UPSEE - 2008

Physics

Two wires have lengths, diameters and specific resistances all in the ratio of 1: 2. The resistance
of the first wire is 10 ohm. Resistance of the second wire in ohm will be

- (a) 5
- (b) 10
- (c) 20
- (d) infinite
- 2. The dimensions of coefficient of self inductance
 - (a) $[ML^2T^{-2}A^{-2}]$
- (b) [ML²T⁻²A⁻¹]
- (c) $[MLT^{-2}A^{-2}]$
- (d) [MLT-2A-1]
- 3. Two spheres of equal masses, one of which is a thin spherical shell and the other a solid, have the same moment of inertia about their respective diameters. The ratio of their radii will be
 - (a) 5:7
- (b) 3:5
- (c) √3:√5
- (d) $\sqrt{3}:\sqrt{7}$
- 4. The acceleration of the centre of mass of a uniform solid disc rolling down an inclined plane of angle a is
 - (a) g sin α
 - (b) 2/3 g sin α
 - (c) $1/2 g \sin \alpha$
 - (d) $1/3g \sin \alpha$
- 5. A thin wire of mass M and length L is bent to form a circular ring. The moment of inertia of this ring about its axis is
- (b) $\frac{1}{12} ML^2$
- (c) $\frac{1}{3\pi^2} ML^2$
- (d) $\frac{1}{\pi^2} ML^2$
- 6. If g is the acceleration due to gravity on earth's surface, the gain of the potential energy of an object of mass m raised from the surface of the earth to a height equal to the radius R of the earth is
- (c) $\frac{1}{2} mgR$

7. A wave travelling along a string is described by the equation

 $y = A \sin(\omega t - kx)$

The maximum particle velocity is

- (a) Am
- (b) ω/k
- (c) $d\omega/dk$
- (d) x/l
- 8. Oxygen and hydrogen are at the same temperature T. The ratio of the mean kinetic energy of oxygen molecules to that of the hydrogen molecules will be
 - (a) 16:1
- (b) 1:1
- (c) 4:1
- (d) 1:4
- 9. The charge carriers in a p-type semiconductor are
 - (a) electrons only
 - (b) holes only
 - (c) holes in larger numbers and electrons in smaller numbers
 - (d) holes and electrons in equal numbers
- 10. A ball thrown by one player reaches the other in 2 s. The maximum height attained by the ball above the point of projection will $(g = 10 \text{ m/s}^2)$
 - (a) 2.5 m
- (b) 5 m
- (c) 7.5 m
- (d) 10 m
- 11. What causes chromatic aberration?
 - (a) Non-paraxial rays
 - (b) Paraxial rays
 - (c) Variation of focal length with colour
 - (d) Difference in radii of curvature of the bounding surfaces of the lens
- 12. The graph between the time period and the length of a simple pendulum is
 - (a) straight line
- (c) ellipse
- (d) parabola
- 13. The image formed by a concave mirror
 - (a) is always real
 - (b) is always virtual
 - (c) is certainly real if the object is virtual
 - (d) is certainly virtual

15.	The Bulk Modulus for an incompressible liquid is (a) zero (b) unity (c) infinity (d) between 0 and 1 A 20 μ F capacitor is connected to 45 V battery through a circuit whose resistance is 2000 Ω . What is the final charge on the capacitor? (a) 9×10^{-4} C (b) 9.154×10^{-4} C (c) 9.8×10^{-4} C (d) None of these A particle having almost zero mass and exactly	24.	are in the ratio of 4/3 and radius of the wires are in the ratio of 2/3, then the ratio of the currents passing through the wires will be (a) 3 (b) 1/3 (c) 8/9 (d) None of these Two identical positive charges are fixed on the y-axis at equal distances from the origin O. A negatively charged particle starts on the x-axis, at a large distance from O, moves along the x-axis, passes through O and moves far away from O. Its
	zero charge is (a) positron (b) electron (c) neutron (d) neutrino		acceleration a is taken as positive along its direction of motion. The best graph between the particle's acceleration and its x-coordinate is
17.	The ionisation potential of hydrogen atom is 13.6 eV. The energy required to remove an electron from the second orbit of hydrogen will be (a) 27.4 eV (b) 13.6 eV	u e	represented by (a) (b)
18.	(c) 3.4 eV (d) None of these A long spring is stretched by 2 cm and its potential energy is <i>U</i> . If the spring is stretched by 10 cm; its potential energy will be (a) <i>U</i> /5 (b) <i>U</i> /25 (c) 5 <i>U</i> (d) 25 <i>U</i>		(c) $A \rightarrow A $
19.	A change of 8.0 mA in the emitter current brings a	25	The Deiseas's served have the value
	change of 7.9 mA in the collector current. The values of α and β are	25.	The Poisson's ratio cannot have the value (a) 0.7 (b) 0.2
	(a) 0.99, 90 (b) 0.96, 79		(c) 0.1 (d) 0.3
20.	(c) 0.97, 99 (d) 0.99, 79 The intensity of radiation emitted by the sun has its maximum value at a wavelength of 510 nm and	26.	The dimensions of electric dipole moment are (a) [L ² I] (b) [LI] (c) [LTI] (d) [T ⁻²]
	that emitted by the north star has the maximum value at wavelength of 350 nm. If these stars behave like black bodies, then the ratio of surface	27.	If K denotes coefficient of thermal conductivity, d the density and c the specific heat, the unit of X , where $X = K/dc$ will be
	temperatures of the sun and north star is (a) 1.46 (b) 0.69		(a) cm \sec^{-1} (b) cm ² \sec^{-2}
	(c) 1.21 (d) 0.83	00	(c) cm sec (d) $cm^2 sec^{-1}$
2.	If the linear momentum is increased by 50%, then kinetic energy will be increased by (a) 50% (b) 20% (c) 125% (d) None of these Two resistances R and 2R are connected in	28.	charge Q is divided into two parts which are then kept some distance apart. The force between them will be maximum if the two parts are having the charge (a) Q/2 each (b) Q/4 and 3Q/4
	parallel in an electric circuit. The thermal energy developed in R and 2R are in the ratio		(c) Q/3 and 2Q/3
	(a) 1:2 (b) 2:1 (c) 1:4 (d) 4:1	29.	(d) e and $(Q - e)$, where $e =$ electronic charge A copper rod of length L and radius r is
3.	An electric current passes through a circuit containing two wires of the same material connected in parallel. If the lengths of the wires		suspended from the ceiling by one of its ends. What will be elongation of the rod due to its own

are in the ratio of 4/3 and radius of the wires are

14. The Bulk Modulus for an incompressible liquid is (a) zero (b) unity		are in the ratio of 4/3 and radius of the wires are in the ratio of 2/3, then the ratio of the currents
(c) infinity (d) between 0 and 1		passing through the wires will be
15. A 20 μF capacitor is connected to 45 V battery through a circuit whose resistance is 2000 Ω .	24	(a) 3 (b) 1/3 (c) 8/9 (d) None of these Two identical positive charges are fixed on the
What is the final charge on the capacitor?	24.	y-axis at equal distances from the origin O. A
(a) 9×10^{-4} C (b) 9.154×10^{-4} C		negatively charged particle starts on the x-axis, at
(c) 9.8×10^{-4} C (d) None of these		a large distance from O, moves along the x-axis,
16. A particle having almost zero mass and exactly zero charge is		passes through O and moves far away from O. Its acceleration a is taken as positive along its
(a) positron (b) electron		direction of motion. The best graph between the
(c) neutron (d) neutrino		particle's acceleration and its x-coordinate is
17. The ionisation potential of hydrogen atom is	No.	represented by
13.6 eV. The energy required to remove an		1 [†] a
electron from the second orbit of hydrogen will be		a a
(a) 27.4 eV (b) 13.6 eV		(a) (b)
(c) 3.4 eV (d) None of these		$0 \mid x \rightarrow 0 \mid x \rightarrow 0$
18. A long spring is stretched by 2 cm and its		
potential energy is U. If the spring is stretched by		
10 cm; its potential energy will be		
(a) U/5 (b) U/25		(c) (d) $x \rightarrow$
(c) 5 U (d) 25 U		
19. A change of 8.0 mA in the emitter current brings a		
change of 7.9 mA in the collector current. The	25.	The Poisson's ratio cannot have the value
values of α and β are		(a) 0.7 (b) 0.2
(a) 0.99, 90 (b) 0.96, 79		(c) 0.1 (d) 0.3
(c) 0.97, 99 (d) 0.99, 79	26.	The dimensions of electric dipole moment are
20. The intensity of radiation emitted by the sun has		(a) $[L^2I]$ (b) $[LI]$
its maximum value at a wavelength of 510 nm and		(c) [LTI] (d) [T ⁻²]
that emitted by the north star has the maximum	27.	If K denotes coefficient of thermal conductivity, d
value at wavelength of 350 nm. If these stars		the density and c the specific heat, the unit of X ,
behave like black bodies, then the ratio of surface		where $X = K/dc$ will be
temperatures of the sun and north star is		(a) $cm sec^{-1}$ (b) $cm^2 sec^{-2}$
(a) 1.46 (b) 0.69		(b) cm sec
(c) 1.21 (d) 0.83	00	Cay Cara Sec
21. If the linear momentum is increased by 50%, then	28.	Charge Q, is divided into two parts which are
kinetic energy will be increased by		then kept some distance apart. The force between
(a) 50% (b) 20%		them will be maximum if the two parts are having
(c) 125% (d) None of these		the charge
2. Two resistances R and 2R are connected in		(a) Q/2 each
parallel in an electric circuit. The thermal energy		(b) Q/4 and 3Q/4
developed in R and 2R are in the ratio		(c) Q/3 and 2Q/3
(a) 1:2 (b) 2:1	0.0	(d) e and $(Q - e)$, where e = electronic charge
(c) 1:4 (d) 4:1	29.	A copper rod of length L and radius r is
3. An electric current passes through a circuit		suspended from the ceiling by one of its ends

containing two wires of the same material

connected in parallel. If the lengths of the wires

31. A

32. A

3. In bet

4. A le 1.60 leng will (a)

> (d) Whi

What will be elongation of the rod due to its own

ho bei weight when p and Y are the density and Young's modulus of the copper respectively?

(a) $\frac{\rho^2 g L^2}{2Y}$

(b) $\frac{\rho g L^2}{2Y}$

(c) $\frac{\rho^2 g^2 L^2}{2Y}$

(d) $\frac{\rho gL}{2Y}$

30. A tube of length L is filled with an incompressible liquid of mass M and closed at both ends. The tube is then rotated in a horizontal plane about one of its ends with a uniform angular velocity ω. The force exerted by the liquid at the other end will be

(a) $\frac{1}{2}M^2\omega^2L$

(b) $\frac{1}{2}M\omega^2L$

- (c) $\frac{1}{2}M\omega^2L^2$
- (d) None of these
- 31. A solid ball of metal has a concentric spherical cavity within it. If the ball is heated, the volume of the cavity will

(a) increase

(b) decrease

(c) remain unaffected (d) None of these

32. A solid sphere of mass 2 kg rolls on a smooth horizontal surface at 10 m/s. It then rolls up a smooth inclined plane of inclination 30° with the horizontal. The height attained by the sphere before it stops is

(a) 700 cm

(b) 701 cm

(c) 7.1 m

(d) None of these

33. In an interference experiment, the spacing between successive maxima or minima is

(a) λd/D

(b) $\lambda D/d$

(c) dD/λ

(d) λd/4D

- 34. A lens made of glass whose index of refraction is 1.60 has a focal length of +20 cm in air. Its focal length in water, whose refractive index is 1.33, will be
 - (a) three times longer than in air
 - (b) two times longer than in air

(c) same as in air

(d) None of the above

- 35. Which of the following statements are incorrect?
 - (i) If there were no friction, work need to be done to move a body up an inclined plane is zero.
 - (ii) If there were no friction, moving vehicles could not be stopped even by locking the brakes.

- (iii) As the angle of inclination is increased, the normal reaction on the body placed on it increases.
- (iv) A duster weighing 0.5 kg is pressed against a vertical board with a force of 11 N. If the coefficient of friction is 0.5, the work done in rubbing it upward through a distance of 10 cm is 0.55 J.

(a) (i) and (ii)

(b) (i), (ii), (iv)

(c) (ii) and (iii)

(d) All of these

36. A 25 W and 100 W bulb are joined in series and connected to the mains. Which bulb will glow brighter?

(a) 25 W bulb

(b) 100 W bulb

(c) Both bulb will glow brighter

(d) None will glow brighter

37. A hollow sphere is filled with water through the small hole in it. It is then hung by a long thread and made to oscillate. As the water slowly flow out of the hole at the bottom, the period of oscillation will

(a) Continuously decrease

(b) Continuously increase

(c) first decrease then increase

(d) first increase then decrease

38. By increasing the temperature of a liquid its

(a) volume and density decrease

(b) volume and density increase

(c) volume increases and density decreases

(d) volume decreases and density increases

39. When a ceiling fan is switched off, its angular velocity falls to half while it makes 36 rotations. How many more rotations will it make before coming to rest?

(a) 24

(b) 36 (d) 12

(c) 18

40. Block A of mass m and block B of mass 2m are placed on a fixed triangular wedge by means of a massless, inextensible string

frictionless

pulley as shown in figure. The wedge is inclined at 45° to the horizontal on both the sides. If the coefficient of friction between the block *A* and the wedge is 2/3 and that between the block *B* and

released from rest (a) -1 (c) 0.2 Three identical root to form a rigid eq		48. The numerical ratio of average velocity average speed is (a) always less than one (b) always equal to one (c) always more than one (d) equal to or less than one 49. An ideal refrigerator has a freezer at temperature of -13°C. The coefficient performance of the engine is 5. The temperature of the air (to which heat is rejected) will be (a) 325°C (b) 325°K (c) 39°C (d) 320°C
2. A solid sphere is radius of sphere is which one of the form (a) Angular velocity (b) Angular mome (c) Moment of ine (d) Rotational kine	rotating in free space. If the increased keeping mass same ollowing will not be affected? ty ntum rtia etic energy	 50. Which of the following is not the case with the image formed by a concave lens? (a) It may be erect or inverted (b) It may be magnified or diminished (c) It may be real or virtual (d) Real image may be between the pole and focus or beyond focus
The coefficient of line (a) $\mu = \frac{R}{F}$ (c) $\mu = \frac{F}{R}$	miting friction μ is defined as $(b) \ \mu = \sqrt{\frac{F}{R}}$ $(d) \ \mu = \sqrt{\frac{R}{F}}$	 51. Cadmium rods are used in a nuclear reactor for (a) slowing down fast neutrons (b) speeding up slow neutrons (c) absorbing neutrons (d) regulating the power level of reactor
Two waves represent and $y = a \cos(\omega t)$ resultant wave will (a) a (c) $2a$ Which of the following photons?	ented by $y = a \sin(\omega t - kx)$ - kx) are superposed. The	 52. Ultrasonic waves are produced by (a) Piezoelectric effect (b) Peltier effect (c) Doppler's effect (d) Coulomb's law 53. In a cathode ray oscillograph, the focusing of beam on the screen is achieved by
(a) Momentum (c) Charge	(b) Energy (d) Velocity	(a) convex lenses (b) magnetic field

46. What is an ideal gas?

43

45.

(a) One that consists of molecules

(b) A gas satisfying the assumptions of kinetic theory

(c) A gas having Maxwellian distribution of speed

(d) A gas consisting of massless particles

47. A truck is moving on a friction less surface with uniform velocity of 10 m/s. A leak occurs in the water tank of the truck at the rate of 2 kg/s. What is the speed of truck after 50 s if the mass of truck is 100 kg and mass of water in the truck initially was 100 kg?

(a) 20 m/s

(b) 10 m/s

(c) 5 m/s

(d) None of these

(c) electric potential

(d) All of these

54. A body of mass 12 kg is suspended by a coil spring of natural length 50 cm and spring constant 2×103 N/m. The length of the spring after extension will be

(a) 0.00588 m

(b) 0.0588 m

(c) 0.5588 m

(d) None of these

55. A ball is dropped on a floor and bounces back to a height somewhat less than the original height, which of the curves depicts its motion correctly?

61. A

eq

mo

(a)

def

(a)

(c) 63. X-ra

(a)

64. The

62. Wh

- 56. In the relation $x = \cos(\omega t + kx)$, the dimensions of ware
 - (a) [M⁰LT]
- (b) [M⁰L⁻¹T⁰1
- (c) [MOLOT-1]
- (d) [M⁰LT⁻¹]
- 57. The frequency and intensity of a light source are doubled. Consider the following statements
 - (1) Saturation photocurrent remains almost the same.
 - (2) Maximum kinetic energy of the photoelectrons is doubled.
 - (a) Both (1) and (2) are true
 - (b) (1) is true but (2) is false
 - (c) (1) is false but (2) is true
 - (d) Both (1) and (2) are false
- 58. The temperature at which speed of sound in air becomes double of its value at 27°C is
 - (a) 54°C
- (b) 327°C
- (c) 927°C (d) None of these
- 59. A body moving with a uniform acceleration crosses a distance of 65 m in the 5th second and 105 m in 9th se cond. How far will it go in 20 s?
 - (a) 2040 m
- (b) 240 m
- (c) 2400 m
- (d) 2004 m
- 60. Bernoulli's theorem is a consequence of the law of conservation of
 - (a) momentum
 - (b) mass
 - (c) energy
 - (d) angular momentum
- 61. A 4 kg mass and a 1 kg mass are moving with the equal kinetic energies. The ratio of their momentums is
 - (a) 1:2
- (b) 1:1
- (c) 2:1
- (d) 4:1
- 62. Which of the following while in motion cannot be deflected by magnetic field?
 - (a) Protons
- (b) Cathode rays
- (c) Alpha particles
- (d) Neutrons
- 63. X-rays cannot penetrate through a sheet of
 - (a) wood
- (b) paper
- (c) aluminium
- (d) lead
- 64. The angle between particle velocity and wave velocity in a transverse wave is

- (a) zero
- (b) $\pi/4$
- (d) n
- (c) $\pi/2$ 65. Two fired bullets horizontally and with different speeds from the same place. Which bullet will hit the ground first?
 - (a) The faster bullet
 - (b) The slower bullet
 - (c) Both will hit simultaneously
 - (d) Depends on the masses
- 66. The air bubble formed by explosion inside water performed oscillation with time period T that is directly proportional to $p^a d^b E^c$, where p is the pressure, d is the density and E is the energy due to explosion. The values of a, b and c will be
 - (a) -5/6, 1/2, 1/3
 - (b) 5/6, 1/3, 1/2
 - (c) 5/6, 1/2, 1/3
 - (d) None of the above
- 67. A machine gun fires a bullet of mass 40 g with a velocity 1200 m/s. The man holding it can exert a maximum force of 144 N on the gun. How many bullets can be fired per second at the most?
 - (a) Only one
 - (b) Three
 - (c) Can fire any number of bullets
 - (d) 144 × 48
- 68. An ideal heat engine exhausting heat at 27°C is to have 25% efficiency. It must take heat at
 - (a) 127°C
- (b) 227°C
- (c) 327°C
- (d) None of these
- 69. A solid sphere is rolling without slipping on a horizontal surface. The ratio of its rotational kinetic energy to its translational kinetic energy is
- (b) 2/7
- (c) 2/5
- (d) 7/2
- 70. An artificial satellite is moving in a circular orbit around the earth with a speed equal to half the magnitude of escape velocity from the earth. The height of the satellite above the earth's surface will be
 - (a) 6000 km
- (b) 5800 km
- (c) 7500 km
- (d) 6400 km
- 71. A strong argument for the particle nature of cathode rays is that they
 - (a) produce fluorescence
 - (b) travel through vacuum
 - (c) get deflected by electric and magnetic fields
 - (d) cast shadow
- 72. A spring, which is initially in its unstretched condition, is first stretched by a length x and then

again by a further length x. The work done in the first case is W_1 , and in the second case is W_2 . Then

(a) $W_2 = W_1$

(b) $W_2 = 2W_1$

(c) $W_2 = 3W_1$

(d) $W_2 = 4 W_1$

- 73. Digital circuit can be made by repetitive use of this gate
 - (a) AND
- (b) OR
- (c) NOT
- (d) NAND
- 74. Three balls A, B, C are thrown from a height h with equal speeds upwards, downwards and

horizontally respectively. What is the relation among speeds v_A , v_B , v_C with which they hit the ground?

(a) $v_A = v_B = v_C$ (c) $v_A = v_B > v_C$ (b) $v_A > v_C > v_B$ (d) $v_A < v_C < v_B$

16.

17.

18.

19.

20.

21.

22.

23.

- 75. When the two inputs of a NAND gate are shorted the resulting gate is
 - (a) NOR
- (b) OR
- (c) NOT
- (d) AND

Chemistry

- 1. pH of a 0.0001M HCl solution is
 - (a) 4.0

(b) 2.0

(c) 6.0

(d) 7.0

- In Lucas test an alcohol reacts immediately and gives insoluble chloride. The alcohol is
 - (a) CH₃OH

(b) CH₃CH₂OH

(c) (CH₃)₂CHOH

(d) (CH₃)₃COH

- 3. Microcosmic salt is
 - (a) Na₄P₂O₇
 - (b) Na(NH₄)HPO₄
 - (c) Na(NH₃)HPO₄4H₂O
 - (d) MgNH₄PO₄
- 4. The reactant (X) in the reaction
 - $(X) \xrightarrow{\text{CH}_3\text{COONa} \atop (\text{CH}_3\text{CO})_2\text{O}}$ Cinnamic acid is

- 5. Which of the following does not react with sodium metal?
 - (a) $(CH_3)_2O$

(b) CH2CH2OH

(c) CH₃COOH

(d) C_6H_5OH

6. The IUPAC name for

$$CH_3$$
— C — CH_2 — CH = CH — CH_3 is

- (a) 5-chloro-hex-2-ene
- (b) 2-chloro-hex-5-ene
- (c) 1-chloro-1-methyl-pent-3-ene
- (d) 5-chloro-5-methyl-pent-2-ene

- A reaction proceeds by first order, 75% of this reaction was completed in 32 min. The time required for 50% completion is
 - (a) 8 min

(b) 16 min

(c) 20 min

(d) 24 min

- 8. Aqueous solution of ferric chloride is acidic due to
 - (a) ionization
 - (b) polarization
 - (c) dissociation
 - (d) hydrolysis
- The correct order of heat of formation of halogen acids is
 - (a) HI > HBr > HCl > HF
 - (b) HF > HCl > HBr > HI
 - (c) HCl > HF > HBr > HI
 - (d) HCl > HBr > HF > HI
- 10. A compound (X) on ozonolysis followed by reduction gives an aldehyde C₂H₄O and 2-butanone, compound (X) is
 - (a) 3-methyl pentene-2
 - (b) 3-methyl pentene-3
 - (c) 3-methyl hexene-3
 - (d) 3-ethyl pentene-3
- The element which on burning in air gives peroxide is
 - (a) lithium
- (b) sodium
- (c) rubidium
- (d) caesium
- 12. The C—O—H bond angle in ethanol is nearly
 - (a) 90°
- (b) 104°
- (c) 120°
- (d) 180°
- 13. Protic solvent is
 - (a) diethyl ether
- (b) n-hexane
- (c) acetone
- (d) ethanol
- In cyclopropane, cyclobutane and cyclohexane, the common group is

	form on the following shell form on
(c) an ion with positive and negative charge at	45. Which of the following shell, form an outer octahedral complex?
different points on it	(a) d^4 (b) d^8
(d) a positively charged ion without a metal atom	(a) d (c) d ⁶ (d) None of these
36. The vapour pressure of pure liquid A is 0.80 atm.	
When a non volatile B is added to A its vapour	46. $C(s) + O_2(g) \longrightarrow CO_2(g)$; $\Delta H = -94$ kcal
pressure drops to 0.60 atm. The mole fraction of	$2CO(g) + O_2(g) \longrightarrow 2CO_2(g); \Delta H = -135.2$
B in the solution is	kcal. The heat of formation of CO(g) is
(a) 0.125 (b) 0.25	(a) - 26.4 kcal (b) 41.2 kcal
(c) 0.5 (d) 0.75	(c) 26.4 kcal (d) 229.2 kcal
37. The velocity of oxidation of oxalic acid by	47. Which of the following will be easily nitrated?
acidified KMnO ₄ increases as the reaction	CH ₃
progress. It is an example of	
(a) promoters (b) catalytic poisons	(a) (b) (c)
(c) autocatalysis (d) inhibitors	(a) (b) (b)
38. What flows in the internal circuit of a galvanic	
cell?	(c) CH_3NO_2 (d) $C_6H_5NO_2$
(a) Ions (b) Electrons	48. In Kjeldahl's method of estimation of nitrogen,
(c) Electricity (d) Atoms	CuSO ₄ acts as
39. Oxygen and sulphur both are the member of	(a) oxidising agent (b) reducing agent
same group in periodic table but H ₂ O is liquid	(c) catalytic agent (d) hydrolysis agent
while H ₂ S is gas because	49. The hydroxide insoluble in NH ₄ OH + NH ₄ Cl is
(a) molecular weight of water is more	(a) Al(OH) ₃ (b) Ca(OH) ₃
(b) electronegativity of sulphur is more	(c) Zn(OH) ₂ (d) Mg(OH) ₂
(c) H ₂ S is weak acid (d) water molecules are having weak hydrogen	50. Time period of a wave is 5×10^{-3} s, what is the
bonds between them	frequency?
40. Osmotic pressure of a solution at a given	(a) $5 \times 10^{-3} \text{ s}^{-1}$ (b) $2 \times 10^2 \text{ s}^{-1}$
temperature given	(c) $23 \times 10^3 \text{ s}^{-1}$ (d) $5 \times 10^2 \text{ s}^{-1}$
(a) increases with concentration	51. Which of the following, is an example of aldol
(b) decreases with concentration	condensation?
(c) remains same	(a) 2CH ₃ COCH ₃ dil NaOH
(d) initially increases and then decreases	
41. Toluene on treatment with CrO ₃ and (CH ₃ CO) ₂ O	CH ₃ COHCH ₃ CH ₂ COCH ₃
followed by hydrolysis with dil HCl gives	(b) 2HCHO dil NaOH CH₃OH
(a) benzaldehyde (b) benzoic acid	(c) C ₆ H ₅ CHO + HCHO dil NaOH C ₆ H ₅ CH ₂ OH
(c) phenol (d) phenylacetaldehyde	(d) None of the above $C_6H_5CH_2OH$
42. $F_2C = CF_2$ is a monomer of	tone of the above
(a) teflon (b) nylon	52. Conjugate acid of HF ₂ is
(c) glyptal (d) buna-S	(a) U+
Which of the following is not a property of colloidal solution?	(c) P-
(a) Heterogeneity	
(b) Particle size > 100 nm	53. Sodium thiosulphate is a
(c) Tyndall effect	(a) reducing agent (b) oxidising agent
(d) Brownian movement	Promite dyphi (d) blood
4. Diffusion of helium gas is four times faster than	The state of the s
(a) CO ₂ (b) SO ₂	TOTAL OIDIL
(c) NO_2^4 (d) O_2^2	(a) by emission of electromagnetic radiation (b) by absorption of
	(b) by absorption of any electromagnetic radiation
	- addition

	(c) by absorption of electromagnetic radiation of	64. Plaster of Paris on making paste with little water	
	particular frequency (d) without emission or absorption of	sets to hard mass due to formation of	
	(d) without emission or absorption of electromagnetic radiation	(a) CaSO ₄	
		(b) CaSO ₄ ·1/2 H ₂ O	
	Valence bond theory of metallic bond was given	(c) CaSO ₄ ·H ₂ O	
	by Chi David I	(d) CaSO ₄ ·2H ₂ O	
	(a) Dalton (b) Drudel (c) Fajan (d) Pauling	65. C — C bond length is maximum in	
		(a) diamond (b) graphite	
56.	Splitting of spectrum lines in magnetic field is	(c) naphthalene (d) fullerene	
	(a) Stark effect (b) Raman effect	66. Ammoniacai silver ilitrate form	
	(c) Zeeman effect (d) Rutherford effect	precipitate easily with	
57.	The number of possible alkynes with molecular	(a) CH ₃ C ≡CH	
	formula C_5H_8 is (a) 3 (b) 4	(b) $CH_3C \equiv C - CH_3$	
	(a)	(c) $CH_3CH = CH_2$ (d) $CH_2 = CH_2$	
		67 A solution of sodium thiosulphate on addition of	f
58.	Isoelectronic pair among the following is (a) Ca and K (b) Ar and Ca ²⁺	few drops of ferric chloride gives violet colou	
*	(a) Ca and K (b) Ar and Ca ²⁺ (c) K and Ca ²⁺ (d) Ar and K	due to the formation of	
	For the following reaction in gaseous phase	(a) Na $S_{*}O_{*}$ (b) $Fe_{2}(SO_{4})_{3}$	
59		(c) Fe (S-O ₂) ₂ (d) Fe ₂ (S ₂ O ₃) ₂	
	$CO(g) + \frac{1}{2}O_2(g) \longrightarrow CO_2(g) K_p/K_c$ is	60 The comotic pressure (At 27° C) of an aqueou	0
	(a) $(RT)^{1/2}$ (b) $(RT)^{-1/2}$	colution (200 ml) containing b g of a protein	
	(c) (RT) (d) (RT) ⁻¹	2×10^{-3} atm. If $R = 0.080 \text{ L}$ atm mol ⁻¹ K ⁻¹ , th	
1	(c) (RI)	molecular weight of protein is	300
60). An organic amino compound reacts with aqueous nitrous acid at low temperature to produce an	(a) 7.2×10^5 (b) 3.6×10^5	
	oily nitroso amine. The compound is	(c) 1.8×10^5 (d) 1.0×10^5	1
	(a) CH ₃ NH ₂ (b) CH ₃ CH ₂ NH ₂	69. The property which distinguishes formic ac	d
	(c) CH ₃ CH ₂ NHCH ₂ CH ₃ (d) (CH ₃ CH ₂) ₃ N	from acetic acid is	
6	1. The drug used to bring down fever are known as	(a) only ammonium salt of formic acid)H1
	(a) analgesic (b) antibiotic	heating gives amide (b) when heated with alcohol/H ₂ SO ₄ only ace	ric
	(d) sulpha drugs	acid forms ester	
6	2. A metal 'M' reacts with N ₂ to give a compound '1	(c) only acetic acid forms salts with alkali	
	(MoN) 'A' on heating at high temperature gives	(d) only formic acid reduces Fehling's solution	n .
	back 'M' and 'A' on reacting with H ₂ O give a gas b.	70 On adding 1 g arsenic to 80 g benzene. 1	he
	B' turns CuSO 4 solution blue on passing through	freezing point of benzene is lowered by 0.19	°C.
	it. M and B can be	The formula of arsenic is	
	(a) Al and NH ₃ (b) Li and NH ₃	(a) As (b) As ₂	
	(c) Na and NH ₃ (d) Mg and NH ₃	(c) As ₃ (d) As ₄	
	63. In the reaction sequence	71. Alloy is an example of	
2	NOH	(a) gel (b) solidified emulsion	n
,	H-SO, 540 K - 1 1 - 6	(c) solid solution (d) sol	
	$\frac{\text{H}_2\text{SO}_4}{\text{(X)}} \xrightarrow{540 \text{ K}} \text{Nylon 6}$	72. The standard emf of a cell, involving one elect	
	(X) is	change is found to be 0.591 V at 25°C.	The
	(a) cyclohexanone	equilibrium constant of the reaction is $(F = 96)$	500
4	(b) caprolactum	C mol ⁻¹) (a) 1.0×10^1 (b) 1.0×10^5	
	(c) HO(CH ₂) NH		1/3
	(d) hexamethylene diisocyanate	(c) 1.0×10^{10} (d) 1.0×10^{30}	
1			

- 73. One mole of magnesium nitride on the reaction with an excess of water gives
 - (a) one mole of NH₃ (b) two moles of NH₃
 - (c) one mole of HNO3 (d) two moles of HNO3
- 74. Which of the following oxides is amphoteric in character?
 - (a) SnO₂
- (b) SiO₂
- (c) CO,
- (d) CaO
- 75. p-cresol reacts with chloroform in alkaline medium to give the compound A which adds hydrogen cyanide to form the compound B. The latter on acidic hydrolysis gives chiral carboxylic acid. The structure of the carboxylic acid is

Mathematics

1. Let
$$f(x) = \begin{cases} 5^{1/x}, & x < 0 \\ \lambda & [x], & x \ge 0 \end{cases}$$
 and $\lambda \in R$,

then at x = 0

- (a) f is discontinuous
- (b) f is continuous only, if $\lambda = 0$
 - (c) f is continuous only, whatever λ may be
 - (d) None of the above
- 2. Eccentricity of ellipse $x^2 + 2y^2 - 2x + 3y + 2 = 0$ is

- 3. The slopes of the lines represented by $x^2 + 2hxy + 2y^2 = 0$ are in the ratio 1:2, then it
 - (a) $\pm \frac{1}{2}$
- (b) $\pm \frac{3}{2}$

- - (a) 5e
- (b) 4e
- (c) 3e
- (d) 2e
- 5. A train of length 200 m, traveling at 30 m/s overtakes another train of length 300 m, traveling at 20 m/s in the same direction. The time taken by the first train to pass the second is (a) 30 s
- (b) 50 s
- (c) 10 s
- (d) 40 s
- 6. If a falling body covers 75 m in its last second, then the height from which it is falling is (take $g = 10 \text{ m/s}^2$) (in metres)

- (a) 320
- (b) 300
- (c) 350
- (d) 360
- 7. If S be the sum, P be the product and R be the sum of the reciprocals of n terms of a GP, then p^2 is

- 8. In the expansion of $\left(x \frac{1}{x}\right)^6$, the constant term is
 - (a) 20
- (c) 30
- (d) 30
- 9. If ABCDEF is a regular hexagon with $\overrightarrow{AB} = \overrightarrow{a}$ and $\overrightarrow{BC} = \overrightarrow{b}$, then \overrightarrow{CE} equals
 - (a) $\vec{b} \vec{a}$
- $(b) \vec{b}$
- (c) $\vec{b} 2\vec{a}$
 - (d) None of these

value

- 10. The maximum $5\cos\theta + 3\cos\left(\theta + \frac{\pi}{3}\right) + 3is$
 - (a) 5
- (b) 11
- (c) 10
- (d) -1
- 11. If A and B are two events such that $P(A \cup B) = \frac{3}{4}, P(A \cap B) = \frac{1}{4}, P(\overline{A}) = \frac{2}{3}$ $P(\overline{A} \cap B)$ is equal to
 - (a) 5
- (b) $\frac{3}{2}$
- (c) $\frac{5}{8}$

12	A survey shows	that 63% of the Americans like
14.	cheese whereas	76% like apples. If $x\%$ of the
	Americans like b	both cheese and apples, then

(a) x = 39

(b) x = 63

(c) $39 \le x \le 63$ (d) None of these

13. Magnitudes of vectors \vec{a} , \vec{b} , \vec{c} are 3, 4, 5 respectively. If \vec{a} and $\vec{b} + \vec{c}$, \vec{b} and $\vec{c} + \vec{a}$, \vec{c} and $\vec{a} + \vec{b}$ are mutually perpendicular, magnitude of $\vec{a} + \vec{b} + \vec{c}$ is

(a) $4\sqrt{2}$

(b) $3\sqrt{2}$

(c) 5√2

(d) $3\sqrt{3}$

- 14. Which one of the following is not true?
 - (a) Matrix addition is commutative
 - (b) Matrix addition is associative
 - (c) Matrix multiplication is commutative

(d) Matrix multiplication is associative

15. If matrix $\begin{bmatrix} -1 & 0 & 3 \\ \lambda & -3 & 0 \end{bmatrix}$ is singular, then λ is

equal to

(a) - 2

(b) -1

(c) 1

(d) 2

16. Twelve tickets are numbered from 1 to 12. One ticket is drawn at random, then the probability of the number to be divisible by 2 or 3, is

(a) 2/3

(b) 7/12

(c) 5/6

(d) 3/4

17. If f be a function such that f(9) = 9 and f'(9) = 3, then $\lim_{x\to 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}$ is equal to

(a) 9

(c) 1

(d) None of these

18. The most general value of θ satisfying the equations $\sin \theta = \sin \alpha$ and $\cos \theta = \cos \alpha$ is

(a) $2n\pi + \alpha$

(b) $2n\pi - \alpha$

(c) $n\pi + \alpha$

(d) $n\pi - \alpha$

19. The distance between the pair of lines represented by the $x^2 - 6xy + 9y^2 + 3x - 9y - 4 = 0$ is equation

(b) $\frac{1}{2}$

20. The differential equation of all circles which passes through the origin and whose centre lies on y-axis is

(a) $(x^2 - y^2) \frac{dy}{dx} - 2xy = 0$

(b) $(x^2 - y^2) \frac{dy}{dx} + 2xy = 0$

(c) $(x^2 - y^2) \frac{dy}{dx} - xy = 0$

(d) $(x^2 - y^2) \frac{dy}{dx} + xy = 0$

21. If sum of the series $\sum_{n=0}^{\infty} r^n = S$, for |r| < 1, then

sum of the series $\sum_{n=0}^{\infty} r^{2n}$, is

(a) S^2 (b) $\frac{S^2}{2S+1}$

(c) $\frac{2S}{S^2 - 1}$ (d) $\frac{S^2}{2S - 1}$

22. If $A = \begin{bmatrix} 2x & 0 \\ x & x \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$, then x equals

(a) 2 (b) $-\frac{1}{2}$

23. Sum of *n* terms of the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots$ is

(a) 2^{-n}

(b) $2^{-n}(n-1)$

(c) $2^n(n-1)+1$

(d) $2^{-n} + n - 1$

24. If forces \vec{P} , \vec{Q} , \vec{R} acting at a point can be represented by the sides of a triangle taken in order, then

(a) $\vec{P} + \vec{Q} + \vec{R} = \vec{0}$ (b) $\vec{P} - \vec{Q} + \vec{R} = \vec{0}$

(c) $\vec{P} + \vec{Q} - \vec{R} = \vec{0}$ (d) $\vec{P} - \vec{Q} - \vec{R} = \vec{0}$

25. The area bounded by the curve $y^2(2a - x) = x^3$ and the line x = 2a is

(a) $3\pi a^2$ sq unit (b) $\frac{3\pi a^2}{2}$ sq unit

(c) $\frac{3\pi a^2}{4}$ sq unit (d) $\frac{6\pi a^2}{5}$ sq unit

26. Angles of a triangle are in the ratio 4:1:1. The ratio between its greatest side and perimeter is

(a)
$$\frac{3}{2+\sqrt{3}}$$

(b)
$$\frac{1}{2+\sqrt{3}}$$

(c)
$$\frac{\sqrt{3}}{\sqrt{3}+2}$$

(d)
$$\frac{2}{2+\sqrt{3}}$$

- 27. A sphere S_1 impings directly on an equal sphere S2 at rest. If the coefficient of restitution is e, then the velocities of S_1 and S_2 are in the ratio
 - (a) $\frac{1+e}{1-e}$ (b) $\frac{1-e}{1+e}$ (c) $\frac{e-1}{e+1}$ (d) $\frac{e+1}{e-1}$
- 28. If $\begin{vmatrix} a & a^2 & 1 + a^3 \\ b & b^2 & 1 + b^3 \\ c & c^2 & 1 + c^3 \end{vmatrix} = 0$ and the vectors

$$\vec{\mathbf{A}} = (1, a, a^2), \vec{\mathbf{B}} = (1, b, b^2)$$

and

$$\vec{\mathbf{C}} = (1, c, c^2)$$

are non-coplanar, then abc is equal to

(a) 0

(b) -1

(c) 1

- (d) None of these
- 29. The magnitude of the two forces forming a couple is 36 N each and the arm of the couple is 4 m. The magnitude of each force of an equivalent couple whose arm is 9 m, is (in Newtons)
 - (a) 18
- (b) 26
- (c) 16
- (d) 15
- 30. The locus of the equation $x^2 y^2 = 0$ is
 - (a) a circle
 - (b) a hyperbola
 - (c) a pair of lines
 - (d) a pair of lines at right angles
- 31. Let z_1 , z_2 and z_3 be the affixes of the vertices of a triangle having the circumcentre at the origin. If z is the affix of its orthocentre, then z is equal to
 - (a) $\frac{z_1 + z_2 + z_3}{3}$ (b) $\frac{z_1 + z_2 + z_3}{2}$

 - (c) $z_1 + z_2 + z_3$ (d) None of these
- 32. If α , β are the roots of the equation $ax^2 + bx + c = 0$, then $\frac{\alpha}{a\beta + b} + \frac{\beta}{a\alpha + b}$ is equal to
 - (a) $\frac{2}{a}$
- (c) $\frac{2}{}$
- (d) $-\frac{2}{}$

- 33. If a + 2b + 3c = 12, $(a, b, c \in \mathbb{R}^+)$, then ab^2c^3 is
 - $(a) \geq 2^3$
- (b) $\geq 2^{6}$
- (c) $\leq 2^6$
- (d) None of these
- 34. The number of solutions $\log_4(x+1) = \log_2(x-3)$ is
 - (a) 3

- (d) 0
- 35. If the AM of two numbers be A and GM be G, then the numbers will be
 - (a) $A \pm (A^2 G^2)$
 - (b) $\sqrt{A} \pm \sqrt{A^2 G^2}$

 - (c) $A \pm \sqrt{(A+G)(A-G)}$ (d) $A \pm \sqrt{(A+G)(A-G)}$
- 36. The determinant

$$\begin{vmatrix} a & b & a\alpha + b \\ b & c & b\alpha + c \\ a\alpha + b & b\alpha + c & 0 \end{vmatrix} = 0, \text{ if } a, b, c \text{ are in}$$

- (a) AP
- (b) GP
- (c) HP
- (d) None of these
- 37. How many 10 digits numbers can be written by using digits (9 and 2)?
 - (a) ${}^{10}C_1 + {}^{9}C_2$ (b) 2^{10}
 - (c) 10C2
- (d) 10!
- 38. If four dice are thrown together. Probability that the sum of the numbers appearing on them is 13, is
 - (a) $\frac{35}{324}$ (b) $\frac{5}{216}$ (c) $\frac{11}{216}$ (d) $\frac{11}{432}$
- 39. If $\frac{\sin(x+y)}{\sin(x-y)} = \frac{a+b}{a-b}$, then $\frac{\tan x}{\tan y}$ is equal to
 - (a) $\frac{b}{a}$ (b) $\frac{a}{b}$
- (d) None of these
- **40.** If in a $\triangle ABC$, $2b^2 = a^2 + c^2$, then $\frac{\sin 3B}{\sin B}$ is equal to
 - (a) $\frac{c^2 a^2}{2ca}$
- (b) $\frac{c^2 a^2}{ca}$
- (c) $\left(\frac{c^2-a^2}{ca}\right)^2$ (d) $\left(\frac{c^2-a^2}{2ca}\right)^2$

then x is

- (a) $\pm \frac{1}{2}$
- (b) $0, \frac{1}{2}$
- (c) $0, -\frac{1}{2}$
- (d) $0, \pm \frac{1}{2}$
- 42. A pole stands vertically inside a triangular park ABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in park the foot of the pole is at the
 - (a) centroid
- (b) circumcentre
- (c) incentre
- (d) orthocentre
- 43. Circumcentre of triangle whose vertices are (0, 0), (3, 0) and (0, 4) is
- (b) $(2, \frac{3}{2})$
- (c) (0, 0) (d) None of these
- 44. The equation of the line perpendicularly the segment joining the points (-4, 6) and (8, 8) is
 - (a) 6x + y 19 = 0 (b) y = 7
 - (c) 6x + 2y 19 = 0 (d) x + 2y 7 = 0
- 45. The length of the common chord of the circles $x^2 + y^2 + 2x + 3y + 1 = 0$ $x^2 + y^2 + 4x + 3y + 2 = 0$ is

- 46. Locus of mid point of any focal chord of $y^2 = 4ax$

 - (a) $y^2 = a(x 2a)$ (b) $y^2 = 2a(x 2a)$

 - (c) $y^2 = 2a(x a)$ (d) None of these
- 47. The number of values of c such that the straight line y = 4x + c touches the curve $\frac{x^2}{4} + y^2 = 1$, is
 - (a) 0
- (b) 2
- (c) 1
- (d) ∞
- 48. The product of perpendiculars drawn from any point if, a hyperbola to its asymptotes, is
- (c) $\frac{ab}{\sqrt{a} + \sqrt{b}}$ (d) $\frac{ab}{a^2 + b^2}$

- **49.** The domain of the function $f(x) = \log_{2x-1} (x-1)$ is
 - (a) (1, ∞)
- (b) $\left(\frac{1}{2}, \infty\right)$
- (c) (0, ∞)
- (d) None of these
- 50. $\lim_{x \to 0} \left\{ \frac{1 + \tan x}{1 + \sin x} \right\}^{\operatorname{cosec} x}$ is equal to
 - (a) $\frac{1}{e}$
- (b) 1
- (c) e
- (d) e^2
- 51. If $f(x) = \cot^{-1}\left(\frac{x^x x^{-x}}{2}\right)$, then f'(1) is equal to
 - (a) -1

- (c) $\log 2$ (d) $-\log 2$ 52. The minimum value of $x^2 + \frac{1}{1 + x^2}$ is at
 - (a) x = 0
- (b) x = 1
- (c) x = 4
- (d) x = 3
- 53. $\int \csc^4 x \, dx$ is equal to
 - (a) $\cot x + \frac{\cot^3 x}{2} + C$
 - (b) $\tan x + \frac{\tan^3 x}{3} + C$
 - (c) $-\cot x \frac{\cot^3 x}{2} + C$
 - (d) $-\tan x \frac{\tan^3 x}{3} + C$
- 54. $\int_0^{1000} e^{x-[x]} dx$ is

 - (a) $e^{1000} 1$ (b) $\frac{e^{1000} 1}{e 1}$
 - (c) 1000 (e-1) (d) $\frac{e-1}{1000}$
- 55. The area bounded by the curves $y^2 = 4a^2(x-1)$ and lines x = 1 and y = 4a is

 - (a) $4a^2$ sq unit (b) $\frac{16a}{3}$ sq unit
 - (c) $\frac{16a^2}{3}$ sq unit
 - (d) None of these
- 56. The solution of the differential equation $(x+y)^2 \frac{dy}{dx} = a^2$ is
 - (a) $(x + y)^2 = \frac{a^2x}{2} + C$
 - (b) $(x + y)^2 = a^2x + C$
 - (c) $(x + y)^2 = 2a^2x + C$
 - (d) None of the above

(a) $\vec{0}$

(b)
$$\vec{a} + \vec{b} + \vec{c}$$

(c)
$$\frac{\overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{c}}}{3}$$
 (d) $\frac{\overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{b}} - \overrightarrow{\mathbf{c}}}{3}$

58. A plane which passes through the point (3, 2, 0) and the line $\frac{x-3}{1} = \frac{y-6}{5} = \frac{3-4}{4}$ is

(a) x - y + z = 1 (b) x + y + z = 5 (c) x + 2y - z = 0 (d) 2x - y + z = 5

(b)
$$x + y + z = 5$$

(d)
$$2x - y + z = 5$$

59. Median of

$${}^{2n}C_0$$
, ${}^{2n}C_1$, ${}^{2n}C_2$, ${}^{2n}C_3$, ..., ${}^{2n}C_n$

(where n is even) is

(a) ${}^{2n}C_n$

(b)
$${}^{2n}C_{n+}$$

- (d) None of these
- **60.** Two bodies of masses m and 4m are moving with equal momentum. The ratio of their KE is

(a) 1:4

(b) 4:1

(c) 1:1

(d) 1:2

61. A particle is projected from the top of tower 5 m high and at the same moment another particle is projected upward from the bottom of the tower with a speed of 10 m/s, meet at distance 'h' from the top of tower, then h is equal to

(a) 1.20 m

(b) 2.5 m

(c) 1.25 m

- (d) None of these
- $f(x) = \frac{1}{2} \tan\left(\frac{\pi x}{2}\right), -1 < x < 1$ 62. Let $g(x) = \sqrt{3 + 4x - 4x^2}$, then dom (f + g) is given

by (a) $\left| \frac{1}{2}, 1 \right|$ (b) $\left| \frac{1}{2}, -1 \right|$

(b)
$$\left[\frac{1}{2}, -1\right]$$

(c)
$$\left[-\frac{1}{2}, 1\right]$$
 (d) $\left[-\frac{1}{2}, -1\right]$

63. The equation $z\bar{z} + (2-3i)z + (2+3i)\bar{z} + 4 = 0$ represents a circle of radius

(a) 2

(b) 3

(c) 4

(d) 6

64. If the roots of the equations $px^2 + 2qx + r = 0$ and $qx^2 - 2\sqrt{pr} x + q = 0$ be real, then

- (a) p = q (b) $q^2 = pr$ (c) $p^2 = qr$ (d) $r^2 = pr$
- 65. If a + b = 8, then ab is greatest when

(a) a = 4, b = 4 (b) a = 3, b = 5

(c) a = 6, b = 2 (d) None of these

66. If |x| < 1, then the sum of the $1 + 2x + 3x^2 + 4x^3 + ... \infty$ will be

(a) $\frac{1}{1-x}$

(c) $\frac{1}{1+x^2}$ (d) $\frac{1}{(1-x)^2}$

67. The value of

$$\frac{1}{81^n} - \frac{10}{81^n} \, {^{2n}\!C_1} + \frac{10^2}{81^n} \, {^{2n}\!C_2}$$

 $-\frac{10^3}{81^n}\cdot {^{2n}C_3} + \ldots + \frac{10^{2n}}{81^n}$ is

(a) 2 (c) $\frac{1}{2}$

(d) 1

68. If $a \neq b \neq c$, the value of x which satisfies the

equation
$$\begin{vmatrix} 0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0 \end{vmatrix} = 0$$
, is

(a) x = 0

(b) x = a

(c) x = b

(d) x = c

69. For how many value(s) of x in the closed internal

[-4, -1], is the matrix
$$\begin{bmatrix} 3 & -1+x & 2 \\ 3 & -1 & x+2 \\ x+3 & -1 & 2 \end{bmatrix}$$

singular?

(a) 2

(b) 0

- (c) 3
 - (d) 1
- 70. If ${}^{8}C_{r} {}^{7}C_{3} = {}^{7}C_{2}$, then r is equal to
 - (a) 3

(b) 4

- (c) 8
- 71. The value of $\frac{1}{r^2} + \frac{1}{r^2} + \frac{1}{r^2} + \frac{1}{r^2}$ is

(b) $\frac{a^2 + b^2 + c^2}{\Delta^2}$

(c) $\frac{\Delta^2}{a^2 + b^2 + c^2}$ (d) $\frac{\Delta^2}{\Delta^2}$

72. The slopes of the lines given by the equation $3x^2 + 10xy + 3y^2 - 15x - 21y + 18 = 0$ are

(a) 3 and
$$\frac{1}{3}$$

(a)
$$3 \text{ and } \frac{1}{3}$$
 (b) $-3 \text{ and } -\frac{1}{3}$ (c) $-3 \text{ and } \frac{1}{3}$ (d) $3 \text{ and } -\frac{1}{3}$

(c)
$$-3 \text{ and } \frac{1}{3}$$

(d)
$$3 \text{ and } -\frac{1}{3}$$

73. If function

$$f(x) = \begin{cases} x, & \text{if } x \text{ is rational} \\ 1 - x, & \text{if } x \text{ is irrational} \end{cases}$$

then the number of points at which f(x) is continuous, is

- (a) ∞
- (b) 1
- (c) 0
- (d) None of these

- 74. If $x^m y^n = (x + y)^{m+n}$, then $\frac{dy}{dx}$ is

(a)
$$\frac{x+y}{xy}$$
 (b) xy (c) $\frac{x}{y}$ (d) $\frac{y}{x}$ 75. $\int \frac{1+x+\sqrt{x+x^2}}{\sqrt{x}+\sqrt{1+x}} dx$ is equal to

(a)
$$\frac{1}{2}\sqrt{1+x} + C$$

(b)
$$\frac{2}{3}(1+x)^{3/2}+C$$

(c)
$$\sqrt{1+x} + C$$

(c)
$$\sqrt{1+x} + C$$

(d) $2(1+x)^{3/2} + C$

Answers ...

PHYSICS

1. (b)	2. (a)	3. (c)	4. (b)	5. (a)	6. (c)	7. (a)	8. (b)	9. (c)	10. (b)
11. (c)	12. (d)	13. (c)	14. (c)	15. (a)	16. (d)	17. (c)	18. (d)	19. (d)	20. (b)
21. (c)	22. (b)	23. (b)	24. (c)	25. (a)	26. (c)	27. (d)	28. (a)	29. (b)	30. (b)
31 . (b)	32. (c)	33. (b)	34. (a)	35. (c)	36. (a)	37. (c)	38. (c)	39. (d)	40. (d)
41 . (a)	42. (b)	43. (c)	44. (b)	45. (c)	46 . (b)	47. (d)	48. (d)	49. (c)	50. (d)
51 . (c)	52. (a)	53. (c)	54. (c)	55. (b)	56. (c)	57. (c)	58. (c)	59. (c)	60. (c)
61. (c)	62. (d)	63. (d)	64. (c)	65. (c)	66. (a)	67. (b)	68. (a)	69. (c)	70. (d)
71. (c)	72. (c)	73. (d)	74. (c)	75. (c)					

CHEMISTRY

1. (a)	2. (d)	3. (b)	4. (b)	5. (a)	6. (a)	7. (b)	0 (4)	0 03	
11. (b)	12. (a)	13. (d)	14. (b)	15. (b)	16. (b)		8. (d)	9. (b)	10. (a)
21. (c)	22. (d)	23. (c)	24. (b)	25. (c)		17. (d)	18. (c)	19. (c)	20 . (c)
31. (b)	32. (b)	33. (b)	The state of the s	STREET, STREET,	26. (c)	27. (b)	28. (b)	29. (d)	30. (d)
41. (a)	2211		34. (b)	35. (c)	36. (b)	37. (c)	38. (a)	39. (d)	40. (a)
51. (a)	42. (a)	43. (b)	44. (b)	45. (d)	46. (a)	47 . (a)	48. (c)	49. (a)	50. (b)
CONTRACTOR OF THE PARTY OF THE	52. (d)	53. (a)	54. (c)	55. (b)	56. (c)	57. (a)	58. (b)	59. (b)	60. (c)
61. (c)	62. (b)	63. (b)	64. (d)	65. (a)	66. (a)	67. (c)	68. (b)	69. (d)	70. (d)
71. (c)	72. (c)	73. (b)	74. (a)	75. (c)				The state of the s	

MATHEMATICS

1. (c)	2. (a)	3. (b)	4. (a)	5. (b)	6 (0)	-			
11. (a)				1000	6. (a)	7. (a)	8. (b)	9. (c)	10. (c)
	12. (c)	13. (c)	14. (c)	15. (d)	16. (a)	17. (b)	18. (c)	19. (c)	20. (a)
21. (d)	22. (d)	23. (d)	24. (a)	25. (b)	26. (c)	27. (b)	28. (b)	700	THE PARTY OF THE P
31. (c)	32. (d)	33. (c)	34. (b)	35. (c)	36. (b)	37. (b)		29. (c)	30 . (b)
41. (d)	42. (a)	43. (a)	44. (a)	45. (b)	46. (c)	47. (b)	38. (a)	39. (b)	40. (d)
51. (a)	52. (a)	53. (c)	54. (c)	55. (b)	56. (d)	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	48. (a)	49 . (a)	50. (b)
61. (c)	62. (c)	63. (b)	64. (b)		THE RESERVE OF THE PARTY OF THE	57 . (a)	58. (a)	59. (a)	60. (b)
- C - C - C - C - C - C - C - C - C - C	100000000000000000000000000000000000000			65. (a)	66. (d)	67 . (d)	68. (a)	69. (d)	70. (a)
71. (b)	72. (b)	73. (c)	74. (d)	75. (b)			The same of the land		70. (a)