Exercise 15.9

Chapter 15 Multiple Integrals 15.9 1E
(a)

Consider the following spherical coordinates of the point:

53
36

Recall that spherical coordinates (p.9,¢] is given by
x = psingcosf, vy = psingsind, z = pcosg.

Plot the point with the given spherical coordinates as shown below:

z
A

x F

Find the rectangular coordinates of the given point.
Find x-coordinate.

Substitute 6 for g, %mr g. and %mr g in x= psingcosd.
i

. Frd
x = 6Gsin—cos—
6 3

o33

3
2



Find y»-coordinate.

Substitute & for p, %fur ¢.and %fur ¢ in y = psingsinf.

y= 6sin Zsin =
6 3

=ﬁ(f_](§}

2
Find z-coordinate.

Substitute & for o, % for @, and % for ¢ in z = pcosg.
z = 6eos >
6
3
=*"[£J
2
=33

Therefore, the rectangular coordinates of the point [ﬁ,%,g]is_

3 343
)
(b)

Consider the following spherical coordinates of the point:

57

Plot the point with the given spherical coordinates as shown below:




Find the rectangular coordinates of the given point.
Find x-—coordinate.

Substitute 3 for g2, %mr g. and STE for ¢ in x = psingcosé.

3 T
x =3sin—cos—
4 2

e i
=3sin —cos—
2

=3{%J(ﬂ)
=0

Find y-coordinate.

Substitute 3 for g2, % for @, and ETH for ¢ in y = psingdsiné.

= 35in3isin i
Y P
=35i11£sin£

4 2
2
(&)

32
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Find z-—coordinate.

Substitute 3 for p. %mr g. and ETE for ¢ in z = pcosg.

z =3cns3—ﬁ
4
—3{:{)55
_3{£]
2
32
i

Therefore, the rectangular coordinates of the point [3,%}%}5,
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Write x, ¥ and z in the form of spherical coordinates

x = psingcosf . (1)
y = psingsinfd ... (2)
z=peos¢. ....(3)
Substitute the known values in equation (1) and find x.
oo I T
x =2sin—cos—
2 2

= ()
: o ot IR :
Replace o with 2, g with E and ¢ with E equation (2).
y = 2sin 7 sin
22
= 2
Substitute the known values in equation (3) and find z.
T
z=2cos—
= 0

Therefore, we get the corresponding rectangular coordinates as {{]j 2 []]_

(0} Plot the point with the given spherical coordinates [4._,?,%}.

Substitute the known values in equation (1) and find x.
.o JT T
x= 451:1—-:03[——]
3 4
=6

Replace o0 with 4. g with _%_ and ¢ with % equation (2)

o T
= 45in—sin| ——
g 3 [ 4]

Substitute the known values in equation (3) and find z.

T 4cos£
=3

Therefore, we get the corresponding rectangular coordinates as (\.I'E —JE, 2)_
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(a)

The relationship between rectangular coordinates [x,y,z] and the spherical coordinates
(p.0.¢) are

x = psingcosd
y=psingsing (1)

Let [.r,_}r,z:lz[ﬂ,-z,ﬂ).

From (2), we have

p=1J0 +(=2) +0?
=2

From (2), we have

-::cn:;.;afazi
2
o
2
=0
T
=1
And
cosd = —
£sin g
0
5N g
H:S—E [since y=-2 < 0]

Therefore, the suitable spherical coordinates are [2,—,—J .




H=|— [sincez = —2 < 0]

I
2

t?:%r [sincex==1<0,y=1>0]

Therefore the suitable spherical coordinates are
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a)

The relation between rectangular coordinates [x,_p,z} and the spherical coordinates
(p,0.¢) are

x = psingcos

v =psingsing (1)

= peosg

And o= it g ytez? ee(2)
Let (.r,y,z}=[l,ﬂ,~.}r?:}

From

.

2). we have

240 +(\3)

(2] ==

P

From (2), we have

n:n:ss».‘,a!‘r=i
Ie
3
2
i
¢"
And
cosf = —
£sin ¢
-
2-]
2
=

Therefore, the suitable spherical coordinates are [E,ELE] .




(D)
Let (x,,z) ={J§,—I,2~J‘r§}

From (2), we have
JB) +(1 +(245)
=3+1+12

P

(=]

From (2), we have

cosg =

d= [since y=-1<0]

Therefore, the suitable spherical coordinates are

A

11z =

] |
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Consider the surface @:%,

Need to describe the given surface in words.

Since we know that the surface ¢ = ¢ represents a half-cone with the z-axis as its axis.

HQ<cee %’ then the cone lies above the xy-plane.

I g{ ¢ < . then the cone lies below the xy-plane.

For the given surface ¢ =§, and D{E{E_

3

Therefore the given surface represents a half-cone and it is lies above the xy-plane with the z-
axis as its axis.

Graph the given surface.
Using Maple command we draw the given surface.
Keystrokes:

plot3d([r, theta, (1/3)*Fi], r=0 __ 2, theta =0 .. 2*Pi, coords = spherical, axes = normal, labels =

["x", "y", "z"], style = surface, transparency = .5, color = blug)

Maple result:

pa"-r.:i‘j'd( 3

r, theta, L ],, r=10.2, theta = 0..2-Pi, coords = sphevical, axes = normal, labels

=["x", "y", "2"], style = surface, transparency = 0.5, color = I:.’m?]:
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Given surface is p=3

A sphere centered at the origin with radius 3.

Chapter 15 Multiple Integrals 15.9 7E
p= sin8sing

p2= psingsing

or x2+y2+4z2=y

X2+y2- y+ 1/4 + z2= 1/4 (by completing the square)
X2+(y-1/2)2 + 22=1/4

Thus, it is a sphere centered at (0,1/2,0) with radius 1/2.
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The surface is o [sin:4 Fsin® S+ cos” .;E}) =
This 15 an equation in spherical coordinates.
=0, to convert this to the rectangular coordinates, we use
x=poandoos &
¥=osndsn g
Z= pcosd

So, o (sin2 $sin’ S+cos’ .;Eﬁ:l = 9can be written as [psin @sin 5')2 +|:,G|::-::-s -;E.‘Fjl2 =

In other words, ¥ +z° =5



iJbserve that the reference of x1s not given in this equation.
o, we follow that —oo < x <00
Thus, the given spherical equation can be understood to be yz +z22=3 ,—mecx <m

This 18 a cylinder with base perpendicular to w2 — plane with radius 3 units and height iz

infinite.
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(a) We have

2 2 2
gyt oy
To find the equation in spherical coordinates we use the eqguations
x = psingcosfl , v = psingsin! and z = pcosg

Putting these valuesof x. yand zin ,? — .2 .;_}.3 . we get

2 . 2 I,
(pcosg)” = (psingcosh)” +(psingsing)
cu B o P, RV 2 S el . B
p cos ¢ = p sin ¢geos f +p sin gsinf

= pzcﬂsz(j} = ﬂzﬂiﬂzfﬁ(ﬂﬂﬁzﬂ‘i‘sinjﬁj

= plcos’p = ﬂhﬂi“‘ff"{lj

o

=% ccns::ii = sin}:f;
The required egquation in the spherical coordinates is 005245 = sinzda
(D)
We have
2 2
il
Put x = psingcosfl and = = pcos¢ . we get

(,(:rsil-n;{;«:i:ilsfi‘}2 + {pﬂﬂsqﬁ)j =9
= Flsinqucoslﬁ +ﬂ2cn52¢= 9
=2 PE(SiIIEG‘JCDSEﬁ"FCDS::ﬁ) =9

The required equation in the spherical coordinates is

pg{sinztﬁmsgf} = coszrﬁ) =
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(a)

We have

2 2 2
=2y e
To find the equation in spherical coordinates we use the eqguations

x = psingcosfl. v = psingsindand == pcosg

Putting these values of y yandzin the equation 2 =2y -i—yz + 2 = (. we get
[,{:rL-:ir'n:;fu::-::ms.ulﬁ?]2 —Z(psinuj:cﬂsﬁ) * (,c:r.'qir'n;f:s:imﬁ?]2 + (pcna:ii]j =0

= 5’ sin’ ¢cos’ 0 — 2psingcosd + p° sin” @sin 6+ p~ cos ¢ = 0

= p”sin’ @[ cos’#+ sin’ ) —2psingcost + p’ cos’ ¢ = 0

= pz sinzda — 2 psingcosfl + pz cnsqu =0

= pz [sin2 ¢ + cos” qfaj — 2psingcost = 0

=> pz — 2psingcost = 0

= plp — 2singcosf) = 0
The required equation in the spherical coordinates is p(p — 2singcosfl) = 0
(b)
We have

x+2y+iz=1

Pul x = psingcosfl. v = psingsinffand == pcosg in the equation x 42y +3z= 1.
we get

psingcosf + 2{ psingsind) + 3pcosp = 1
= psingcosf + 2psingsinfd + 3pcosg = 1

The required equation in the spherical coordinates is
psingcost! + 2 psingsing + 3pcosg = |
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Consider the solid formed by the following parameters:

pil.%igﬁ‘j}?

In general, @ varies from 0to 24 . and g is positive. To plot the region, use the inequalities
0<p<l3nfd<g<n,0<8<2r.

The inequality p <1 is the solid, inside a sphere of radius 1 centered at the origin.

The set 3?3 < ¢ < r describes a half-cone. It opens in the downward direction. The

combination of the two sets p< i‘% < ¢ < xr represents the plate with shape sphere of radius

1 which is parallel to the xy—plane and the center is located at [{LE},I}_

Sketch solid of the inequalities p < 1.3{ < ¢ < & as follows:

hz
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Find the shapes described by the boundaries and then find their intersection in order to
sketch the solid

The inequality 2= 2 13 the solid inside a sphere of radius 2 centered at the origin
Eewrite the inequality o =csc g

=
- sin

osn @ =1
The expression esin @ gives the » distance from the z-axis to apownt {2, 8, &) . Switching

briefly to the cylindrical coordinate system, we can therefore rewrite this inequality as
r=l
Which iz the solid inside a circular cylinder with azis the z-axis and radius 1.

The intersection of the two given inequalities 15 therefore the solid cut out of a sphere of
radius 2 by a cylinder of radius 1

=2 = 5
o) e
/""f
| = |
-
| o=
-
______,-'/ =1
J'-J-”-- |
__.’"- e i v -_"\-\.I
-"-‘- - - --___|_-\4-"“".|‘l

The sphere and cylinder are shown with gray dashed lines and the solid of intersection
shown with a red outline. The solid 15 something akin to a circular cylinder of radius 1
and height 2 with ams along the z-axis, but with rounded “caps™ on the top and bottom
where it 15 bounded by the sphere.
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Consider the solid which is lies above the cone - = .I'_rl +y* and below the sphere

+yiezt=z.

Need to describe the solid in terms of inequalities involving spherical coordinates.
First sketch the solid:

Use Maple to sketch the solid:

Keystrokes:

with(plots);

a = implicitplot3d(x"2+y"2+z"2-z=0,x=-5 .. 53, y=-5. 5,Z=0 . 1, style = surface, color =
blue)

b = implicitplot3d(sqrt(x"2+y"2)=z x=-5__ 5 y=-5_ 5 z=0 _ 5, style = surface, color =
red); display(a, b, axes = normal);

Maple result:
> with{ plots) :

, a = implicitplotdd(x* + )% + 2 —z=0,x=-05.0.5,y=-0.5.0.5, 2= 0..1, style = surface,
celor = -[H'irﬁ'}:

a=PLOTID(...)

. b= :‘mpﬁcf!pfﬂ!jd{\f &+ _i‘z =z, x==0.5.0.5y=-0.5.0.5z=0.0.5 stvle = surface, color

- rr.-’a:.l'):

b=PLOT3D|...)

> display(a, b, axes = normal);




Observe the below graph:

Required
solid region
E

Since we know that

pz — +},: + 2
x = psingcosd
v = psingsin{
z=pcosg

Use these formulas convert the given surfaces from rectangular to spherical coordinates.

Rewrite - = f'_rl +y* as

peosg = J{psin;ﬁcns E]z +( psingsin 5}3
= pyJsin’ gcos’ @ +sin’ gsin® O
= ,f;-\.,(:a.in1 $(cos’ @ +sin’ 6)

= psing
Then
peosg= psing
tang =1

A
'?5_4



Rewrite x* + y* +z* =z as
Pt = peosg
p=cosg

Therefore, the description of the solid is given by:

E={{p,€,¢}|ﬂ595c03¢,ﬂ£¢£%,ﬂ55£2£},
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The inequality consists of the equations which may or May not be equal but are assigned with
the symbols £,2,<,>

Consider a hollow sphere of diameter 30 ¢mand thickness 0.5 cm .
Let the ball is centered at the origin of the x, ),z axes.
The radius of the sphere is,

30
F=—0Ccm
2
=|5¢cm
Clearly it is a sphere of radius 15 cm
By the formula,
x? + y? + 2% = /® Where ris the radius
This implies,
% =(|5]3
=225

As the thickness is 0.5 em thus the new radius formed is,

r,=15cm-05¢cm
=14.5¢em

Where r, is the new radius
This implies

The new equation is,

-

x+yt 2t =(14.5)
=210.25

Thus, the equation of the data becomes an inequality,

14.5< x* +_y1+z2
<15



The graph of the inequality is,

{7
i
-

Therefore the required solution is

145 x* +y* +2°
<15

(B)
Suppose that the sphere is cut in half. If this sphere is cut in half then this means that may be
z=z0orz=<0.

This implies the upper half is,

145<x’ + )y’ + 27
<15
And,
zz0
Also the lower half is,

14.5<x’ +y* +2°

=15
And,
zs(
14.5<x’ +y* +2° >0
Therefore the required solution is ‘:5 ¢ # and
=
1455 x* +y* +2° z<0

<15
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73
j j jpﬂ sin. fd 0 dOd &
0

oo

The region of integration 18 given in spherical co — ordinates
T T
Ez{(p,ﬂ,;ﬁ): DE.;L‘JEE, l=8= o ngga}

Az we know the spherical co - ordinates [p,ﬁ', -;25) are given as

A 7T

(P,9.0)

X
Therefore the given solid can be given as

‘&

ot :

3
_[,02 sin gd 0 d8 dif
0

g

=

F- )

I
sin.;zﬁcf-;a&_[ dajpﬁ do
I

]

=[_ws¢];,g[5];}£[%p3£

-2)(Fe

= E"T”(z—ﬁ)

Il
= ey o G‘—f&:
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Consider the triple integral,

iz pr.pl F
f L I P sin(g)d pddd@ .
] 3 i
The region of the integration can be written as,

E={[p‘9,¢]|ﬂiﬁiimgﬂéimlEpil}.

Since o varies from 1 to 2.

This implies that,

1<p=2

1€+ y*+28 €2

Iii,rl+_}r1+:;'2£4

Observe that the region lies between two hemispheres of radius 1 and 2, and below the xy—
plane.

Since the volume is enclosed by a sphere of radius gis ;er‘J'_

The sketch of the solid is shown below:

©<— 6=0.2x7

Now the triple integral is evaluated as,



[ oo [ (2] snrapisa

:g LJ‘ sin(¢)dgdo

_lén
3

Hence, the value of the triple integral is

iz
3
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The shape shown is a section of cylinder, and is therefore best served with cylindrical
coordinates.

[ £ o sn(eypaso-

Observe the figure, the shape goes through exactly one quarter of a full rotation in the xy-

plane: resulting in our angle going from (jto %

The radius stops at 3, therefore, r will be in the interval [0, 3].

Finally, the z-coordinate goes from 0 to 2 (from the height of solid)
In cylindrical coordinates the volume element is calculated as follows
dv = dxdydz = rdrd Gdz

The limits of cylindrical variables are,

ris from 0 to 3
o isfmm{}tng

zisfrom0Oto 2



Use the following parametric equations
x=rcosé,
y=rsin;

¥ g
) o

Use this information and convert the triple integral in x, ¥,z into cylindrical coordinates as
follows.

”jf (x,¥.2) '—]“f{ﬂmst?:smﬂ z)rdzdrdf|

R
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We know the spherical co-ordinates [p,ﬂ, -;25) of apoint Fin space are such that

£ 15 the distance of the point P from the origin say O, & 13 the angle which the
projection of OF in xv-plane makes with x-amis and ¢ 15 the angle which the line

segment OF makes with the positive z-axis,
Mow inthe given solid, clearly o 15 varving from 1 to 2 (observe the solid 15 hollow

for 2less than 1), & wvaries from o) to 277 (when we start from posttive x-axis, there 13
no solid in the first octant thus starting from = the solid rotates up to 257) and the solid

starts from xy-plane 1n positive z-direction, so @ 15 varying from 0 to — . Hence the

integral 1s:

f

0

S psingcosd, psindsin 8, ocos .;Ef')pz sin e opd Bd g

A by
= D— b
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7 " 2 -
m H (I’l -i-y‘ + :2) dy Ball with center at the origin and radius of 5.

& p2r fﬁf(ﬂzsinzfj}cnszﬁ+p2sin2¢sinjﬁ+pzc032¢) ~2)p’singdpdfdg

(ol [op singdpdade

2w ! 5~ 12 | o R R
[ Iy [ 4] sinpdod g =27 [ising d o d g

¥

TR125 156250m

= fﬁ[ﬁ]ﬁrsingﬁ{lfiJ: : o sing d ¢

156250 : J12500m
— [—cosply = —
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Consider the following integral:

J[[(o=a=y")av

H
Here, H is the solid hemisphere H = x* + y* +z* 9. z>(in the spherical coordinates.
Use spherical coordinates ( p,#,¢):

x = psingcos#, y = psingsinf,z = pcos

In this case, the hemisphere above the xy-plane and so, the angle with respectto z—axis is
only half the total angle.

b
So, 0<g<—
¢ 2

Since the base of the hemisphere is a circle upon xy—plane denoted by x* +y? + 2% <9,
z20-

Then. 0<8<2x

Further, 0<x®+y*+2" = p® <9 saysthat 0< p<3.

}

Use the spherical coordinates to evaluate the given triple integral:

Therefore, the spherical wedge H is given by,

H:{{p,ﬂ,;ﬂﬂ{}ipﬂlﬂiﬂiErr,[]lia;ﬁi

v |

Fx,y,2)dV = [”J'T F(psingcosd, psin gsin 8, pcos @) o’ sin gd pdOdd

(o )ar =

I s 3
I I j(ﬂ-pzsinzgﬂcuszH—pzsinlgﬁsinzﬁ?}p:sin;édpdﬁdgé
ol el p=)

X
T 2r 3

= [ [ [ (9-p*sin® (cos’ 0-+sin* 6)) o* sin g pd el
g=i} =l p=i)

= [ T ] (0= sin® 4) p*singapdody
g=08=0 p=0

X
2 Iz 3

=j [ | (907 sing— p*sin’ ¢)d pddg

g=l =0 p=0



" Syt | 2

b
L
=

]5 9p51n¢ psmqﬁ d0d
3 5 "

=0

I‘i
=

_!.'_"_I”|=|

=
=

i3
[313 q;i-m'sj—l“"ﬁ]dadgﬁ

=0

=

=z_[ j‘[snsjw—ms‘“ “"]dg& 9

F=0] g=0

=

7 24331:1 243sin’ ¢

= f8151n¢d¢ j’ 2 g e

L

_ 31[-::::-5;&]5—243[ sin” gcosg ic S¢:|ﬁ g

f#=0 5 3 1]
r f
= ]’ 51-&[3]}19
=0t 5 3
_{3 }[ |_E]
_(zﬂ}(zaa]
_ 486
—_—
5

Hence, the value of the given triple integral using spherical coordinates is ﬁ
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Consider the following triple integral:

JIf(+5?)av

Where E lies between the spheres x? +y2 +z'=4dandx* + p +z21=9.

The objective is to evaluate the given triple integral.



The volume of the region between the spheres is given by

o b
v = [[] f(psingcosd, psingsin@, pcosd) p* sing dpd6dg

L P

Where E is a spherical wedge given by

E={(p.0.¢)la<p<ha<f<pc<d=<d|

Since the radius of the spheres is 2 and 3, so that the limits for g2 as (2, 3).
Use spherical coordinates.
x = psingcost, y = psingsin# and z = pcosg-
Then. x*+ y'= p’sing.
The region of integration can be expressed as a spherical rectangle as 2< p<3, 0<8<2rx.
and 0<g=<nm.

Therefore,

JIT, (o +.57)av

pisin’g- pisingdpdddd

x 3
I
x 3
= jjp*sinwdpdgﬁda
02
iz x 5 3
- jj[—} sin’ ¢ dgp do
o Q 5 2
iz x 35_ 5
- ”[ Jsin3¢d¢da
oo
IE.lr.'r 5
= — | |sin” ¢ depd
ol
lrx ! L b
_ ZSIIJJ-[ESInH‘ISInBGJdédE
oo
1% cos30 Y
=EJ-[—3+:QSE+ dg
0 A
2r By
=£J’ (3_1J_(_3+l d¢
20 3 3 3)




Continuation to the above step,

JIJ, (x5 dp_%%! dp

211
=ﬁx—(¢}

:&xl_ﬁ._xzﬂr
20

1688

— T

15

Therefore, the volume of the region is 1638#.
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Consider the triple integral,

[[[ y*ar.

Where E is the solid hemisphere x* + 3% +2' <9,y 2>0.
The objective is to find the above integral using spherical coordinates.

The volume of the region between the spheres is given by,

afdh
= ”If(p singcos @, psingsind, pcosg) p’ sing dpdddg

L e ]

Where E is a spherical wedge given by,
={(p.0.4)|a<p<ha<f<pc<p<d|
In spherical coordinates,
x = psingcosd, v = psingsiné and z = pcosg .
The region E = {xz +y  +2° i?,yzﬂ}.
In spherical coordinates, the region is given by,

{{p,ﬂ #)|0< 53_-%g9gg,ﬂs¢gf}.

Therefore, the triple integral becomes,

¢ |

3
I[psmgﬁsmﬁ'} psingdpdfdg
0
3
j’p* sin® gsin’ @d pd6de
0
=¥ s
=[] [:‘l‘;-} sin’ ghsin® @d@ dg
[ |-

H .—’-
P =ik

" 5
=J‘ %sin";ﬁsinzﬂdﬂdé
L[}



L .T/"'
:%J‘ | sin3¢(—"°3525]d&d¢

r
0_ J;[ez

243 % | sin26""
SKEJ;MH {.ﬁ[&— J..,-::dé

e eIy

_243 3
=0 x;r!sm @

10 4

2437 J"Ssmqﬂ sm3¢d¢
L1}

2437 [ ms:%gﬁ}”

i

=—| —cosg¢+
10 ¢

243;{[ 1) [ !J]
=] l== |=| =14+=
10 [\ 3 3
_243;r_i}
10 |3

1627
3

Thus,

Hf.r;yz dap'm Ee ’

Chapter 15 Multiple Integrals 15.9 25E

Consider ”J‘-\‘Ef"'-':‘di"ru where Eis x*+y® +2% <1
A

Using spherical coordinates
x=psingcos, y=psingsing’
z=pcosg

And pf =+ +2°

Thus, p?*<1 =0<p<l

Ez{ﬂﬂ;:riL 0<h<

MI'-L‘-'I
=
1A
g
1A

IS

"\_\‘,_‘



Evaluate the integral as follows:

”J-xgmyn::d}f ﬁj-psm;ﬂcosﬂe ©’ sin gd pd O p
oo

= jiﬂ‘s.irn2 dcostp’e” dpdOdg
00
731

= [[ [sin® gcos| p'e” |dpdbd
!!ism @cos [P ]dpd ¢

Put

p=t

2pdp =dt

When

p=01=0

p=Lt=1

Thus,

!jj'xexua dV =

sin’ ¢ cos g[mf |ded g

M|—

E"—;—

sin® gcos [ 1e' —e ] d@dg

MI-—

sin® gcos@e—e+1] d0dg

M|—

R I L :“-.-—.u.q
2 e | 3 Ql—iluiq 125 W o |

3
! sin® ¢ cos Gd0d ¢
L]

sin” ¢[sin 6']2 dg

%) since sinag =sin() =0

Therefore, the value of the integral is _
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Consider the integral fH-T.UEd Vv
;

And the region E is the region between the spheres p=2 and p =4 and above the cone

i
¢=E :

First convert the rectangular coordinates to spherical coordinates.

To convert the rectangular coordinates to spherical coordinates, use the transformations

x = psingcost
v = psingsin#
z= pcosg
And p*=x*+y'+z

Sketch the region E bounded by p=2and p=4 and ¢ =

e
2
Iz

In spherical coordinates, gis represented by {{p,& ;ﬂv} 22 p<40=8<27,0s¢<

2

&
3

Region between the spheres

-3

The volume element dV = dydydz

—r—‘1Hd above the cone

T

3

Also convert volume element in terms of spherical coordinates.

dV = dxdydx =|J|d pd@d

cos ¢

COs ¢
= p’ singd pd e

singgcos@ —psinésing
=|singsind pcosdsing

0

singcosf —psindsing
=|singsinfé pcosdsing

0

peosdsing
psin @ cos ¢
—psing
Aeosdsin g
psin fcos g
—psing

d pd@dg

d pdfdgp

}



Convert the integral along with the limits to spherical coordinates and evaluate the integral.

Thus,
2;

([fo=av -]

As p,@,¢ are independent of each other evaluate the integral separately.

E ]

) eyt | 51

4
J- psingcosd)( psingsind)( pcosd) p’ sin gd pd Oed ¢

m’xyde: _;[sins.;ﬁ-ms:gﬁdqi [Tsinﬂms&dﬂ][ip’dp] (1)
E ] (1]

o

2% 4
Use substitutions to evaluate the integrals jsirﬁ dcosddp: Isin fcos @ d and Ip5 dp
o 2

separately.

a

. 3
Consider JS]-'I'IJ ﬁﬂ‘ﬂﬁ{l‘i‘d!ﬁ'
0

Use the substitution sing =
Differentiate on each side.

cosgdg = du

Change the limits of integration also.

When ¢g=0=sin0=0=u=0

When ¢=%:}Sin%=?3:>n=?3

sin' geosdyp = f w'du

i | g

/ 3 4
*f?_] (0)°
4 4
——
16-4
2



]

Consider | sinfcosfd6 .
1]

Use the substitution gin@ =u
Differentiate on each side.

cos f0d 0 = du

Change the limits of integration also.
When @=0=sin0=0=u=0

When @=2r=sin2xr=0=u=0

J sin fcos fd = I;mfu

F
Consider the integral J‘ps dp

4 617
o=l

2]

|
=E(4{]96—64]

b oo o (4)
_E[waz]

=672
Substitute (2). (3). (4) in (1)

I_!:Ixyzdl’ =(-§£][ﬂ}[6?2]

=0

Thus, the value of the integral over E is @
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Consider the cone equations:
T

T
=— and ¢=—
# 6 ¢ 3

The objective is to find the volume of the part of the ball p = athat lies between

@i=% and¢=£

3

Write the Cartesian coordinates into spherical coordinates as:
x = psingcosf, y= psingsinf, z = pcosg

¥4y 427 = ptidV = p’singd pdpd @

Given p<aand ¢=% and¢=’3’

¥+y'4zi=a
= = o
= p=

Hence, 0<p<a

Therefore, the region is D = {(E,gﬁ,p] 0= er,% <g< %,[} <p< a}
The region is shown below.

'

v hiwa

=
L=4]
||' il

required region

-0

|1.::'?|1|ﬁ-

-1 II'I’IIIII-IlIII11||IIIIIll'||I|r

153 1 05 0 -05 -]

-1.5
X
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Let the average distance denoted by (p}

You are being for the average radius, which is another way of asking us to find the average g .

Because our function is gning to be conducted over a SphEFE of radius «, we should normalize
3p

drra

our function is

Our region, by the description is defined as follows:

D€p<a
0=f=snm
O<p=<2r

Therefore, the average distance is as follows:

{p)= Iﬂqual P’ sin(0)dpdfdgp (1)

Compute (1), you get:

el " II#=H
=N o a 3 2‘. _ 3 F¥ & 3 5 PJ_
| g liiitin =g | |aniogedel
=0
r Y fr=pr
L ]-ms{ﬁ?]“—d@;
43:&'3“ 4 i
_ 3 2d'[
dza’ 4 | .
3
=Za
4

Hence, the average distance is {p) =_nl

b | w




Chapter 15 Multiple Integrals 15.9

{a) The cone &= %has z-axis as its axis and the sphere p=4dcosd 15 a sphere of

diameter 4 with the z-axis az an ams and the diameter between the origin and the
point (x, 0, 2)={0,0,4). The solid 1n our case 15 a cone-like object with vertex at the

origin and opening upward, but with a convex base that 15 formed by the top of the sphere
“cutting oft” the opening cone. The lmits of integration in @ therefore go from 0 to the

rounded base of the sphere, which 15 simply the sphere equation, #=4cos@. The solid 1z

radially symmetric and goes all the way around the z-axis, s0 8 goes from 0 to 2T
Finally, the & limits describe the cone’s boundaries on the solid, so go from 0 to 77/ 35

To find a volume, the vsual procedure is to integrate 1 as the integrand in the triple
integral, since that will “count up”™ every stnall piece of the volume, multiply each by 1,
and add them all up, resulting in the total volume. However, 1n converting to spherical

coordinates a factor of &° sin ¢ must be multiplied in. The integral is therefore;

[ [ ()0* sin g cdod 6

1] o Jdn

Integrating in terms of o J':IE _II;I(’OB 53111 Q}J

diosg

d8i

1]

= c2x( (doos ¢’ sin
et

. . 64 23 3 . F
Integrate in terms of &: ?.I.u droos ¢sin ;E§|D d
128w pan 5
_TI“ cos” gaindule L (1)

Suppose cosd=u,—sin flfg =du and

When #=0 we get =1 and when gﬁ:g,we get u:%

128

oo, (1 becomes _I-lmu3 [—ci'u)

N 128;??1-1 i

3
128z ~ut
= 3 K?m

=107



(k) Assume that the given region 1z of constant density. Since the solid has radial
symmetry, the centroid must ocour on the z-ass, and therefore its x- and y-coordinates

are both 0. Tt remains to find the z-coordinate. The z-coordinate of the center of mass 1n
three dimensions 15 given by

7 =—" where M, 15 the moment about the xy - plane, givenby ”I Zhd V" for constant
2 ¥

density &, solid B, and a2 13 the mass.

since density equals mass over volume, we can write as 2 = kv where v 13 the volume.

since we found v= 107 in part (a), we can plug all this into the z-coordinate of the

centroid to get

[|[izav

F

k(107)

[|[ zav

2 2
10T

F =

The integral in the numerator 15 ower the same solid as in part (a), so we use the same
linits of integration. We conwvett to spherical coordinates, using the conversion

z = pcos ¢ and multiplving in the conversion factor o° sin &

7= [P [ ocos 0% sin hd it

1':':-"?- 0 0 I
1 323

S !

1]

,{f
?};m”’dasm dros g g
a3

= ﬁ [ 8157 256 cos® sin g ¢

0

:%Tcosj dein gl (2)

]

suppose cosd=n,—sin g @ =du and

When @=0,we get u =1 and when gﬁzg,we get uzé



64 %
Tsing these in (2), we get e I 2 (—du)
1

64 1"
= ?KE}L‘;

_32f_1
TS 64

_a
10

Thus, the (x, ¥ 2) coordinates of the centroid are (0,0, %}

Chapter 15 Multiple Integrals 15.9
The sphere equation x° +y° +2° = 4 is a sphere centered at the origin of radius 2. To

visualize what the cone 15 doing; take the trace of the surface parallel to the xy - plane by
plugging ihz =k

e

P S

The cross-section of the cone parallel to the xy-plane 13 a circle of radius &, where & 15 the

z-coordinate of the cross-zection

Convert to spherical coordinates. It 15 possible to find the converted equations using
conversion factors, but because these are standard shapes, a shortocut 15 to think about
what the spherical equations for these shapes would be. The equation for a sphere of
radius 215 =2 Since the cone has cross-sections that are circles of radius =, the radius

of the cross section increases by 1 every time the z-coordinate increases by 1, and
therefore the lateral side of the cone 15 at exactly a 45 degree angle between the xy - plane
and the z-azis. The spherical equation for the cone 1z therefore g=m/ 4 .



Find the limits of integration in spherical coordinates. Throughout the solid, the radiusz
reaches from the origin to the boundary of the sphere, so its limits are 0 and 2. The solid
1z radially symimetric around the z-axis and goes through every value of &, the & limits
are 0 and 277, The @ limits are from the boundary of the cone, which is ¢ =m/4 | to the
xy - plane, where =/ 2

To find a volume, standard procedure 13 to do a triple integral with integrand 1, which
“adds up” all the small pieces of the volume to make the total wvolume. Since we are
converting to spherical coordinates, we must multiply in the conversion factor &° sin @ .

Plug into the triple integral
il pdx pld a .
L]y I, (0ot singd adédy

=4 Jo
_ J-zmll-zzélisin 5

x4 A0

2

284
0

B a2 . i
=§.Lx4 sif1 .;25:%9}3 dad

16T 2
= —(—cos aﬁ)zm

16:??( :?r]
=——|—0+4cos—
3 4

S\E:fr

2

Chapter 15 Multiple Integrals 15.9
The centroid of the mass is

- M, - M_- M,
o= = E m =
m m m
Where
M_= J J J- xpdV
H= "
Y



T

Il
-
-c:.'l_q,.n a

”i

wlh—
ﬂ':—|"‘h‘1

n"\—_.-:n-lh = Ly . | B0

Therefore;

b
1

= |
Il
oy —
L L e T

N
89
*
!
L,
~

[}

0

= Ry 7

B

Il
PP

1]
e

oty

& I =
D‘—‘I;:
S e b |

Ll
]

=§Icasﬂ

#

p* sin g pd

[1-
132

;;—Z[E[EJ+%sinI[EJ—]Esindl[%]—%sin6(%]]]&?
_3]—2[[%]+%sin 2—0—%[—1}]]49
1) | & °F

sin .;ai[p ] depd @

singcos” gdgd

k(psingcos@) o’ singd pdpd

cos @sin’ gﬁ[p ]q dgpd

cos @sin’ gcos”’ gdgd

L ¢ 1 L % E
(Zf,ﬁ'+551n1¢5—55|n4¢—35|n6gﬁ}] do

o



e

ot
=
[}

e

vpdV

=
[
= ey, |

Bt
E

Il
:-1—'.

a |
=
b2

k( psingsin@) p* sin ¢d pdpd &

D ey [ e [y
= Ry

k(psingsind) p* singd pd e 6

Il
o
S t— e | i

b
= —
b3

b
oy

3

EIJ%IIIH&II‘I ¢[ :| #d-;ﬁdﬁ
4 =4
klnz
EIJ‘sm{?sm dcos’ pdgdd

0o

T H-Ifé [ — - 5d9

——!sm _Ek ¢'+Esm gﬁ—Esm gﬁ—gsm gaﬁ] :

, 23 f
=£Isir1£r' X 2[£)+lsinZ[E]—lsin4[£]—lsinﬁ[£]J {
41 320°\4) 2 4) 2 4) 6 4
e g i
=§Isin9 ék[gj+%sin«ﬁ—ﬂ—%(—l}]}m
[}

(?&]+ %sinﬁ+éﬂ]_ -i-;[ sin Gdd

Il
Ln..'rl_
(]
. R
——
2=
—

4+
b | —

o,

=

()

+
Scadbar
+= | =

=



k(pcosg) p’ singd pdpdd

....,r.m
oL
]

B
.m,.ld... m.l..l
By o | e—

p' singcos gd pdgd @

o
£ ey —
=

L] I
s Ee—mo mlTi—e

E_..M oo | &

1] Il
It

bl
oo | ke
I

* dodo

3

”M. £ = el

2 2

S - =

3 —1

et B s

| o w

4

&

L S -
- = B
2 n i

Ritl—— o kTt k|dt——

e, 1 ey, 2 ey
w|lk ok Nk

e
=
i | = =
L
& —~ | oo
.hm _JD LS -
b k2
Lot}
o ey 2 ;Imﬁ
o ' E_ﬁ. o

i)
12

Therefore the centroid is [ill‘_'l,




Moments of inertia are

I, =IJ“£(}’3 +2° )p(x, y,2)dV
=”‘[{yl+zl}‘m’b’

:M#
j j ) kv
[ |

t*_-hh

,:::— ('-iln dsin® @ + c{}szgﬁ]kpz sin g pd ped

Ead
i
L e —

%I (sin® gsin” 0+ cos® aﬁ]smgﬁ[p] “dgdo
%Ti[mn r;ism &+ cos” ;ﬁ]sln;ﬁtﬂa ddd B
%T‘i‘(sm @cos’ @gsin’ @+ sin gcos’ ¢]d¢a’{?
(O
Put
cosg=1¢
—sin gedgh = df
Thus,
%fj[[l —cos” ¢ sm:,ﬂcos dsin® @ +sin gcos’ &:}a’qﬁdﬁ'
o0

f( I —t° ]sm @+t }dm’&

:.nl?:-
El‘—h';



Iz 3 12
=—ijsin*aﬂ -1 ]—+2;—— J do
54 2(3) |

__Is'” ¢ [[' 48 25&1’ IGBI{IE}}] [( }E T_ﬁﬂ"g
=[—%] 1 stm B &

1 (&Y 149 Y
——| = || —= | | (1-cos28)i@
2[5153?;@”{ cos20M

149% [ . sin 2&]3”
[}

= B
53760 2

(
_ 149k (27)
53760
298k

26880
=

Similarly we can calculate

f.r=”T[(-r:+:’}p(,r.y,z)dv
- [+ ear
£ :”f(‘ + 3 Jp(x,,2)dV
zIIJ 2+ 7 v
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Let the center of the basze of hemisphere 12 at origin and axis along z — axis
I
(0,0,a)




Thed H:{(p,a,gﬁ-); DEpEa,DEE‘EEH,UE&ﬁE;—T}

How p[x,y,z) &Eﬂll'xg 4y 42

O p[x,y,z:l:ﬁ: gyt gz
Where k 1z constant of proportionality

Then (&) mass of H 15
= ”I,G[x,y,zjdﬁ"

H
2

e,

F-

4

Ip. Otsing d odddd
0

=

T4 Ix
k| & de [sm.;zs-.:f.;aﬁ[da

|
(2] const
(=0+1)(27)

2
4

k

*

iI
4

—cz Yok
2

(B)

M= [[[x0(5.2)d

k

osin grozd o 0 sin pd o d BB

.:.!—.j&:
= ]

ix

p*d;jcgsadajsm ¢ dd
1}

!
|
0
ﬁ:[%} 51115' = —51112-;25]:j

Il
;!_T..

il 51112;?? smEl E—lsiﬂ;i'r]
4 4

u-.|ﬁ._,,



[l o2
H
2274

ek

;:j,a d o Ism .;aﬁcz‘.;a‘?fsmﬂdﬂ
0

1

osin dsin 8. 0 0 sin dd pd$d 8

= P, B4

x

fg T
=k| — 5 ———s1n2¢§' [—cosﬂ)u
a:j
—' ?J ——s1n;?T D][ cosE;?T+|::osD)
5
=,a;‘i "’T ~1+1)
5 4
=10

H
ﬂz%ﬂ
=k[ j [,ams.;a:-,a.,af* sin §d 0 d9d &
oo
2 2 %
=k]p“d,a[ 5'[cos-;i§s1n-;i§cf¢§
0 I} 0
5 74
=k %J(a)j’ (—lmszaﬁl
=g 2 (zﬁ)[-l[q)ﬁJ
s 4 4
i (zn)[ﬁj
s 4
_an,
5
M
Then f:—H:D,E:%:D
FH s
M
F oo
M
_ank, 2
5 &k
_
5

Thus the center of mass 13 (D, 0, 2_(1]




(C)

Then moment of inertia about = — axis 15

fom ”_[ Iz:c2 +y2) o(x.y.z)dlV

o
= k:]- j j(,a’* sin® ¢). p. 0% sin pd pd pdd
ooao

Fde j dﬂ[ sin® gdd

1] 1]

|
= k(%ﬁjﬂ (87" [%1(2+sin2 #)cos .;zf}
(

i

0

Hence moment of inertia of solid H about is axis is | = a®ksr|, where & is constant

of propotrtionality.

Chapter 15 Multiple Integrals 15.9

Let the center of the base of hermisphere 15 at origin and the axis 1z along z — axis

5
¥

(&)

Az we know when the density of a solid 15 constant then the center of mass
becomes centroid

Thus in this case o(x,y,z) =k (constant)
The solid 15 given by

H:{[p,ﬂ,aﬁ): 0= p<a, ogagzmug;ﬁg;—r}



a 2x ‘}‘5
= ;:jpﬂd,oj .:i'&l_[ sin $d
I} 1] 0

: %
%Ju [—u::osé':lsz (g— %sin 2.;3']

4
ﬂ—] |:— Cos 2T +cos D) (
4 4

1]

a 1. ]
—— —5nf
4



M, = I”zp(x,y,zjdfr"

H
¥

=;j ”,a.:os.;a:-_pﬂsin.;aﬁ-d,ad.;ﬁda
ooan

2= ?}:J
ﬁd;j .:fé'j cos dsin ¢ di
1}

0

i
Rrae,

Il
;:Tu

Il
&

]

=ﬂ—?rk
4
A
Then z=—22=10
e
- -
1
z—-z—M’“

i
atmi 3 3
H 3 = —
4  2a‘mk B

Hence the centroid 13 [D, 0, %a]

(B)
Mloment of inertia about diameter of the base:
The diameter 15 along ¥ — axis, then we find moment of inertia about v —

axis [, = _Ig (xg —I—zg:] ,G(x,y,z)cﬂ"

=k
1]

|
%

@3
=k(%} ![—cosaﬁ)?j—singé'[—%(2+sin2¢ﬁ)ms ] 48

a 0

& (1-sin’ gsin® 8). & sin ¢ d 0dd

234
,a‘*cf,c:-:] j (sin g—sin’ gsin’&)d pdo
1]
5 T

c!—.;—ﬁ

1 Py P

1]



a’ [ 2;1

=Skl W R}

5 3
ka4

5 3
_kda’m

15
5
Hence moment of inertia about diameter 15 4':11:?1-

Chapter 15 Multiple Integrals 15.9
Let the center of the base be placed at the origin and then o(x,y,z) = kz where k

15 a constant.
KA
(0,0,a)

— ———
— -
- - e




The solid hemisphere can be given as

Hz{(p,ﬂ,aﬁ-): lzoza, DESEEN,DE-;&E%}

Then mass of solid 12

= IIIp(x,y,z)dF

H

II
E_';}H‘-

I,Dc:os & o'ein ¢ d od $d8
0

x4
pzc;t’p_l- _I-l::-::-s-;if'sm-;if'cfaﬁ

0
]
{%J —j—ll::-::-s 2;35']

senf)

= _—a*mk

k

Il
;aiu

b
™

24 a

_[ I(,ﬂsin dcos 5‘) [,{?l::n::-s ;Ef') ,Dz sin P pdPd 8
00

3 %

Sdp cosé‘.:;t’é'_l.sm doosdd ¢

0 a0

J
0
E{%J s1n5‘ (—sin3 -;Eﬁ']f

= a—l{ sin 27T+ 510 D)(l]
5 3

=0

2

Il
F‘Tu



M= ”I_}f elxy.z)dl

Il

;Iiu
=0
':"—iﬁ:

_T I:,Gsin dsin 5‘). (pcos .;Ef').pz sin fd AP d &
0

x

ax
,a“dpj sinﬂa‘ﬂj sin® dcos gd &
0

0
’G—J —Cos 5‘ — sin3 .;Eﬁ']
5 0
o
5

J —cos 2T+ cos Cl) [%]

Then x=

Hence the center of mass 13 [D,D, 18_5(1]
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(a} The volume of the solid that lies above the cone - = .I'xﬂ +y* and below the sphere

: TN B
X+y +2'=

Motice that the sphere passes through the origin and has center (ﬂ,ﬂ,ﬂ]. We write the

equation of the sphere in spherical coordinates as
pl=pcosg or p=cosg

The equation of the cone can be written as
2Cos¢ = psing

Thatis. cos¢ =sing

This implies, ¢ =%



Then the solid E is given by

Ez{[p,ﬂ,g#}:ﬂiﬂﬂz:r,ﬂﬂgﬁi

&5

0= p< 1}
Then volume of the solid is

/()= [

£

-

T

o

Il

1
[p*sing dpdgdo
0

E vl
A4

do I sin ¢ra’¢j o dp
0 0

oy

=(0), (—WS@)E&[%}]

-oof-3))

z_ﬁ[ﬁ)
3l V2

=Y

o

=§(2—~E]

Hence the volume is | = %(2 e \E)




[b] Now we need to find the centroid. So we have density pl:,r,y‘z] = k (constant)
The mass is given by

m=Iﬂp{x,y.z}dF’

&l

fj.pz singd pdpdd
nn

[
I:

=ik

D oy

k%(z—ﬁ]

Now M. = Hjxp[.r,y,z}a’#"
;

£

f
i]
.n'___i

I ix /
k| o' de L'usé'dﬂf sin® g dep
0 i

0

_i[2 "]'(s. o) [——Esmzﬂ]ﬂd

i
=k l](ginzm-sinn}(i-lsinfj
4 g 4 2

[
i

=k psingcosd p”singdpdgdd

=t
-D'l—_'-n

=0
M. =([[yp(x.y.2)dv
£

2z
:,:.;}[

s i/
= kj;:f dp]sinﬂdﬂ fsinz gdg
1] 0 1]

psingsind. p* singd pdpdd

= e e



#:[ d] {—-::1:15!5'}2’T [g—%sin Egﬁjd

0 ]

.b.|"'~7-‘l

= k[%)(-ms 27 +Cos 6][%— %sin%]
=0
M, = ”]zp[.r, y.z)dv

i

:,a_-_;[

= .i:j,n" a’pTdE
o 1

b

P

i —

]
Ipcus;ﬁ.pz singdpdgdd
0

L)
K

4sin geos g dg

1]

=?Km(2—ﬁ)

3

8(2-+2)

Hence the centroid is

)
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Let the center of the sphere 15 at (0, 0, 0 and let the diameter of intersection 1s
along the z — axis. Then one of the intersecting planes will be xz — plane and the

: ; A
other be the plane whose angle with x2z —plane 15 8 = =

Then the required region can be given in spherical co — ordinates as
FT
E:{(p,ﬂ,aﬁ-): 0= o=a, 05953, D:i;zf-:i;rr}
Then the required region can be given in spherical co — ordinates as

E:{(p,ﬂ,;ﬁ): 0zoza, DEHE%, DE;&EN}

Then the volume 15 given by

v(E)=|[[ v
I

.:f{-}_[sin .;zf-ci.;aﬁl S dp

i ] i

- @ e[ 2]

1

Sengd pdddd

L= 1]

1]
by by
B‘m I b

Hence EF"[E) =_md

Chapter 15 Multiple Integrals 15.9
In cylindrical co — ordinates the parabolic is given by z = #* and the plane
15z =2rsin . These two meet in acicler = 250 &8



r=2sinf
(or x*+Hy-1)=1)

Therefore in cylindrical co — ordinates the region & can be given as
E-':[[:r,é',z): Q=f8ex0=r=2:n8, rEEEEErSmE}



Hence

” zdP’:%
1
2

zzzzz




The torus 13 a single holed ring. The surface enclosed by the tours 2= sin @ 15

E={(p.8.6) 0=8=2m 0<g<m 0= p<sin ¢
Therefore the wvolume 15 given by

v(E)=|[[av

F
i
n

o 3 g
a8 {%] sin ddd
1]

H

g
j O sin gd odpdd
1}
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ey f2=xt=y

141 i
Consider the integral j- I L xy dz dy dy.
o o \‘I!:-. r_'|":

Need to evaluate the given integral by changing to spherical coordinates.

From the given integral notice that the boundary of the region is

E= [{x,}a:ﬂq'.r: +y €z2€2-x" =y 0Ly fl-x",0<x% 1}.

Since »= [y +y? then z? = x* + y* this equation represents an equation of a cone.

S0 z=.[x?+y? represents an equation of the cone which is lies above the xy-plane.

2]

And z =2 x*_?then x* +y* +z* = 2this equation represents an equation of a sphere.

So -=.[7_y?_ ? represents the equation of a sphere which is lies above the xy-plane.

We have z varies from \1".1'2 + 7 10 \(3__1-9 — y* that is the required region lies above the

cone - = [y +y* and below the sphere > =

And the projection on the xy-plane is a circle of radius 1.

Since we have y varies from 0o ] x* and x varies from 0 to 1.

That is the required region is lies in the first octant.



The graph of the region g is shown below:
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Required Reg ion
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Since we know that

) 5 5 3
g =x+y +z

x=psingcosd
y=psingsinf
z=pcosg

O
I"/——""

2= {37
/

Use these formulas convert the given surfaces from rectangular to spherical coordinates.

Rewrite - = .I'_l-l + 9y 85

peosg = J{psinqﬁms H]: +( psingsin )

x
¥

= py/sin’ gcos’ @ +sin’ @sin’ &

= p,[sin’ ¢(cos’ @ +sin’ @)

= psing
Then
peosg= psing
tang =1

=3



Rewrite fg__r?_y? =z @5

JE—(psin¢ms€}: ~(psingsing) = pcosg
J2-p’sin® geos’ @— p’sin’ gsin’ O = peosg
JZ ~ p’ sin® g cos” @ +sin’ ) = pcos

JE—pz sin’ ¢(1) = pcosg
J2-psin’ g = peosg
2-p'sin’ g = p’cos’ ¢
Continuation to the above
2=pcos’ g+ pisin’ @
2=p° ({:053 @ +sin’ gzi)
2=p(1)
peilE

S0 in the first octant p varies from 0 fo J;,T* g varies from 0 to % and ¢ varies from 0 {o

i

E.

Therefore, the description of the solid g in spherical coordinates is given by:

E={{:p,9,¢i){{1£p£ V2,0 5&5%,{}595%}.

The given integral becomes
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Hence the required value of the given integral is
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\lﬁ \Iu: -.'c?-_p:
Consider the integral. j- J (x7z4 724 2%) d= dx dy.

1 —.\I.F—J-: —."-r: _xi -y
Evaluate the given integral by changing to spherical coordinates.

From the given integral, notice that the boundary of the region is as follows:

E:{{x.,y.,zﬂ-—-.;'az -5t —yz Lo S = -yEH-Jaz —_}:2 =x= -.,;'az—yz,-ﬂ Eyiﬂ}.

Convert the rectangular coordinates into spherical coordinates is as shown below:

x= psingcos
y = psingsind
z=pcosg
pP=x+y+zr ... (1)

dvdvdz = p* sin gd pdpd 0
Notice that the region g is a sphere, the description of the solid g, in spherical coordinates,
is as follows:

={(p.0.9)0<sp<a0<g<m0<O<2r}.



The graph of the region g is as shown below:

The given integral becomes the following:
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from(1) x* +y* + 2% = p’

Hence, the required value of the given integral is @
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The mass 1z the integral of the density function owver the wolume.

We want the volume of the earth’s atmosphere between the grounds, which iz give as
6370 km from the center of the earth, to an altitude of 5 km, which 15 63704+5=6375 km
from the center of the earth. In meters, this 13 aradius of 6,370,000 m to 6,275,000 m.
We want the volume between these two concentric spheres. Therefore, the limit of
integration of o will be 6 270,000 to 6,275,000, The problem specifies that the given

density function is reasonable between these radii, so we will integrate d between these
two spheres.

For our other limits of integration, we want & to go all the way around the z-axis, from 0
to 257, and & to go halfway around, from 0 to 7—af & goes halfway around, from the

positive Z-axis to the negative z-amis, the fact that & goes all the way around will
encompass the entire volume of the sphere without repetition.

In order for our integral to integrate owver the volume, usually we would have an integrand
of 1. In spherical coordinates, we must multiply in a factor of o sin ¢. Since we want

the mass, we also multiply the density function into the integrand, giving the integral of
density throughout the wvolume:

II-I]: II-DEI Iﬁj?ﬁ,ﬂm 5!5.3 S ;&I‘M&Ff;ﬁ.

6,370,000

x plax p6,2375,000 .
:I I I (619.09— 0000097 &) 0° sin g od &

o J0 JezT0n0a

” -I-.,-I-:mIma—rmnnm(ﬁ19_[)9,:32 sin ¢—0.000097 & sin ¢ od 8

o o Jezropoo
Integrate in terms of 2

I 3 pa3T5,.0M 5 . -
[[2 27 (619.09,0° sin - 0.000097 0% sin $)d cd6d 6

6,370,000

22{ 619.095° 51 0000057 0% si B
_.I-:.I-: i IIGSII].I;?;"_ ; l,GSlﬂl;l‘j'J[ ffﬂff;ﬁ

“ Aok 3 4

L 370,000

619.09(6,375,0008 sin g 0.000087(6,375,000)* sin ¢

x plx 3 4
=I I B £ &g
o Jo _(619.09{6,3?0,000} sing  0.000087(6,370,000) s1n-;a5'J
3 4

= [T177(1.94402 %10V sin ¢\2 645
1 ¥

Integrate in terms of &:
X [;’(1.94402>< 107 sin gl 6d ¢

F.

1.94402%10" sin .;a:-)[j’d.;af-

n

(
[7(1.94402510" (271) sin ¢— 0 )i

o

z;rrju’(l_gamzx 10" sin )¢



Integrate in terms of &
2njﬂ’(1_94402xm” sin g )i ¢

= 277(-1.94402 10" cos .;zﬁ)L

= 271(~1.94402x10" cos w—(~1.94402x107 cos(0)))
= 2n(—1_94402 %107 (=13 +1.94402x 107 (1;:)

= 477(1.94402 %107y

= 244292 10"
The mass of this laver of atmosphere iz approzimately |2.44292 x10% kilograms]
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Need to graph a silo consisting of a cylinder with radius 3 and height 10 surmounted by a
hemisphere using graphing device.

The radius of the cylinder is 3 then the equation of the cylinder is  y* +_,,=:’ =0,
And the height of the cylinder is 10.

Also the radius of the hemisphere is 3.

Here we are using Maple.

Keystrokes:

with(plots);

p1 = plot3d(3, theta =0 .. 2*Pi, z = -10 .. 0, coords = cylindrical, axes = boxed, labels = ["x", "y",
"z "], style = surface, color = blue);

p2 = implicitplot3dirho = 3, rho =0 .. 3.001, theta=0 .. 2*Fi, phi=0 .. (1/2)*Pi, coords =
spherical, style = surface, color = orange);

display({p1, p2}, axes = boxed);



Maple result:
with( plois) :
pl = plot3d(3, theta = 0.2-Pi, z=-10 .0, coords = cylindrical, axes = boxed, fabels = ["x",

"y, "2 "), stvle = surface, color = blue);

P2 impﬁci!pfﬂ.r.id[ rho= 3, rho=0.3.001, theta=0_.2-Pi, phi=0 ..‘%‘“, coords = spherical,

stvle = surface, color= umnng

display({p!, p2}, axes = boxed);
Hemi sphere of radius 3

__~"and centered at (0,0,0)

Cylinder with radius 3
™ and height 10
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The radius of the earth is 2= 3960 mi.
The latitude and longitude of a point P in the Northern Hemisphere are as follows:
a =90°—g°
B =360°-6°
The latitude and longitude of a Los Angeles (L) are as follows:
o =90° = ¢° = 34.06°N
@° =90°-34.06°N
=55.94°
S =360°-0°=118.25°W
6° =360°—118.25°W
=241.75°

The spherical coordinates for Los Angeles is {p,ﬂ,¢} =(3960,241.75°,55.94°).
The rectangular coordinates for Los Angeles is
(x.y,z)=(psingcos b, psingsind, pcosg)
= (396{}[$in 55.94°)(cos 241.75°),3960( sin 55.94° ) (sin 241 .?'5“]596&(::13355.94“})

= (-1552.804718706,-2889.91011737502,2217.84062075)
= (-1552.80,-2889.91,2217.84)



The latitude and longitude of a Montreal (M) are as follows:
a =90°-g° =45.50°N
¢® =90°-45,50°N
= 44.50°
B =360°-8°="73.60°W
&° =360°-73.60°W
= 286.40°

The spherical coordinates for Montreal is ( p,8,¢)=(3960,286.40°44.50°).
The rectangular coordinates for Los Angeles is
(x,p,z) = (psingcosf, psin gsin b, pcos )
~ (3960 (sin 44.50°)(cos 286.40°),3960(sin 44.50°) (sin 286.40°),3960  cos 44.50°))

~(783.6671414764,-2662.6725264246,2824.47177865055903)
~(783.67,-2662.67,2824.47)

Let u be the vector from the origin to the Los Angeles (L), that is
uz{—ISSE.ED,-EBSQ.QI,ZZI?.E4}.
Let v be the vector from the origin to the Montreal (M), that is

v =(783.67,-2662.67,2824.47).

Let @ be an angle between these two vectors which lie on a great circle shown in the below
graph.
North pole

ime meridian
Great circle

Arc s
[Shortest distace between

two points L and M



By using dot product, we have

u-v =|u||v|cosd

casfi’:u

Jul|v]

@ =cos” [u]
[ul|v]
#
= (~1552.80,-2889.91,2217.84)-(783.67,~2662.67,2824.47) }

= COS

| \(-1552.80)" +(~2889.91)" +(2217.84)" |/(783.67)" +(-2662.67)" +(2824.47)"

cos [ (~1552.80)(783.67)+(-2889.91)(~2662.67) +(2217.84)(2824.47)

= 5

\ J2411187.84 +8351579.80 + 4918814.26 +614138.66+ T0R9811.52 + 7977630.78
% cigg™ [ —1216882.776 + 7694876.6597 + 5164222.5443]

\ JISﬁElSEI.?JISﬁElEEU.%

Continuation to the above

~cos™! 12742229.76
[3959.99??][3959.99?5)

~ q_,{ 12742229.76 ]

15681580.992005
~cos ' (0.8125602749)
= (.622265086
The greatest circle distance or (shortest distance) between Los Angeles and Montreal is
s = Arc length of LM
=r-8 ( Where r is radius of the great circle)
=(3960)-(0.622265086)
=2464.16974
= 2464.17
Therefore the required great-circle distance from Los Angeles to Montreal is _
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To find the volume enclosed by the surface p= ]+é5in(ﬁg]5in(5¢)__ use the provided sketch

and a Computer Algebra System (CAS).

2

B |

! Y |

b

First, set up a triple integral sz singd pd@dg in spherical coordinates that describes the
&.

volume of solid E.

Find the bounds of the integral.

Given that the equation of the surface as, p= I+é5in{ﬁ€]&in(§¢)

So. therange of pis 0<p<l+ %sin(ﬁﬂ)-sin(ﬂgé).

Since the solid goes all the way around the z-axis, the rangeis <#<2x.
Since the solid is both above and below the xy-plane, obtaintherange as 0 < ¢ <.
Therefore, solve as follows:

oL sin{68)sin(5)

[l 7" singdpdeag=[ [ [ psingdpdoag

g=0 =0 p=0

1367

By CAS
99
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since the improper triple integral 15 defined as the limit of atriple integral over a
solid sphere as the radius of the sphere increased indefinitely, then using spherical
co — ordinates, the given integral can be written as:

Chapter 15 Multiple Integrals 15.9 47E
(a)

To show that the volume of a solid bound below by the cone z=rcotg, and above by the

i

]
sphere 24 -2=4%15 F= 2%(] —cs:rs.;zﬁﬂ} begin by setting up the triple integral

Iﬂﬂf—"dl' dé in cylindrical coordinates that describes the solid E.
E

To evaluate the integral and find the volume, first determine the bounds of the integral.
Itis given that z ranges from ,cotg, <z <fa® —1* -
Since the solid goes all the way around the z-axis, we have < @#<2x-
Find the remaining bounds for r by solving for r when the two surfaces intersect.
Set the z values of the surfaces z=rcotg, and . _.f;> _,* equalto each other
reotg, = m
reot’ g, =a’ -r

r:(] +c0t:¢0)= a

r (csc‘j' &, )= a

o
=

) a
PFeE—
cse g,
4
Fa=
csc g,
r=asing,

So the range for ris ( < r < asing,



Evaluate the integral H_llfd‘-’d"df? using the bounds pcotg, <z < Jai@ —rt. 0<8< 2. and
E

0 < r £ asing, to find the volume of the solid

j rd=drd@
E

PR

Ix osingy o’ =p*

= I j J- rdzdrd@
G=0 r=0 z=rcold,
2 asing,

= [ A drdo
0=0 r=0

= T aﬂjﬁr[#az - —:‘cut;ﬁn]drdﬁ
@ pedd
Yz asing,

1 [r .J_al_rzu;-zmtgﬁo}drdﬁ

i
2gasingy [ !
= B s a2 3 s ]
! _( 2][ 2ria —-r ] rocotg, |drd@

- s “r=asing,
e el
[Usc_[ .r)..f'f( j(x 4




By simplifying the above integral, we get

” rdzdrd@

reasing

——(.-:.r - T ——r ::ﬂl;r,'ﬁui| dt

_E(”: ' (asing#ﬂ):) ] —%(usin;ﬁufmtﬂ] ’ [_%(az ~0?)"- nﬂdﬂ
:—(;::3 —a’ sin’ %Xﬂ'ﬁ'z —a’sin’ ¢, } a’ sin’ ¢, cotg, +a1a’6"

gl (i—sinzgéummll—sinzéu}aj sinﬂqﬁuﬁmﬂda

—a (cus gﬁnmr\fms_}a sin” ¢, cosg, +a’ ]

[ (cus ¢5,}ch5¢‘,} (I cos” gain)cus¢0+1]df}'

Il

]

]
s | —
Cl"—hm
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1

i
b | —
Dh..:
T

[

Led | —

-:ul—_.';

|
I

WS, w8,

"3"_4-1- -1:-"\—.;." D"—ah

[ cos’ ¢, — cosgh, +cos’ ¢, +1]d0

':'
n
=]
.
=

5
T

u|f-"

_ a (1- ;:{15 ) (o]

=0

Ejra

(1-cosg,)

S0 the volume of the required solid is ' = 2rna

= cuséﬂ)



(b)

2

3
Consider a spherical wedge instead of the full volume p = <79 (] —ggséﬂ)f{]und in part (a).
3

Breaking apart the result, the 2z part was found by integrating with respectto @ and
evaluating at 8, -4, =2x-0.

S0 to find the elemental volume of the wedge, replace 2gx with 'BI = HI I

MNow consider the 3. This represents the radial thickness of the wedge, and when evaluating
at specific radii, 4* —g?* turns into pg_pf where p, is the outer radius and g, is the inner
radius.

Finally consider (l - '3'3'5'?1'1:)- which when evaluated at specific ¢ would turn into  cosg, — cosg,

where g, is the outer angle and ¢, is the inner angle.

Using these deductions, we have

2 3
?;a (I - cns;ﬁ“)

K ('93 -8, IP: _F‘f
3

for p<p<p,. h<¢g<¢,, and g <0<8,.
(c)

The Mean Value Theorem states that if a function is continuous on a closed interval [.:.r,b]_

F =

)(msgf-l - cosg, )

differentiable on the open interval (a,b). and f(a)= f(b). then there exists a number ¢ in
(a,b) such that f'(c)=0.

The change in volume from part (b) is,

AV = e )gﬂz o )(cﬂsgﬁl —cosg, )

Motice that 8, — 8, = A@. The changes in the remaining variables are little bit difficult to
simplify.
Use the Mean Value Theorem first on the change in the function f‘(p): Y,

Since the function is continuous and differentiable, there exists a value ﬁ such that f'[ﬁ] =0

_ Calculate f’{,ﬁ}

ek @ 4
g (P}=d—p(ﬂ' )}
= 3p21¢:=j§
~35°Ap
So f'()=3p"Ap



Since the function g(¢)= cos¢ is continuous and differentiable, there exists a value g such

that g'(¢)=0. Calculate g'(¢)

-~ d
(0]
(9)=26(9)]
:—sin;ﬁ]ﬂdﬂ
=—sin;ﬁﬁ¢
So g(&] = —sindAg

Using the Mean Value Theorem then, the change in volume becomes

ﬁV=(Ez_ﬂ][3pz- —A )[EUSﬂ —cusgf!z)

aa(af-ap)[_(_

sin&)a..;ﬁ]
= p" sin gApA NG

Where pSp<p,. ¢<d<g . AO=6,-6,. Ap=¢,-¢.2and Ap=p,—p,





