)

~ Amperian loop
e

Capacitor

Battery

Figure 7.42
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Of course, we had no right to expect Ampere’s law to hold outside of magnetostatics;
after all, we derived it from the Biot-Savart law. However, in Maxwell’s time there was
no experimental reason to doubt that Ampeére’s law was of wider validity. The flaw was a
purely theoretical one, and Maxwell fixed it by purely theoretical arguments.

7.3.2 How Maxwell Fixed Ampére’s Law

The problem is on the right side of Eq. 7.35, which should be zero, but isn’t. Applying the
continuity equation (5.29) and Gauss’s law, the offending term can be rewritten:

ap d JE
VI]=——=—-——(V-Ey=-V. — .
1 ot at(eo ) (60 at)

It might occur to you that if we were to combine €y(9E/d¢) with J, in Ampére’s law, it
would be just right to kill off the extra divergence:

)
V xB=pugJ + Moeogt—. (7.36)

(Maxwell himself had other reasons for wanting to add this quantity to Ampere’s law. To
him the rescue of the continuity equation was a happy dividend rather than a primary motive.
But today we recognize this argument as a far more compelling one than Maxwell’s, which
was based on a now-discredited model of the ether.)'?

Such a modification changes nothing, as far as magnetostatics is concerned: when E is
constant, we still have V x B = uoJ. In fact, Maxwell’s term is hard to detect in ordinary
electromagnetic experiments, where it must compete for recognition with J; that’s why
Faraday and the others never discovered it in the laboratory. However, it plays a crucial
role in the propagation of electromagnetic waves, as we’ll see in Chapter 9.

Apart from curing the defect in Ampere’s law, Maxwell’s term has a certain aesthetic
appeal: Just as a changing magnetic field induces an electric field (Faraday’s law), so

A changing electric field induces a magnetic field.

Of course, theoretical convenience and aesthetic consistency are only suggestive—there

might, after all, be other ways to doctor up Ampére’s law. The real confirmation of

Maxwell’s theory came in 1888 with Hertz’s experiments on electromagnetic waves.
Maxwell called his extra term the displacement current:

JE
Ji=e—. (7.37)

ot
It’s a misleading name, since €n(9dE/3t) has nothing to do with current, except that it adds
to J in Ampere’s law. Let’s see now how the displacement current resolves the paradox of
the charging capacitor (Fig. 7.42). If the capacitor plates are very close together (I didn’t

13For the history of this subject, see A. M. Bork. Am. J. Phys. 31, 854 (1963).
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draw them that way, but the calculation is simpler if you assume this), then the electric field
between them is

1 1
E:—o:—g,
€ € A

where Q is the charge on the plate and A is its area. Thus, between the plates

dE 1 dQ 11
€A dt €A

Now, Eq. 7.36 reads, in integral form,

)
%B ~dl = polene + H«OGO/ <¥> -da. (7.38)

If we choose the flat surface, then E = 0 and Ienc = I. If, on the other hand, we use the
balloon-shaped surface, then /on, = 0, but J(BE/d1) - da = I/ey. So we get the same
answer for either surface, though in the first case it comes from the genuine current and in
the second from the displacement current.

Problem 7.31 A fat wire, radius a, carries a constant current J , uniformly distributed over its
cross section. A narrow gap in the wire, of width w < a, forms a parallel-plate capacitor. as
shown in Fig. 7.43. Find the magnetic field in the gap, at a distance s < g from the axis.

Figure 7.43

Problem 7.32 The preceding problem was an artificial model for the charging capacitor, de-
signed to avoid complications associated with the current spreading out over the surface of
the plates. For a more realistic model, imagine thin wires that connect to the centers of the
plates (Fig. 7.44a). Again, the current 7 is constant, the radius of the capacitor is a, and the
separation of the plates is w < a. Assume that the current flows out over the plates in such a
way that the surface charge is uniform, at any given time, and is zero at ¢ = 0,

(a) Find the electric field between the plates, as a function of 7.



7.3. MAXWELL’S EQUATIONS 325

(b)

Figure 7.44

(b) Find the displacement current through a circle of radius s in the plane midway between the
plates. Using this circle as your “Amperian loop,” and the flat surface that spans it, find the
magnetic field at a distance s from the axis.

(¢) Repeat part (b), but this time use the cylindrical surface in Fig. 7.44b, which extends to
the left through the plate and terminates outside the capacitor. Notice that the displacement
current through this surface is zero, and there are two contributions to Ienc.14

Problem 7.33 Refer to Prob. 7.16, to which the correct answer was

E(s,t) =

] -
m;]_?w sin(wt) In (%) z.
(a) Find the displacement current density J;.

(b) Integrate it to get the total displacement current,

Idz/.]d-da.

(c) Compare I; and I. (What’s their ratio?) If the outer cylinder were, say, 2 mm in diameter,
how high would the frequency have to be, for I; to be 1% of I? [This problem is designed to
indicate why Faraday never discovered displacement currents, and why it is ordinarily safe to
ignore them unless the frequency is extremely high.]

14This problem raises an interesting quasi-philosophical question: If you measure B in the laboratory, have you
detected the effects of displacement current (as (b) would suggest), or merely confirmed the effects of ordinary
currents (as (c) implies)? See D. F. Bartlett, Am. J. Phys. 58, 1168 (1990).
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7.3.3 Maxwell’s Equations

In the last section we put the finishing touches on Maxwell’s equations:

1
@) V-E=—p (Gauss’s law),
]
(ii) V.B=0 (no name),
B (7.39
(iii) V xE= o (Faraday’s law),
. oE S :
iv) V xB=pueJ+ MOGO'é? (Ampere’s law with
Maxwell’s correction).
Together with the force law,
F=¢g(E+vxB), (7.40)

they summarize the entire theoretical content of classical electrodynamics'3 (save for some
special properties of matter, which we encountered in Chapters 4 and 6). Even the continuity
equation, ]
0
vV -J= e (7.41)
which is the mathematical expression of conservation of charge, can be derived from
Maxwell’s equations by applying the divergence to number (iv).

I have written Maxwell’s equations in the traditional way, which emphasizes that they
specify the divergence and curl of E and B. In this form they reinforce the notion that electric
fields can be produced eirher by charges (p) or by changing magnetic fields (3B/81), and
magnetic fields can be produced either by currents (J) or by changing electric fields (9E /a1 ).
Actually, this is somewhat misleading, because when you come right down to it 9B/dr and
dE/dr are themselves due to charges and currents. I think it is logically preferable to write

. 1 oB
(i) V-E= —p, (i) VX E+ — =0,
€ ot
(7.42)
.. . oE
(i) V-B =0, (iv) VxB - Hoco o = Hol,

with the fields (E and B) on the left and the sources (p and J) on the right. This notation
emphasizes that all electromagnetic fields are ultimately attributable to charges and currents.
Maxwell’s equations tell you how charges produce fields; reciprocally, the force law tells
you how fields affect charges.

I5Like any differential equations, Maxwell’s must be supplemented by suitable boundary conditions. Because
these are typically “obvious” from the context (e.g. E and B go to zero at large distances from a localized charge
distribution), it is easy to forget that they play an essential role.
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Problem 7.34 Suppose
1 ¢ .
E(r,t) = ——— —0(vt — r)f; B(r,1)=0
dreg r?

(the theta function is defined in Prob. 1.45b). Show that these fields satisfy all of Maxwell’s
equations, and determine p and J. Describe the physical situation that gives rise to these fields.

7.3.4 Magnetic Charge

There is a pleasing symmetry about Maxwell’s equations; it is particularly striking in free
space, where p and J vanish:

oB
V.E=0, VxE=—-2,
ot
. oE
VBZO, VXB:MOEOE~

if you replace E by B and B by —pg€0E, the first pair of equations turns into the second,
and vice versa. This symmetry'® between E and B is spoiled, though, by the charge term
in Gauss’s law and the current term in Ampeére’s law. You can’t help wondering why the
corresponding quantities are “missing” from V-B = 0and V x E = —3B/3t. What if we
had

. 1 0B
1) V-E=—p,, (i) VX E=—uoJm — —,
€ ar
(7.43)
.. . oE
(i) V-B = popm, (iv) V. xB = uolJe + Moo

Then p,, would represent the density of magnetic “charge,” and p, the density of electric
charge; J;, would be the current of maghetic charge, and J, the current of electric charge.
Both charges would be conserved:

_9pm
ar ’

_pe

V. = .
Jm >

and V.J, = (7.44)
The former follows by application of the divergence to (iii), the latter by taking the diver-
gence of (iv).

In a sense, Maxwell’s equations beg for magnetic charge to exist—it would fit in so
nicely. And yet, in spite of a diligent search, no one has ever found any.!” As far as we

know, p,, is zero everywhere, and so is J,,; B is not on equal footing with E: there exist

16Don’t be distracted by the pesky constants s and €q: these are present only because the SI systcm measures
E and B in different units, and would not occur, for instance, ih the Gaussian system.
17For an extensive bibliography, see A. S. Goldhaber and W. P. Trower, Am. J. Phys. 58, 429 (1990).
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stationary sources for E (electric charges) but none for B. (This is reflected in the fact that
magnetic multipole expansions have no monopole term, and magnetic dipoles consist of
current loops, not separated north and south “poles.”) Apparently God just didn’t make
any magnetic charge. (In the quantum theory of electrodynamics, by the way, it’s a more
than merely aesthetic shame that magnetic charge does not seem to exist: Dirac showed
that the existence of magnetic charge would explain why electric charge is quantized. See
Prob. 8.12.)

Problem 7.35 Assuming that “Coulomb’s law” for magnetic charges (g, ) reads

F = P dmidm; 5 (7.45)
4w 42

work out the force law for a monopole g5, moving with velocity v through electric and magnetic
fields E and B. [For interesting commentary, see W. Rindler, Am. J. Phys. 57, 993 (1989).]

Problem 7.36 Suppose a magnetic monopole g, passes through a resistanceless loop of wire
with self-inductance L. What current is induced in the loop? [This is one of the methods used
to search for monopoles in the laboratory; see B. Cabrera, Phys. Rev. Letr. 48, 1378 (1982).]

7.3.5 Maxwell’s Equations in Matter

Maxwell’s equations in the form 7.39 are complete and correct as they stand. However.
when you are working with materials that are subject to electric and magnetic polarization
there is a more convenient way to wrife them. For inside polarized matter there will be
accumulations of “bound” charge and current over which you exert no direct control. It
would be nice to reformulate Maxwell’s equations in such a way as to make explicit reference
only to those sources we control directly: the “free” charges and currents.
We have already learned, from the static case, that an electric polarization P produces
a bound charge density
op=-V.P (7.46)

(Eg. 4.12). Likewise, a magnetic polarization (or “magnetization””) M results in a bound
current
Jr =V xM (7.47)

(Eq. 6.13). There’s just one new feature to consider in the nonstatic case: Any change
in the electric polarization involves a flow of (bound) charge (call it J,), which must be
included in the total current. For suppose we examine a tiny chunk of polarized material
(Fig. 7.45.) The polarization introduces a charge density o}, = P at one end and —oy, at the
other (Eq. 4.11). If P now increases a bit, the charge on each end increases accordingly.
giving a net current

dop dP

dl = —da, = —da;.
ot aL at aL
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+0,,

Figure 7.45
The current density, therefore, is
L (7.48)
P g ’

This polarization current has nothing whatever to do with the bound current J,. The
latter is associated with magnetization of the material and involves the spin and orbital
motion of electrons; J, by contrast, is the result of the linear motion of charge when the
electric polarization changes. If P points to the right and is increasing, then each plus
charge moves a bit to the right and each minus charge to the left; the cumulative effect is the
polarization current J. In this connection, we ought to check that Eq. 7.48 is consistent
with the continuity equation:

oP 9 app
V=V o=V D= at
Yes: The continuity equation is satisfied; in fact, J p 1s essential to account for the con-
servatlon of bound charge. (Incidentally, a changing magnetization does not lead to any
analogous accumulation of charge or current. The bound current J, = V x M varies in
response to changes in M, to be sure, but that’s about it.)
In view of all this, the total charge density can be separated into two parts:

p=pfr+pp=p;r—V_.P, (7.49)

and the current density into three parts:

oP
J=Jf+Jb+Jp=Jf+VXM+¥~ (7.50)
Gauss’s law can now be written as
1
V-E=—(p;—V-P),
€0
or
V.-D=py, (7.51)

where D, as in the static case, is given by

D = ¢E+P. (1.52)
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Meanwhile, Ampere’s law (with Maxwell’s term) becomes

P oE
VxB=po{Jr+V XM+ — ]+ pnoco—,
at ot
or D
v xH:Jf+E, (7.53)
where, as before,
1
= —B-M (7.54)
Mo

Faraday’s law and V - B = 0 are not affected by our separation of charge and current into
free and bound parts, since they do not involve p or J.
In terms of free charges and currents, then, Maxwell’s equations read

B
(i) V-D=py, (i) V x B =——".
(1.55)
D
(i) V-B=0, ) VxH=J; + .

Some people regard these as the “true”” Maxwell’s equations, but please understand that they
are in no way more “general” than 7.39; they simply reflect a convenient division of charge
and current into free and nonfree parts. And they have the disadvantage of hybrid notation,
since they contain both E and D, both B and H. They must be supplemented, therefore, by
appropriate constitutive relations, giving D and H in terms of E and B. These depend on
the nature of the material; for linear media

P=¢yxE, and M= x,H, (7.56)

SO :
D=¢E, and H= —B, (7.57)

n

where € = €p(1 + x.) and . = po(1 + xn). Incidentally, you’ll remember that D is called
the electric “displacement”; that’s why the second term in the Ampere/Maxwell equation
(iv) is called the displacement current, generalizing Eq. 7.37:

oD

= (7.58)

Ja

Problem 7.37 Sea water at frequency v = 4 X 108 Hz has permittivity € = 81¢q, permeability
1 == ug, and resistivity o = 0.23 -m. What is the ratio of conduction current to displacement
current? [Hint: consider a parallel-plate capacitor immersed in sea water and driven by a
voltage Vi cos (2 vt).]
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7.3.6 Boundary Conditions

In general, the fields E, B, D, and H will be discontinuous at a boundary between two
different media, or at a surface that carries charge density o or current density K. The
explicit form of these discontinuities can be deduced from Maxwell’s equations (7.55), in
their integral form

() §D.da=op,
S

(i) %B-da:O
S
E-dl = d B.d
(1) s dr)s a for any surface S

bounded by the
d
(iv) %H-dlzlfenc—l——/D-da
P dt Js

closed loop P.
Applying (i) to a tiny, wafer-thin Gaussian pillbox extending just slightly into the material
on either side of the boundary, we obtain (Fig. 7.46):

over any closed surface S.

Dl-a—D2-a:afa.

(The positive direction for a is from 2 toward 1. The edge of the wafer contributes nothing
in the limit as the thickness goes to zero, nor does any volume change density.) Thus, the
component of D that is perpendicular to the interface is discontinuous in the amount

Df — Df =oy. (7.59)

Figure 7.46



332 CHAPTER 7. ELECTRODYNAMICS

Figure 7.47

Identical reasoning, applied to equation (ii), yields

B — B+ =0. (7.60)

Turning to (iii), a very thin Amperian loop straddling the surface (Fig. 7.47) gives
d
E1 -l—E2-l=——/ B . da.
dt Js

But in the limit as the width of the loop goes to zero, the flux vanishes. (I have already
dropped the contribution of the two ends to ¢ E - d1, on the same grounds.) Therefore,

E! —El=o0. (7.61)

That is, the components of E parallel to the interface are continuous across the boundary.
By the same token, (iv) implies

H - 1-Hy-1=1y,,

where I, is the free current passing through the Amperian loop. No volume current
density will contribute (in the limit of infinitesimal width) but a surface current can. In fact.
if fi is a unit vector perpendicular to the interface (pointing from 2 toward 1), so that (f x 1)
is normal to the Amperian loop, then

Ifenc=Kf'(ﬁXl)=(foﬁ)~l,

and hence

H -H) =K, x i, (7.62)

So the parallel components of H are discontinuous by an amount proportional to the free
surface current density.
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Equations 7.59-62 are the general boundary conditions for electrodynamics. In the case
of linear media, they can be expressed in terms of E and B alone:

() €1Ef — &2E5 = oy, (i) El —E} =0,
1 1 (7.63)
ii ; I l -
(i) Bf — By =0, (v) —B! - —Bl =K, x i,
b il 2
In particular, if there is no free charge or free current at the interface, then
() e1Ef —e2Ef =0, (i) Bl —E! =0,
| 1 (7.64)
(i) Bi" — By =0, (iv) —B! - —Bl=0.
M1 w2

As we shall see in Chapter 9, these equations are the basis for the theory of reflection and
refraction.

More Problems on Chapter 7

Problem 7.38 Two very large metal plates are held a distance d apart, one at potential zero, the
other at potential Vy (Fig. 7.48). A metal sphere of radius a (a < d) is sliced in two. and one
hemisphere placed on the grounded plate, so that its potential is likewise zero. If the region
between the plates is filled with weakly conducting material of uniform conductivity o, what
current flows to the hemisphere? [Answer: (3wa®o/d)V;. Hint: study Ex. 3.8.]

Problem 7.39 Two long, straight copper pipes, each of radius a, are held a distance 2d apart
(see Fig. 7.49). One is at potential Vj, the other at — V. The space surrounding the pipes is
filled with weakly conducting material of conductivity o. Find the current, per unit length,
which flows from one pipe to the other. [Hint: refer to Prob. 3.11.]

Problem 7.40 A common textbook problem asks you to calculate the resistance of a cone-
shaped object, of resistivity p, with length L, radius @ at one end, and radius b at the other
(Fig. 7.50). The two ends are flat, and are taken to be equipotentials. The suggested method is
to slice it into circular disks of width dz, find the resistance of each disk, and integrate to get
the total.

I
1

Figure 7.48 Figure 7.49
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(c) The induced current on the surface of the superconductor (the xy plane) can be determined
from the boundary condition on the fangential component of B (Eq. 5.74): B = (K x ).
Using the field you get from the image configuration, show that

_ 3mrh A
C 2n(r2 4+ R2S2T
where r is the distance from the origin.

Problem 7.44 If a magnetic dipole levitating above an infinite superconducting plane (Prob.
7.43) is free to rotate, what orientation will it adopt, and how high above the surface will it
float?

Problem 7.45 A perfectly conducting spherical shell of radius a rotates about the z axis with
angular velocity w, in auniform magnetic field B = B 2. Calculate the emf developed between
the “north pole” and the equator. [Answer: %Bowa2]

Problem 7.46 Refer to Prob. 7.11 (and use the result of Prob. 5.40, if it helps):

(a) Does the square ring fall faster in the orientation shown (Fig. 7.19), or when rotated 45°
about an axis coming out of the page? Find the ratio of the two terminal velocities. If you
dropped the loop, which orientation would it assume in falling? [Answer: (v/2 — 2y/1 ).
where [ is the length of a side, and y is the height of the center above the edge of the magnetic
field, in the rotated configuration.]

(b) How long does is take a circular ring to cross the bottom of the magnetic field, at its
(changing) terminal velocity?

Problem 7.47

(a) Use the analogy between Faraday’s law and Ampere’s law, together with the Biot-Savart

law, to show that
19 (BU.t)yxxr
Er,t)y =—— | ————

dr’ 7.65)
47 9t 22 t (

for Faraday-induced electric fields.
(b) Referring to Prob. 5.50a, show that

0A
E=—-—, (7.66)
ot

where A is the vector potential. Check this result by taking the curl of both sides.

(c) A spherical shell of radius R carries a uniform surface charge o. It spins about a fixed
axis at an angular velocity w () that changes slowly with time. Find the electric field inside
and outside the sphere. [Hint: There are two contributions here: the Coulomb field due to the
charge, and the Faraday field due to the changing B. Refer to Ex. 5.11, and use Eq. 7.66.]

Problem 7.48 Electrons undergoing cyclotron motion can be speeded up by increasing the
magnetic field; the accompanying electric field will impart tangential acceleration. This is
the principle of the betatron. One would like to keep the radius of the orbit constant during
the process. Show that this can be achieved by designing a magnet such that the average
field over the area of the orbit is twice the field at the circumference (Fig. 7.52). Assume the
electrons start from rest in zero field, and that the apparatus is symmetric about the center of
the orbit. (Assume also that the electron velocity remains well below the speed of light, so
that nonrelativistic mechanics applies.) [Hint: differentiate Eq. 5.3 with respect to time, and
use F =ma=qFE.]
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Figure 7.51

A superconductor is a perfect conductor with the additional property that the (constant) B
inside is in fact zero. (This “flux exclusion” is known as the Meissner effect.lg)

(c) Show that the current in a superconductor is confined to the surface.

(d) Superconductivity is lost above a certain critical temperature (7,), which varies from one
material to another. Suppose you had a sphere (radius a) above its critical temperature, and
you held it in a uniform magnetic field ByZ while cooling it below 7. Find the induced surface
current density K, as a function of the polar angle 6.

Problem 7.43 A familiar demonstration of superconductivity (Prob. 7.42) is the levitation of
a magnet over a piece of superconducting material. This phenomenon can be analyzed using
the method of images.!® Treat the magnet as a perfect dipole m, a height z above the origin
(and constrained to point in the z direction), and pretend that the superconductor occupies
the entire half-space below the xy plane. Because of the Meissner effect, B = 0 for z < 0,
and since B is divergenceless, the normal (z) component is continuous, so B; = 0 just above
the surface. This boundary condition is met by the image configuration in which an identical
dipole is placed at —z, as a stand-in for the superconductor; the two arrangements therefore
produce the same magnetic field in the region z > 0.

(a) Which way should the image dipole point (4z or —z)?

(b} Find the force on the magnet due to the induced currents in the superconductor (which is
to say, the force due to the image dipole). Set it equal to Mg (where M is the mass of the
magnet) fo determine the height / at which the magnet will “float.” [Hint: refer to Prob. 6.3.]

18The Meissner effect is sometimes referred to as “perfect diamagnetism,” in the sense that the field inside is not
merely reduced, but canceled entirely. However, the surface currents responsible for this are free, not bound, so
the actual mechanism is quite different.

19W. M. Saslow, Am. J. Phys. 59, 16 (1991).
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Figure 7.50

(a) Calculate R this way.

(b) Explain why this method is fundamentally flawed. [See J. D. Romano and R. H. Price, Am.
J. Phys. 64, 1150 (1996).]

(c) Suppose the ends are, instead, spherical surfaces, centered at the apex of the cone. Calculate
the resistance in that case. (Let L be the distance between the centers of the circular perimeters

of the end caps.) [Answer: (p/2mab)(b — a)2/( L2 4 (b —a)? — L)]

Problem 7.41 A rare case in which the electrostatic field E for a circuit can actually be
calculated is the following [M. A. Heald, Am. J. Phys. 52,522 (1984)]: Imagine an infinitels
long cylindrical sheet, of uniform resistivity and radius a. A slot (corresponding to the battery )
is maintained at +V{;/2, at ¢ = £, and a steady current flows over the surface, as indicated
in Fig. 7.51. According to Ohm’s law, then,

\%
Via,¢) = ZL:’ (-7 < ¢ < +m).

(a) Use separation of variables in cylindrical coordinates to determine V (s, ¢) inside and
outside the cylinder. [Answer: (Vo /) tan~! [(ssing)/(a+scosp)]l, (s < a); (Vo/m) tan~ !
[(asing)/(s +acosg)], (s > a)]

(b) Find the surface charge density on the cylinder. [Answer: (eqVy/ma)tan(¢/2)]
Problem 7.42 In a perfect conductor, the conductivity is infinite, so E = 0 (Eq. 7.3), and any
net charge resides on the surface (just as it does for an imperfect conductor, in electrosratics).
(a) Show that the magnetic field is constant (0B/3r = 0), inside a perfect conductor.

(b) Show that the magnetic flux through a perfectly conducting loop is constant.
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Problem 7.49 An atomic electron (charge ¢) circles about the nucleus (charge Q) in an orbit
of radius r; the centripetal acceleration is provided, of course, by the Coulomb attraction of
opposite charges. Now a small magnetic field 4B is slowly turned on, perpendicular to the
plane of the orbit. Show that the increase in kinetic energy, dT', imparted by the induced
electric field, is just right to sustain circular motion ar the same radius r. (That’s why, in my
discussion of diamagnetism, I assumed the radius is fixed. See Sect. 6.1.3 and the references
cited there.)

Problem 7.50 The current in a long solenoid is increasing linearly with time, so that the flux
is proportional to ¢: ¢ = ar. Two voltmeters are connected to diametrically opposite points
(A and B), together with resistors (R| and Ry), as shown in Fig. 7.53. What is the reading
on each voltmeter? Assume that these are ideal voltmeters that draw negligible current (they
have huge internal resistance), and that a voltmeter registers / ab E - dl between the terminals
and through the meter. [Answer: Vi = aR1/(R1 + Ry); V = —aRy/(R] + Ry). Notice
that V] # V3, even though they are connected to the same points! See R. H. Romer, Am. J.
Phys. 50, 1089 (1982).]

Problem 7.51 In the discussion of motional emf (Sect. 7.1.3) I assumed that the wire loop
(Fig. 7.10) has a resistance R; the current generated is then I = vBh /R. But what if the wire
is made out of perfectly conducting material, so that R is zero? In that case the current is
limited only by the back emf associated with the self-inductance L of the loop (which would
ordinarily be negligible in comparison with I R). Show that in this régime the loop (mass m)
executes simple harmonic motion, and find its frequency.20 [Answer: @ = Bh/~/mL]

Problem 7.52

(a) Use the Neumann formula (Eq. 7.22) to calculate the mutual inductance of the configuration
in Fig. 7.36, assuming a is very small (@ < b, a « z). Compare your answer to Prob. 7.20.

(b) For the general case (not assuming a is small) show that
T 15
M= p'oz—ﬂ,/abﬂ (1+§-ﬂ2+...>,

20For a collection of related problems, see W. M. Saslow, Am. J. Phys. 55, 986 (1987), and R. H. Romer, Eur.
J. Phys. 11, 103 (1990).
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Problem 7.53 Two coils are wrapped around a cylindrical form in such a way that the same
flux passes through every turn of both coils. (In practice this is achieved by inserting an iron
core through the cylinder; this has the effect of concentrating the flux.) The “primary” coil
has Ny turns and the secondary has N, (Fig. 7.54). If the current ] in the primary is changing.
show that the emf in the secondary is given by

é = & (7.67)

& M
where £ is the (back) emf of the primary. [This is a primitive transformer—a device for
raising or lowering the emf of an alternating current source. By choosing the appropriate
number of turns, any desired secondary emf can be obtained. If you think this violates the
conservation of energy, check out Prob. 7.54.]

Problem 7.54 A transformer (Prob. 7.53) takes an input AC voltage of amplitude Vj, and
delivers an output voltage of amplitude V5, which is determined by the turns ratio (V,/ V| =
Ny /Ny). If Np > Nj the output voltage is gféater than the input voltage. Why doesn’t this
violate conservation of energy? Answer: Power is the product of voltage and current; evidently
if the voltage goes up, the current must come down. The purpose of this problem is to see
exactly how this works out, in a simplified modegl.

(a) In an ideal transformer the same flux passes through all turns of the primary and of the
secondary. Show that in this case M 2= L{L,, where M is the mutual inductance of the coils.
and L1, L, are their individual self-inductances.

(b) Suppose the primary is driven with AC voltage Vi, = V| cos (wt), and the secondary is
connected to a resistor, R. Show that the two currents satisfy the relations
dl; dlp db dlj

L M2 vy cos (o), L2 M = LR
1 TM g = Vicos(@h) Logm + Mo 2
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(c) Using the result in (a), solve these equations for I1(¢) and I(r). (Assume I; has no DC
component.)

(d) Show that the output voltage (Vour = I, R) divided by the input voltage (Vi) is equal to
the turns ratio: Vout/ Vi, = N2/ Nj.

(e) Calculate the input power (Pyy = Vip /1) and the output power (Poyt = Vout I2), and show
that their averages over a full cycle are equal.

Problem 7.55 Suppose J(r) is constant in time but p(r, £) is not—conditions that might prevail,
for instance, during the charging of a capacitor.

(a) Show that the charge density at any particular point is a linear function of time:

p(r, 1) = p(r, 0) + p(r, 0)r,

where p(r, 0) is the time derivative of p atz = 0.

This is not an electrostatic or magnetostatic configuration;2! nevertheless—rather surprisingly—
both Coulomb’s law (in the form of Eq. 2.8) and the Biot-Savart law (Eq. 5.39) hold, as you
can confirm by showing that they satisfy Maxwell’s equations. In particular:

(b) Show that
po fJx)yxr
Bry=— | ———dr
(r) rom / 2
obeys Ampere’s law with Maxwell’s displacement current term.

Problem 7.56 The magnetic field of an infinite straight wire carrying a steady current I can be
obtained from the displacement current term in the Ampere/Maxwell law, as follows: Picture
the current as consisting of a uniform line charge A moving along the z axis at speed v (so that
I = )v), with a tiny gap of length ¢, which reaches the origin at time ¢ = 0. In the next instant
(up to t = €/v) there is no real current passing through a circular Amperian loop in the xy
plane, but there is a displacement current, due to the “missing” charge in the gap.

(a) Use Coulomb’s law to calculate the z component of the electric field, for points in the xy
plane a distance s from the origin, due to a segment of wire with uniform density —A extending
fromz; = vt — € tozp = v1.

(b} Determine the flux of this electric field through a circle of radius ¢ in the x y plane,

(c) Find the displacement current through this circle. Show that I, is equal to 7, in the limit
as the gap width (¢) goes to zero. [For a slightly different approach to the same problem, see
W. K. Terry, Am. J. Phys. 50, 742 (1982).]

Problem 7.57 The magnetic field outside a long straight wire carrying a steady current / is (of
course)
_ ol

B=—-¢.
2 s

21S0me authors would regard this as magnetostatic, since B is independent of 7. For them, the Biot-Savart law is
a general rule of magnetostatics, but V- J = 0 and V x B = z10J apply only under the additional assumption that
o is constant. In such a formulation Maxwell’s displacement term can (in this very special case) be derived from
the Biot-Savart law, by the method of part (b). See D. F. Bartleit, Am. J. Phys. 58, 1168 (1990); D. J. Griffiths
and M. A. Heald, Am. J. Phys. 59, 111 (1991).
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Figure 7.55

The electric field inside the wire is uniform:

where p is the resistivity and a is the radius (see Exs. 7.1 and 7.3). Question: What is the
electric field outside the wire? This is a famous problem, first analyzed by Sommerfeld, and
known in its most recent incarnation as “Merzbacher’s puzzle 22 The answer depends on how
you complete the circuit. Suppose the current returns along a perfectly conducting grounded
coaxial cylinder of radius b (Fig. 7.55). In the region a < s < b, the potential V (s, z) satisfies
Laplace’s equation, with the boundary conditions
1pz

@ Via. z)=-
T

—: (i) V(b,z) =0.
a

Unfortunately, this does not suffice to determine the answer—we still need to specify boundary
conditions at the two ends. In the literature it is customary to sweep this ambiguity under the
rug by simply asserting (in so many words) that V (s, z) is proportional to z: V (s, z) = zf(s).
On this assumption:

(a) Determine V (s, z).
(b) Find E(s, 7).
(c) Calculate the surface charge density o (z) on the wire.

[Answer: V = (—Izp/naz)[ln(s/b)/ In(a/b)} This is a peculiar result, since Eg and o (2) are
not independent of z—as one would certainly expect for a truly infinite wire.}

Problem 7.58 A certain transmission line is constructed from two thin metal “ribbons,” of
width w, a very small distance # <& w apart. The current travels down one strip and back
along the other. In each case it spreads out uniformly over the surface of the ribbon.

(a) Find the capacitance per unit length, C.
(b) Find the inductance per unit length, L.

(c) What is the product £C, numerically? [£ and C will, of course, vary from one kind of
transmission line to another, but their product is a universal constant—check, for example, the
cable in Ex. 7.13—provided the space between the conductors is a vacuum. In the theory of
transmission lines, this product is related to the speed with which a pulse propagates down the

line: v = 1/+/LC.]

22A. Sommerfeld, Electrodynamics, p. 125 (New York: Acadeinic Press, 1952); E. Merzbacher, Am. J. Phyvs.
48, 104 (1980); further references in M. A. Heald, Am. J. Phys. 52, 522 (1984).
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(d) If the strips are insulated from one another by a nonconducting material of permittivity
€ and permeablility (4, what then is the product £C? What is the propagation speed? [Hint:
see Ex. 4.6; by what factor does L change when an inductor is immersed in linear material of
permeability (7]

Problem 7.59 Prove Alfven’s theorem: In a perfectly conducting fluid (say, a gas of free
clectrons), the magnetic flux through any closed loop moving with the fluid is constant in time.
(The magnetic field lines are, as it were, “frozen” into the fluid.)

(a) Use Ohm’s law, in the form of Eq. 7.2, together with Faraday’s law, to prove thatif 6 = oo

and J is finite, then

BB_V vxB
o x (v x B).

(b) Let S be the surface bounded by the loop (P) at time ¢, and S’ a surface bounded by the
loop in its new position (P’) at time ¢ + dt (see Fig. 7.56). The change in flux is

dcb:/ B(t+dt)-da—/ B(t) - da.
s S

Show that
/ B(t + dr) ~da+/ B(t+dt)-da=/ B(t +dt)-da
S R S

(where R is the “ribbon” joining P and P’), and hence that
aB
dCDzdt/ — ~da—-/ B(t +dr) -da
Sl R
(for infinitesimal dt). Use the method of Sect. 7.1.3 to rewrite the second integral as
dt% B xv)-dl,
P

and invoke Stokes’ theorem to conclude that

do JB
— = — -V -da.
R /‘g(at X (v X B)) da

Together with the result in (a), this proves the theorem.

Figure 7.56
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Problem 7.60

(a) Show that Maxwell’s equations with magnetic charge (Eq. 7.43) are invariant under the
duality transformation

E' = Ecosa+ cBsing,

cB// = c¢Bcosa —E sin.oz, (7.68)
¢q, = (GeCOSA +gmsina,

4y = qmcosa —cgesina,

where ¢ = 1/,/€pptg and « is an arbitrary rotation angle in “E/B-space.” Charge and current
densities transform in the same way as ge and gy,. [This means, in particular, that if you know
the fields produced by a configuration of electric charge, you can immediately (using & = 90°)
write down the fields produced by the corresponding arrangement of magnetic charge.]

(b) Show that the force law (Prob. 7.35)
1
F=g.(E+vXB)+gnB— —2v><E) (7.69)
c

is also invariant under the duality transformation.




Intermission

All of our cards are now on the table, and in a sense my job is done. In the first
seven chapters we assembled electrodynamics piece by piece, and now, with Maxwell’s
equations in their final form, the theory is complete. There are no more laws to be learned,
no further generalizations to be considered, and (with perhaps one exception) no lurking
inconsistencies to be resolved. If yours is a one-semester course, this would be a reasonable
place to stop.

But in another sense we have just arrived at the starting point. We are at lastin possession
of a full deck, and we know the rules of the game—it’s time to deal. This is the fun part, in
which one comes to appreciate the extraordinary power and richness of electrodynamics.
In a full-year course there should be plenty of time to cover the remaining chapters, and
perhaps to supplement them with a unit on plasma physics, say, or AC circuit theory, or even
a little General Relativity. But if you have room only for one topic, I'd recommend Chapter
9, on Electromagnetic Waves (you’ll probably want to skim Chapter 8 as preparation).
This is the segue to Optics, and is historically the most important application of Maxwell’s
theory.



