STRAIGHT LINES

SYNOPSIS

 If a line makes an angle θ (0 ≤ θ < π) with xaxis in the positive direction, then θ is called inclination of the line and

 $\tan \theta$ is called slope of the line. It is denoted by "m".

- X-axis or any line parallel to it is called a horizontal line, y-axis or any line parallel to it is called a vertical line, and all other lines are called oblique or inclined lines.
- The slope of x-axis or any line parallel to it is "Zero."
- The slope of y-axis or any line parallel to it is (tan 90⁰) not defined.

• The slope of a line passing through

A(x₁, y₁) & B (x₂, y₂) is
$$\frac{y_2 - y_1}{x_2 - x_1}$$
 when
x₁ \neq x₂

If θ is the acute angle between the lines having slopes m₁, m₂ then

$$\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2}$$

- Two nonvertical lines are parallel if their slopes are equal.
- Two non vertical lines are perpendicular if their product of slopes is "-1"
- The slope of a line perpendicular to a line having slope m is "-1/m".
- The equation of x-axis is y = 0.
- The equation of any horizontal line passing through (x_1, y_1) is $y = y_1$.

- The equation of y-axis is x = 0.
- The equation of any vertical line passing through (x_1, y_1) is $x = x_1$.
- The equation of the line passing through $A(x_1, y_1)$ and having slope 'm' is $y - y_1 = m$ $(x - x_1)$.
- The equation of the line passing through origin and having slope 'm' is y = mx.
- The equation of the line passing through $A(x_1, y_1) \& B(x_2, y_2)$ is $(y - y_1) (x_2 - x_1) =$ $(x - x_1) (y_2 - y_1).$
- If a line cuts x-axis at A(a,o) & y-axis at B(o,b) then 'a' is called x-intercept & 'b' is called yintercept.
- The equation of a straight line having slope 'm' and y-intercept 'c' is y = mx+c
- The equation of a straight line having slope 'm' and x-intercept 'a' is

y = m (x-a)

- The equation of a straight line having
 - x-intercept 'a' & y-intercept 'b' is $\frac{x}{a} + \frac{y}{b} = 1$
- The intercepts of a line ax + by + c = 0 on the axes are -c/a, -c/b resepctively.
- The slope of a line ax + by + c = 0 is "-a/b"
- The equation of a line parallel to ax + by + c = 0 & passing through (x_1, y_1) is $a(x - x_1) + b(y - y_1) = 0$ (or) ax + by + k = 0 where $k = -ax_1 - by_1$.
- The equation of a line perpendicular to ax + by + c = 0 & passing through (x_1, y_1) is $b(x-x_1) - a(y-y_1) = 0$ (or) bx - ay + k = 0 where $k = ay_1 - bx_1$.

The equation of a line parallel to ax + by + c = 0 and passing through origin is ax + by = 0.
The equation of a line perpendicular to ax + by + c = 0 and passing through origin is bx - ay = 0.
The area of the triangle formed by the line x a + y b = 1 with the co-ordinate axes is 1/2 |ab| Sq.units.
The area of the triangle formed by ax+by+c=0 with the co-ordinate axes is c²/2 |ab| Sq.units.
The area of the parallelogram formed by the
The prependicular to ax + by the prependicula

- lines $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + d_1=0$, $a_1x + b_1y + c_2 = 0$, $a_2x + b_2y + d_2 = 0$ is $\frac{|(c_1 - c_2)(d_1 - d_2)|}{a_1b_1 - a_2b_1}$ Sq.units.
- The equation of a line which is at a distance of 'p' units from the origin and α is ($0 < \alpha < 360^{\circ}$) the angle made by the perpendicular with positive direction of x-axis is x cos α + y sin α = p. (normal form)

Equation of the line with inclination θ and passing through (x₁,y₁) is x - x₁/cosθ = y - y₁/sinθ (symmetric form) where θ ∈ (0, π/2) ∪ (π/2, π). If we put x - x₁/cosθ = y - y₁/sinθ = r, then 'r' is the distance between fixed point (x₁, y₁) and the variable point (x, y).
x = x₁ + r Cos θ, y = y₁ + r Sin θ are the

• $x = x_1 + r \cos \theta$, $y = y_1 + r \sin \theta$ are the parametric equations of a line passing through (x_1, y_1) The ratio in which the line $L \equiv ax + by + c = 0$ divides the line segment joining

A(x₁, y₁), B(x₂, y₂) is $-L_{11} : L_{22}$ where $L_{11} = L (x_1, y_1)$ and $L_{22} = L (x_2, y_2).$

- The points A, B lie in the same side or opposite side of the line L = 0 according as L_{11} , L_{22} have the same sign or opposite sign.
- Let $L \equiv ax + by + c = 0$, (c>0) be a line & A(x₁, y₁) be a point.

Then A lies in the origin side of L = 0 if $L_{11} > 0$ and A lies in the opposite to the origin side of L = 0 if $L_{11} < 0$.

• The perpendicular distance from the origin to

the line ax + by + c = 0 is $\frac{|c|}{\sqrt{a^2 + b^2}}$

• The perpendicular distance from a point (x_1, y_1) to the line ax + by + c = 0 is

$$\frac{\left|ax_{1}+by_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}$$

- The distance between the two parallel lines $ax + by + c_1 = 0$ and $ax + by + c_2 = 0$ is $\frac{|c_1 - c_2|}{\sqrt{a^2 + b^2}}$
 - The point of intersection of the two non-parallel lines $a_1x + b_1y + c_1 = 0$ & $a_2x + b_2y + c_2$

$$= 0 \text{ is } \left(\frac{b_1 c_2 - b_2 c_1}{a_1 b_2 - a_2 b_1}, \frac{c_1 a_2 - c_2 a_1}{a_1 b_2 - a_2 b_1} \right)$$
$$(a_1 b_2 - a_2 b_1 \neq 0)$$

Three or more lines are said to be concurrent if they have a point in common. The common point is called the point of concurrence.

If
$$L_1 = 0$$
, $L_2 = 0$ are two interesecting lines,
then the equation of any line other than $L_1 = 0$
and $L_2 = 0$ passing through point of intersection
can be taken as
 $L_1 + \lambda L_2 = 0$. Where λ -parameter.
The condition that the lines $a_1x + b_1y + c_1 = 0$,
 $a_2x + b_2y + c_2 = 0$, $a_3x + b_3y + c_3 = 0$ to be
concurrent is $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$
If '0' is an acute angle between the lines $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ then $\cos \theta = \frac{|a_1a_2 + b_1b_2|}{\sqrt{a_1^2 + b_1^2}\sqrt{a_2^2 + b_2^2}}$ and
 $\tan \theta = \frac{|a_1b_2 - a_2b_1|}{|a_a_2 + b_1b_2|}$
The lines $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ are
parallel if $\frac{a_1}{a_2} = \frac{b_1}{b_2}$
The lines $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ are
perpendicular if $a_1a_2 + b_1b_2 = 0$
 $a_1x + b_1b + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ represent the
same line if $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$
If (α , β) is the foot of the perpendicular from
(x_1, y_1) to the line $ax + by + c = 0$ then
 $\frac{\alpha - x_1}{a} = \frac{\beta - y_1}{b} = \frac{-(ax_1 + by_1 + c)}{a^2 + b^2}$

The equation of angular bisectors of the two lines $a_1x+b_1y+c_1=0$ & $a_2x+b_2y+c_2=0$ are $\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = \pm \frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}}$ Harmonic Conjugate : A = (x_1, y_1) , B = (x_2, y_2) are two points C (h, k) is a point dividing A and B in the ratio *l* :m. Then the point dividing AB in the ratio $\frac{-l}{m}$ is called the harmonic - conjugate of C(h, k). with respect to AB. The equation to the lines passing through (x_1, y_1) and making an angle ' α ' with the line ax+by+c=0 are given by y-y₁ = m₁(x-x₁) where $m_1 = \frac{a+b\tan\alpha}{a\tan\alpha-b}$ y-y₁ = m₂(x-x₁) where $m_2 = \frac{b \tan \alpha - a}{b + a \tan \alpha}$ If (x_1, y_1) and (x_2, y_2) are the vertices of an equilateral triangle, then the third vertex can be $\left(\frac{(x_1+x_2)-\sqrt{3}(y_1-y_2)}{2},\frac{\sqrt{3}(x_1-x_2)+(y_1-y_2)}{2}\right)$ (or) $\left(\frac{(x_1+x_2)+\sqrt{3}(y_1-y_2)}{2}, \frac{-\sqrt{3}(x_1-x_2)+(y_1+y_2)}{2}\right)$ The distance of the point (x_1, y_1) from the line ax+by+c=0 measured along a line making an angle ' α ' with x-axis is $\left| \frac{ax_1 + by_1 + c}{a \cos \alpha + b \sin \alpha} \right|$ The orthocentre of the triangle formed by the points (0, 0), (x_1, y_1) and (x_2, y_2) is $\left(\frac{k(y_1 - y_2)}{x_2y_1 - x_1y_2}, \frac{k(x_2 - x_1)}{x_2y_1 - x_1y_2}\right)$ where $k = x_1 x_2 + y_1 y_2$

• The figure formed by the lines $ax\pm by\pm c=0$ is rhombus and its area is $\frac{2c^2}{|ab|}$ square units.

• If (x_1, y_1) , (x_2, y_2) , (x_3, y_3) are the vertices of a triangle, then the median through (x_1, y_1) is given by the equation.

$$\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} + \begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0$$

• Area of triangle formed by the lines $y = m_1 x + c_1, y = m_2 x + c_2$ and

• x = o is
$$\frac{1}{2} \frac{(c_1 - c_2)^2}{|m_1 - m_2|} sq.units$$

•
$$y = m_3 x + c_3$$
 is $\frac{1}{2} \left| \sum \frac{(c_1 - c_2)^2}{m_1 - m_2} \right| sq.units$

• The area of the triangle formed by the three lines $a_1x+b_1y+c_1=0$, $a_2x+b_2y+c_2=0$ and $a_3x+b_3y+c_3=0$ is

$$\frac{\frac{1}{2}\begin{vmatrix}a_1 & b_1 & c_1\\a_2 & b_2 & c_2\\a_3 & b_3 & c_3\end{vmatrix}^2}{|(a_1b_2 - a_2b_1)(a_2b_3 - a_3b_2)(a_3b_1 - a_1b_3)|}$$
 s.u

• The equation of the line parallel to ax + by + $c_1 = 0$, ax + by + $c_2 = 0$ and lying midway between them is $ax + by + \frac{c_1 + c_2}{2} = 0$

A straight line is such that the sum of the

• A straight line is such that the sum of the reciprocals of its intercepts on the axes is K. Then it passes through the fixed point with

coordinates is $\left(\frac{1}{k}, \frac{1}{k}\right)$

• If a line which is at a distance 'p' from the

origin, makes intercepts (a, b) on the axes, then

$$\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}.$$

• If a line cuts the axes at A and B and (x_1, y_1) is the midpont of AB, then equation of

the line is
$$\frac{x}{x_1} + \frac{y}{y_1} = 2$$

• If a line cuts the axes at A and B and $P(x_1,y_1)$ is a point on it dividing AB in the ratio *l*:m then the equation of the line is

$$\frac{mx}{x_1} + \frac{ly}{y_1} = l + m$$

If 'p' is the length of the altitude in an equilateral

triangle, the length of its side is $\frac{2p}{\sqrt{3}}$ and area

of the triangle is
$$\frac{p^2}{\sqrt{3}}$$
.

- The figure formed by the lines $a_1x + b_1y + c = 0$, $a_1x + b_1y + d = 0$, $a_2x + b_2y + c = 0$, $a_2x + b_2y + d = 0$ is a rhombus if $a_1^2 + b_1^2 = a_2^2 + b_2^2$
- The figure formed by the lines x=a, x=b, y=c, y=d is always a rectangle. (They form a square if |a-b| = |c-d|). The point of intersection of the diagonals of the figure formed by the above

lines is $\left(\frac{a+b}{2}, \frac{c+d}{2}\right)$. Area of the figure formed = |a-b| |c-d|

If two lines through a given point makes angles 'α' with a line having slope 'm', then the slopes

of the two lines are $\frac{m + \tan \alpha}{1 - m \tan \alpha}, \frac{m - \tan \alpha}{1 + m \tan \alpha}$

If $a_1a_2+b_1b_2>0$ the equation of the bisector of the acute angle between the above lines is

$$\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = -\frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}}$$

• If $a_1a_2+b_1b_2 < 0$, the equation of the bisector of the acute angle between the above lines is

$$\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = \frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}}$$

• The equation of the bisector of the angle containing the origin between the lines $a_1x+b_1y+c_1=0$, $a_2x+b_2y+c_2=0$ where c_1 , c_2 are of same sign is

$$\frac{a_1 x + b_1 y + c_1}{\sqrt{a_1^2 + b_1^2}} = \frac{a_2 x + b_2 y + c_2}{\sqrt{a_2^2 + b_2^2}}$$
 and the

equation of the bisector of the angle not containing the origin is

$$\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = \frac{-(a_2x + b_2y + c_2)}{\sqrt{a_2^2 + b_2^2}}$$

- The image of (a,b) w.r.t. x=y is (b,a)
- The image (a,b) w.r.t. to x + y = 0 is (-b,-a).
- The image of (a,b) w.r.t. to (0,0) is (-a,-b)
- The image of (a,b) w.r.t. x-axis is (a,-b)
- The image of (a,b) w.r.t. y-axis is (-a,b)
- The image of (x₁,y₁) w.r.t. to (x,y) is
 (2x, x₁,2y-y₁)
- The point of concurrence of the altitudes in a triangle is called the orthocentre of the triangle.
- The orthocentre of a right angled triangle is the vertex containing the right angle.
- If 'O' is the orthocentre of triangle ABC, then out of the points O, A, B, C each is the orthocentre of the triangle formed by the other three points.

- A(x_1 , y_1), B(x_2 , y_2) and C(x_3 , y_3) are the vertices of triangle ABC then
 - Altitude through 'A' is $(x-x_1) (x_2-x_3) + (y-y_1) (y_2-y_3) = 0$
 - Perpendicular Bisector of "BC' is $2x (x_2-x_3)$ + $2y (y_2-y_3) = (x_2^2+y_2^2) - (x_3^2+y_3^2)$
- The equations of side BC, CA and AB of the ΔABC are $L_1 = 0$, $L_2 = 0$, $L_3 = 0$. The equation of altitude through A is $L_2(a_1a_3+b_1b_3) = L_3(a_1a_2+b_1b_2)$
- The equations of the altitudes of the triangle formed by the lines $a_1x+b_1y+c_1=0$, $a_2x+b_2y+c_2=0$ and $a_3x+b_3y+c_3=0$ are given by taking two by two of the identities in $(a_2a_3+b_2b_3)$ $(a_1x+b_1y+c_1)=(a_1a_3+b_1b_3)$ $(a_2x+b_2y+c_2) = (a_1a_2+b_1b_2)(a_3x+b_3y+c_3)$
- Orthocentre of the triangle (0,0), (x_1,y_1) and (x_2,y_2) is

$$\left[\frac{-(x_1x_2+y_1y_2)(y_1-y_2)}{x_1y_2-x_2y_1}, \frac{(x_1x_2+y_1y_2)(x_1-x_2)}{x_1y_2-x_2y_1}\right]$$

- The point of concurrence of perpendicualr bisectors of the sides of triangle is the circumcentre of the triangle. It is the centre of the circle passing through the vertices of the triangle.
- The circumcentre of an acute angled triangle lies inside the triangle and that of an obtuse angled triangle lies outside the triangle.
- The circumcentre of a right-angled triangle is the mid point of the hypotenuse.
- The circumcentre of a triangle is equidistant from the vertices of the triangle.
- The centroid of a triangle lies on the line joining orthocentre and circumcentre dividing it in the ratio 2:1.

• The orthocentre of the triangle formed by the points (a,b)(a,c)(d,c) is(a,c) and circumcentre

of triangle is $\left(\frac{a+d}{2}, \frac{b+c}{2}\right)$

- i) The incentre of a triangle is the point of concurrence of the internal bisectors of the angles in the triangle. The incentre of a triangle is equidistant from the sides of the triangle.
 ii) The incentre of a triangle divides bisector of angle A in the ratio b+c:a.
- In triangle ABC,BC=a, CA=b, AB=c and A=(x₁,y₁) B=(x₂, y₂), C=(x₃, y₃)

Then incentre= $\left(\frac{ax_1 + bx_2 + cx_3}{a+b+c}, \frac{ay_1 + by_2 + cy_3}{a+b+c}\right)$

• Incentre of the triangle formed by (0,0) (a,0) and (0,b) is

$$\left(\frac{a |b|}{|a|+|b|+\sqrt{a^2+b^2}}, \frac{b |a|}{|a|+|b|+\sqrt{a^2+b^2}}\right)$$

• Excentre opposite to A =

$$\left(\frac{-ax_{1}+bx_{2}+cx_{3}}{-a+b+c}, \frac{-ay_{1}+by_{2}+cy_{3}}{-a+b+c}\right)$$

- In an equilateral triangle orthocentre, circumcentre, incentre, centroid are same
- If the lines joining any point 'O' to the vertices A,B,C of a triangle meet the opposite sides in

D,E, F respectively then $\frac{BD}{DC} \cdot \frac{CE}{EA} \cdot \frac{AF}{FB} = 1$

• If a transversal cuts the sides BC, CA, AB of a triangle in D, E, F respectively then

$$\frac{BD}{DC} \cdot \frac{CE}{EA} \cdot \frac{AF}{FB} = -1$$

THEORY BITS

1. If the point (x_1, y_1) divides the line segment intercepted by a straight line between the coordinate axes into two equal parts, then its equation is

1)
$$xx_1 - yy_1 = x_1^2 - y_1^2$$

2) $y_1x + x_1y = x_1y_1$
3) $y_1x + x_1y = 2x_1y_1$
4) $xx_1 + yy_1 = x_1^2 + y_1^2$

2. The variable line $\frac{x}{a} + \frac{y}{b} = 1$ is such that the length of the portion of the line intercepted between the axes is k. The locus of the mid point of the portion is

1)
$$2x^2+2y^2=k^2$$
 2) $4x^2 + 4y^2 = k^2$

3)
$$\frac{x^2}{4^2} + \frac{y^2}{4} = k^2$$
 4) $x^2 + y^2 = k^2$

3. If a and b are the intercepts made by the straight line on the coordinate axes such that $\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$ then the line passes through point 1) (1,1) 2) (c,c)

3)
$$\left(\frac{1}{c},\frac{1}{c}\right)$$
 4) $\left(\frac{c}{a},\frac{c}{a}\right)$

4. If A(b,c) B(-a,0) C(a,0) are the vertices of triangle ABC and P,Q are the mid points of $\overline{AB}, \overline{AC}$ respectively and \overline{BQ} is perpendicular to \overline{CP} then

1) $b^2+c^2=3a^2$ 2) $b^2+c^2=9a^2$

3)
$$c^2-b^2 = 3a^2$$
 4) $a^2+b^2=9c^2$

5. The lines (a+b-2c)x+(b+c-2a)y+(c+a-2b)=0, (b+c-2a)x+(c+a-2b)y+(a+b-2c)=0 and (c+a-2b)x+(a+b-2c)y+(b+c-2a)=0 where a,b,c,real numbers

- 1 Form an equilateral triangle
- 2. Concurrent
- 3. Form a right angled triangle
- 4. Form an isosceles triangle

A triangle is formed by the lines ax+by+c=06. lx+my+n=0, px+qy+r=0, then the straight line (ax+by+c)(lp+mq) = (lx+my+n) (ap+bq)passes through 1) Incentre 2) Circumcentre 3) Orthocentre 4) Centroid 7. The orthocentre of the triangle formed by the points A($acos\alpha$, $asin\alpha$) B($acos\beta$, $asin\beta$) $C(a\cos\gamma, a\sin\gamma)$ is 1. $(\cos\alpha + \cos\beta + \cos\gamma, \sin\alpha + \sin\beta + \sin\gamma)$ 2.[$a(\cos\alpha + \cos\beta + \cos\gamma), a(\sin\alpha + \sin\beta + \sin\gamma)$] 3. $[a(\cos\alpha + \sin\beta + \sin\gamma), a(\sin\alpha + \cos\beta + \cos\gamma)]$ 4. $(\cos\alpha \cos\beta \cos\gamma, \sin\alpha \sin\beta \sin\gamma)$ 8. If the lines joining any point O to vertices 14. A,B,C of a triangle meet the opposite sides in D,E,F, respectively then $\frac{BD}{DC} \cdot \frac{CE}{FA} \cdot \frac{AF}{FB} =$ 2) 2 3) -3 4) 3 1) 1 9. If a transversal cuts BC, CA, AB of triangle ABC in D,E,F then $\frac{BD}{DC} \cdot \frac{CE}{EA} \cdot \frac{AF}{EB} =$ 1) 1 2) -1 3) -3 4) 4 10. A straight line is such that the sum of the reciprocals of its intercepts on the axes is K. Then it passes through the fixed point with coordinates 1) $\left(\frac{1}{k}, \frac{1}{k}\right)$ 2) $\left(k, \frac{1}{k}\right)$ 4) $\left(\frac{1}{k}, k\right)$ (k, k)11. If a, b, c are all distinct, then 16. (b-c)x+(c a)y+(a-b)=0 and $(b^{3}-c^{3})x+(c^{3}-a^{3})y+(a^{3}-b^{3})=0$ represents the same line if 1) a + b + c = 0 2) a = b = c3) $a^2 + b^2 + c^2 = 0$ 4) $a^3 + b^3 + c^3 = 0$ 12. (a-b)x+(b-c)y+(c-a)=0, The lines (b-c)x+(c-a)y+(a-b)=0, (c-a)x+(a-b)y+

- 1) form an equilateral triangle
- 2) form an isosceles triangle
- 3) are concurrent
- 4) Scalane triangle
- 13. The figure formed by the lines $a_1x+b_1y+c=0$, $a_1x+b_1y+d=0$, $a_2x+b_2y+c=0$, $a_1x+b_1y+d=0$ form a rhombus. Then

1)
$$a_1+b_1 = a_2+b_1$$

2) $a_1b_1 = a_2b_2$
3) $\frac{a_1}{b_1} = \frac{a_2}{b_2}$
4) $a_1^2+b_1^2 = a_2^2+b_2^2$

14. (a, b), (c, d), (e, f) are the vertices of an equilateral triangle. Then the orthocentre of the triangle is

1)
$$\left(\frac{a+d+f}{3}, \frac{b+c+e}{3}\right)$$

2)
$$\left(\frac{a+c+e}{3}, \frac{b+d+f}{3}\right)$$

3)
$$\left(\frac{a+c+f}{3}, \frac{b+d+e}{3}\right)$$

4)
$$\left(\frac{a+b+c}{3}, \frac{d+e+f}{3}\right)$$

15. A line cuts the coordinate axes in A and B. If AB = 2l, then the equation of the locus of the midpoint of AB is

1)
$$4x^2 + 4y^2 = l^2$$
 2) $x^2 + y^2 = 4l^2$
3) $x^2 + y^2 = l^2$ 4) $x^2 + y^2 = 2l^2$

16. A line through the point (a, b) cuts the coordinate axes in A and B. Then the equation of the locus of the mid point of AB is

1)
$$\frac{a}{x} + \frac{b}{y} = 2$$

2) $\frac{x}{a} + \frac{y}{b} = 2$
3) $\frac{a}{x} + \frac{b}{y} = 1$
4) $ax+by=1$

(b-c)=0

- 17. The locus of the midpoint of the portion of the line $x \cos \alpha + y \sin \alpha = p$ intercepted between the axes is
 - 1) $\frac{p^2}{x^2} + \frac{p^2}{y^2} = 1$ 2) $\frac{p^2}{x^2} + \frac{p^2}{y^2} = 4$ 3) $x^2 + y^2 = 4p^2$ 4) $x^2 + y^2 = 2p^2$
- 18. A line through P (p,q) cuts the coordinate axes in A and B. If AB = 2l and p is the mid point of AB, then

1)
$$p^2 + q^2 = 4l^2$$

2) $4(p^2 + q^2) = l^2$
3) $p^2 + q^2 = l^2$
4) $p^2 + q^2 = 2l^2$

19. A line makes intercepts a, b on the coordinate axes. Then the axes are rotated through a certain angle. In the new system the above line makes intercepts p, q on the new axes. Then

1)
$$ab = pq$$

2) $\frac{1}{a} + \frac{1}{b} = \frac{1}{p} + \frac{1}{q}$
3) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2} + \frac{1}{q^2}$
4) $\frac{1}{a^2} - \frac{1}{b^2} = \frac{1}{p^2} - \frac{1}{q^2}$

20. If P_1, P_2 be the distances between the parallel sides and θ is the angle between two adjacent sides of a parallelogram, then its area is

1) $P_1 P_2 \sin \theta$ 3) $P_1 P_2 / \sin \theta$ 2) $P_1 P_2 \cos \theta$ 4) $P_1 P_2 / \cos \theta$

21. The locus of the mid points of the portion of a line distant P from the origin intercepted between the axes is

1)
$$p^{2}(x^{2}+y^{2}) = 4x^{2}y^{2}$$

2) $p^{2}(x^{2}+y^{2}) = 2x^{2}y^{2}$
3) $4(x^{2}+y^{2}) = p^{2}x^{2}y^{2}$
4) $2(x^{2}+y^{2}) = p^{2}x^{2}y^{2}$

22. If the base of an isosceles triangle is of length 2P and the length of the altitude dropped to the base is q, then the distance from the mid point of the base to the side of the triangle is

1)
$$\frac{pq}{\sqrt{p^2 + q^2}}$$
 2) $\frac{2pq}{\sqrt{p^2 + q^2}}$
3) $\frac{3pq}{\sqrt{p^2 + q^2}}$ 4) $\frac{4pq}{\sqrt{p^2 + q^2}}$

23. A variable line drawn through the point of intersection of the lines $\frac{x}{a} + \frac{y}{b} = 1, \frac{x}{b} + \frac{y}{a} = 1$ meets the coordinate axes in A and B. Then the locus of the mid point of AB is 1) 2xy(a+b)=ab(x+y) 2) xy(a+b)=ab(x-y) 3) xy(a+b)=ab(x+y) 4)xy(a+b)=2ab(x+y) 24. The product of the perpendiculars drawn from $(\sqrt{a^2 - b^2}, 0), (-\sqrt{a^2 - b^2}, 0)$ to $\frac{x}{a}\cos \alpha + \frac{y}{b}\sin \alpha = 1$ 1. 2b² 2) 4b² 3) b² 4) b²+a² 25. p is the perpendicular distance from the origin

to
$$\frac{x}{a} + \frac{y}{b} = 1$$
 then $\frac{1}{a^2} + \frac{1}{b^2} =$
1) p² 2) 1/p² 3) p 4) 1/p

26. $\frac{x}{a} + \frac{y}{b} = 1, \frac{x}{b} + \frac{y}{a} = 1$ and x = y are concurrent then the point of concurrency is

1) (ab, ab)
2) (b/a, a/b)
3)
$$\left(\frac{ab}{a+b}, \frac{ab}{a+b}\right)$$

4) $\left(\frac{1}{ab}, \frac{1}{ab}\right)$

- 27. The straight line through A(a,b) intersects the line through B(b,d) at 'P' at right angles. The locus of P is
 - 1) (x-a)(x-b)+(y-b)(y-d)=0 2) (x-a)(x-c)+(y-b)(y-d)=0 3) (x-b)(x-d)+(y-a)(y-d)=0 4) (x-b)(x-d)+(y-a)(y-c)=0
- 28. If the medians AD, BE of a Δ with vertices A=(0,p), B=(0,0), C=(q,0) are mutually perpendicular if
 - 1) $p^2=2q^2$ 3) p+2q=04) p-3q=01 p-3q=0
- 29. If ax+by+c=0 is parallel to x-axis then which of the following is defined

30. The equation of the line passing through 35. $(at_1^2, 2at_1), (at_2^2, 2at_2)$ is 1. $2x-(t_1+t_2)y+2at_1t_2 = 0$ 2. $2x+(t_1+t_2)y-2at_1t_2=0$ 3. $2x-(t_1+t_2)y-2at_1t_2 = 0$ 4. $x-(t_1+t_2)y+at_1t_2 = 0$ 31. The equation to the perpendicular bisector of the line segment of the line $\frac{x}{a} + \frac{y}{b} = 1$ cut off 36. by the axes is 1) ax-by- $a^2+b^2=0$ 2) $ax+by-a^2+b^2=0$ 3) $2ax+2by-a^2+b^2=0$ 4) $2ax-2by-a^2+b^2=0$ 32. The straight line passing through $P(x_1, y_1)$ and 37. making an angle α with x-axis intersects Ax+By+C=0 in Q then PQ= is 1) $\frac{|Ax_1 + By_1 + C|}{\sqrt{(x_1^2 + D^2)^2}}$ 2) $\frac{|Ax_1 + By_1 + C|}{\sqrt{A \cos x + B \sin x}}$ 38. $3)\frac{|Ax_1 + By_1 + C|}{|A\cos \alpha + B\sin \alpha|}$ 4) $\frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 \cos^2 \alpha + B^2 \sin^2 \alpha}}$ 3) 1 39. $u \equiv a_1 x + b_1 y + c_1 = 0, v \equiv a_2 x + b_2 y + c_2 = 0$ 33. and $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ then u+kv=0 represents 1) u = 02) a family of concurrent lines 3) a family of parallel lines 40. 4) a family of lines intersecting at origin 34. In $\triangle ABC$, S is a point satisfying SA=SB=SC then $\frac{(AB)(BC)(CA)}{(SA)\Delta} =$ 2) 2 3) 3 1) 1 4) 4

The area of the parallelogram formed by the lines $ax+by+c_1=0$, $ax+by+c_2=0$, $px+qy+r_1=0$, $px+qy+r_2=0$ 1) $\left| \frac{(c_1 - c_2)(r_1 - r_2)}{aa - bn} \right|$ 2) $\frac{|(c_1 - c_2)(r_1 - r_2)|}{2|aa - bn|}$ 3) $\frac{(c_1 - c_2)(r_1 - r_2)}{ab - pa}$ 4) $\frac{(c_1 - r_1)(c_2 - r_2)}{ab - ba}$ The area of the triangle formed by the lines $y=m_1x+c_1, y=m_2x+c_2$ and x=0 is 1) $\frac{|c_1 - c_2|}{2|m_1 - m_2|}$ 2) $\frac{(c_1 - c_2)^2}{2(m_2 - m_1)^2}$ 3) $\frac{(c_1 - c_2)^2}{2|m_1 - m_2|}$ 4) $\frac{(c_1 - c_2)^2}{|m_2 - m_1|}$ The condition that the lines ax+hy+g=0hx+by+f=0 and gx+fy+c=0 to be concurrent 1) $abc+2fgh-af^2-bg^2-ch^2=0$ 2) abc=2fgh 3) $h^2 = ab$ 4) $af^2 = bg^2$ If $a+b+c \neq 0$, ax+by+c=0 bx+cy+a=0, cx+ay+b=0 are concurrent then $\frac{a^2 + b^2 + c^2}{ab + bc + cc}$ = 1) 1/22) 2 4) 0 Three different lines px+qy+r=0 qx+ry+p=0 and rx+py+q=0 are concurrent then 1) $p^{3}+q^{3}+r^{3} = 3pqr$ 2) $p^2+q^2+r^2-pq-qr-rp=0$ 3) p+q+r=04) All of the above Two lines $x \cos \alpha + y \sin \alpha = p$, $x \cos 2\alpha + y \sin 2\alpha = q$ include an angle of 1) α 2) 3α 3) $\frac{\alpha}{n-\alpha}$ 4) $\frac{p+q}{\alpha}$

JR. MATHEMATICS

$\frac{1}{12} = \frac{1}{\sqrt{3}} \sqrt{\frac{a^2 + b^2}{2}} = \frac{a^$	41	If	<u>ux</u> +	<i>by</i> =	- <i>c</i>	is			LEVE	L-1	
$\begin{aligned} & Pripriority for a statignt into the stat$	11.	$\sqrt{a^2}$	$+b^2 \int \sqrt{a}$	$a^2 + b^2$ γ	$\sqrt{a^2+b^2}$	then	1.	If the slope	of a line is	$\frac{-1}{\sqrt{3}}$ then its i	inclination is
42. The angle between the lines $x \cos \alpha + y\sin \alpha$ $= p_1, x \cos \beta + y\sin \beta = p_2$ where $(\alpha > \beta)$ is 1) $\alpha - \beta$ 2) $\alpha + \beta$ 3) $\alpha\beta$ 4) $2\alpha - \beta$ 43. The diagonals of the parallelogram whose sides are $1x + my + n_1 = 0$, $1x + my + n_2 = 0$, $mx + 1y + n_1 = 0$ and $mx + 1y + n_2 = 0$, include an angle of 1. $\pi/3$ 2) $\pi/2$ 3. The foot of perpendicular from the origin to x + by + c = 0 is 1) $\left(\frac{-c}{a^2 + b^2}, \frac{-c}{a^2 + b^2}\right)$ 44. The foot of perpendicular from the origin to x + by + c = 0 is 1) $\left(\frac{-c}{a^2 + b^2}, \frac{-c}{a^2 + b^2}\right)$ 2) $\left(\frac{-bc}{a^2 + b^2}, \frac{-c}{a^2 + b^2}\right)$ 3) $\left(\frac{ac}{a^2 + b^2}, \frac{-c}{a^2 + b^2}\right)$ 4) $\left(\frac{-ac}{a^2 + b^2}, \frac{-c}{a^2 + b^2}\right)$ 4) $\left(\frac{-ac}{a^2 + b^2}, \frac{-bc}{a^2 + b^2}\right)$ 5) $\left(\frac{1}{111223}, \frac{1}{23}, \frac{1}{2}, 1$		1) a,b,o 3) c <	c>0 0	2) 4) a>0, b ²) a, b>0,	>0, $c \leq 0$, $c \neq 0$		1) $\frac{\pi}{3}$	2. $\frac{5\pi}{6}$	$3.\frac{2\pi}{3}$	4. $\frac{3\pi}{4}$
$\begin{aligned} &= p, x \ Cosp + y \sin \beta = p_2 \ Where (\alpha > \beta) \ is \\ 1) \ \alpha - \beta & 2) \ \alpha + \beta \\ 3) \ \alpha \beta & 4) \ 2\alpha - \beta \\ \end{aligned}$ $\begin{aligned} &= 1) \ \sqrt{3} - 1 \ 2) \ 1 + \sqrt{3} \ 3) \ 3 - 2\sqrt{3} \ 4) \ 2 - \sqrt{3} \\ &= 1) \ \sqrt{3} - 1 \ 2) \ 1 + \sqrt{3} \ 3) \ 3 - 2\sqrt{3} \ 4) \ 2 - \sqrt{3} \\ \end{aligned}$ $\begin{aligned} &= 1) \ \sqrt{3} - 1 \ 2) \ 1 + \sqrt{3} \ 3) \ 3 - 2\sqrt{3} \ 4) \ 2 - \sqrt{3} \\ &= 1) \ \sqrt{3} - 1 \ 2) \ 1 + \sqrt{3} \ 3) \ 3 - 2\sqrt{3} \ 4) \ 2 - \sqrt{3} \\ &= 1) \ \sqrt{3} - 1 \ 2) \ 1 + \sqrt{3} \ 3) \ 3 - 2\sqrt{3} \ 4) \ 2 - \sqrt{3} \\ &= 1) \ \sqrt{3} - 1 \ 2) \ 1 + \sqrt{3} \ 3) \ 3 - 2\sqrt{3} \ 4) \ 2 - \sqrt{3} \\ &= 1) \ \sqrt{3} - 1 \ 2) \ 1 + \sqrt{3} \ 3) \ 3 - 2\sqrt{3} \ 4) \ 2 - \sqrt{3} \\ &= 1) \ \sqrt{3} - 2 \ 2) \ \sqrt{3} \ 2 \ \sqrt{3} \ 2 \ 2) \ \sqrt{3} \ 2 \ 3 \ 3$	42.	The an	gle betwe	een the li	ines x Co	$\cos \alpha + y \sin \alpha$	2.	The inclina	ation of a lin	ne is 15°. Its	s slope is
$ \begin{array}{c} 3) \ a \beta \\ a) \ a \beta \\ a \beta \\ a \ a \ a \ a \beta \\ a \ a \ a \ a \ a \ a \ a \ a \ a \ a$		$= p_1, x_1$	Cosβ+y	$\sin\beta = p$	p_2 where) $\alpha + \beta$	(α>β) 1s		1) $\sqrt{3} - 1$	2) $1+\sqrt{3}$	3) $3-2\sqrt{3}$	$(4)_{2-\sqrt{3}}$
43. The diagonals of the paralelogram whose sides are $13 + my + n_1 = 0$, $1x + my + n_2 = 0$, $1x + my + n_2 = 0$, $1y + n_$		 α β αβ 		4) 2α-β		3.	If the straig points (3,-	ght line y=n 4) and (-1,2	nx+c passes 2) then valu	through the
and mx+ly+n ₂ =0, include an angle of 1. $\pi/3$ 2) $\pi/2$ 3. Tan ⁻¹ $\left(\frac{l^2 - m^2}{l^2 + m^2}\right)$ 4) Tan ⁻¹ $\left(\frac{2lm}{l^2 + m^2}\right)$ 44. The foot of perpendicular from the origin to ax+by+c=0 is 1) $\left(\frac{-c}{a^2 + b^2}, \frac{-c}{a^2 + b^2}\right)$ 2) $\left(\frac{-bc}{a^2 + b^2}, \frac{-ac}{a^2 + b^2}\right)$ 3) $\left(\frac{ac}{a^2 + b^2}, \frac{-ac}{a^2 + b^2}\right)$ 4) $\left(\frac{-c}{a^2 + b^2}, \frac{-ac}{a^2 + b^2}\right)$ 4) $\left(\frac{-ac}{a^2 + b^2}, \frac{-ac}{a^2 + b^2}\right)$ 4) $\left(\frac{-ac}{a^2 + b^2}, \frac{-ac}{a^2 + b^2}\right)$ 3) $\left(\frac{ac}{a^2 + b^2}, \frac{-ac}{a^2 + b^2}\right)$ 4) $\left(\frac{-ac}{a^2 + b^2}, \frac{-ac}{a^2 + b^2}\right)$ 4) $\left(\frac{-ac}{a^2 + b^2}, \frac{-ac}{a^2 + b^2}\right)$ 4) $\left(\frac{-ac}{a^2 + b^2}, \frac{-ac}{a^2 + b^2}\right)$ 5) $\left(\frac{ac}{a^2 + b^2}, \frac{-ac}{a^2 + b^2}\right)$ 6) $\left(\frac{1}{172}, \frac{2}{18}, \frac{1}{9}, \frac{9}{2}, \frac{1}{2}\right)$ 6) $\left(\frac{1}{172}, \frac{1}{23}, \frac{1}{2}, \frac{2}{3}, \frac{1}{2}, \frac{2}{3}, \frac{1}{2}, \frac{2}{3}, \frac{1}{4}, \frac{29}{7}, \frac{29}{7}$ 5) $\left(\frac{2}{4}, \frac{29}{7}, \frac{17}{4}, 3\right), \frac{29}{4}, \frac{29}{7}$	43.	The dia are lx+	gonals of mv+n.=0	the paral), lx+mv	lelogram +n_=0, r	whose sides nx+lv+n.=0		1) $\frac{-2}{3}$	2) $\frac{-3}{2}$	3) $\frac{3}{2}$	4) $\frac{2}{3}$
3. Tan ⁻¹ $\left(\frac{t^2 - m}{t^2 + m^2}\right)$ 4) Tan ⁻¹ $\left(\frac{2m}{t^2 + m^2}\right)$ 44. The foot of perpendicular from the origin to ax+by+c=0 is 1) $\left(\frac{-c}{a^2 + b^2}, \frac{-c}{a^2 + b^2}\right)$ 2) $\left(\frac{-bc}{a^2 + b^2}, \frac{-ac}{a^2 + b^2}\right)$ 3) $\left(\frac{ac}{a^2 + b^2}, \frac{-ac}{a^2 + b^2}\right)$ 4) $\left(\frac{-ac}{a^2 + b^2}, \frac{-bc}{a^2 + b^2}\right)$ 5) $\left(\frac{ac}{a^2 + b^2}, \frac{-bc}{a^2 + b^2}\right)$ 5) $\left(\frac{ac}{a^2 + b^2}, \frac{-bc}{a^2 + b^2}\right)$ 5) $\left(\frac{1}{a^2 + b^2}, \frac{-bc}{a^2 + b^2}\right)$ 6) $\left(\frac{1}{1111}, \frac{1}{1223}, \frac{1}{133}, \frac{1}{14}, \frac{1}{122}, \frac{1}{23}, \frac{1}{23}, \frac{2}{24}, \frac{1}{2}, \frac{29}{7}$ 5) $\left(\frac{1}{4}, \frac{2}{3}, \frac{29}{4}, \frac{29}{7}\right)$ 6) $\left(\frac{1}{113}, \frac{2}{23}, \frac{1}{33}, \frac{29}{4}, \frac{29}{7}\right)$ 6) $\left(\frac{25}{4}, \frac{1}{2}, \frac{17}{4}, \frac{29}{3}, \frac{29}{4}, \frac{29}{7}\right)$ 6) $\left(\frac{25}{4}, \frac{1}{2}, \frac{17}{4}, \frac{29}{7}, \frac{29}{4}, \frac{29}{7}\right)$		and mx 1. π/3	$(l^2 m^2)$), include 2	an angle) $\pi / 2$	e of	4.	If the lin (-8,3) (2,1) through the of k is	ne passing) is parall e points (11	g through el to the l ,-1) (k,0) the	the points ine passing en the value
44. The foot of perpendicular from the origin to $ax+by+c=0$ is 1) $\left(\frac{-c}{a^2+b^2}, \frac{-c}{a^2+b^2}\right)$ 2) $\left(\frac{-bc}{a^2+b^2}, \frac{-ac}{a^2+b^2}\right)$ 3) $\left(\frac{ac}{a^2+b^2}, \frac{-ac}{a^2+b^2}\right)$ 4) $\left(\frac{-ac}{a^2+b^2}, \frac{-bc}{a^2+b^2}\right)$ 4) $\left(\frac{-ac}{a^2+b^2}, \frac{-bc}{a^2+b^2}\right)$ 4) $\left(\frac{-ac}{a^2+b^2}, \frac{-bc}{a^2+b^2}\right)$ 5) $\left(\frac{ac}{a^2+b^2}, \frac{-bc}{a^2+b^2}\right)$ 4) $\left(\frac{-ac}{a^2+b^2}, \frac{-bc}{a^2+b^2}\right)$ 5) $\left(\frac{ac}{a^2+b^2}, \frac{-bc}{a^2+b^2}\right)$ 5) $\left(\frac{ac}{3}, \frac{2}{3}, \frac{2}{3}$		3. Tan ⁻	$1 \left(\frac{l^2 - m}{l^2 + m^2}\right)$	- - -) Tan ⁻¹	$\left(\frac{2lm}{l^2+m^2}\right)$		1) 5	2) 7	3) 5/2	4) 6
$1) \left(\frac{-c}{a^{2}+b^{2}}, \frac{-c}{a^{2}+b^{2}}\right)$ $2) \left(\frac{-bc}{a^{2}+b^{2}}, \frac{-ac}{a^{2}+b^{2}}\right)$ $3) \left(\frac{-bc}{a^{2}+b^{2}}, \frac{-ac}{a^{2}+b^{2}}\right)$ $4) \left(\frac{-ac}{a^{2}+b^{2}}, \frac{-bc}{a^{2}+b^{2}}\right)$ $4) \left(\frac{-ac}{a^{2}+b^{2}}, \frac{-bc}{a^{2}+b^{2}}\right)$ (KEY) $1) 3 2) 2 3) 2 4) 2 5) 2$ $6) 3 7) 2 8) 1 9) 2 10) 1$ $11) 1 12) 3 13) 4 14) 2 15) 3$ $16) 1 17) 2 18) 3 19) 3 20) 3$ $21) 1 22) 1 23) 1 24) 3 25) 2$ $26) 3 27) 1 28) 2 29) 1 30) 3$ $31) 4 32) 3 33) 3 34) 4 35) 1$ $36) 3 37) 1 38) 3 39) 4 40) 1$ $41) 3 42) 1 43) 2 44) 4$ $(1) 3 42) 1 43) 2 44) 4$ $(1) 3 42) 1 43) 2 44) 4$	44.	The foo ax+by+	ot of perp -c=0 is	pendicula	ar from t	he origin to	5.	A=(7,1) B (k,1) lies o Then the v	=(-3,3) are n the perper value of k is	two points. ndicular bis	If the point ector of AB
$ \begin{array}{c} 19 \left(\frac{a^2 + b^2}{a^2 + b^2}, \frac{a^2 + b^2}{a^2 + b^2} \right) \\ 2) \left(\frac{-bc}{a^2 + b^2}, \frac{-ac}{a^2 + b^2} \right) \\ 3) \left(\frac{ac}{a^2 + b^2}, \frac{-ac}{a^2 + b^2} \right) \\ 3) \left(\frac{ac}{a^2 + b^2}, \frac{bc}{a^2 + b^2} \right) \\ 4) \left(\frac{-ac}{a^2 + b^2}, \frac{-bc}{a^2 + b^2} \right) \\ 4) \left(\frac{-ac}{a^2 + b^2}, \frac{-bc}{a^2 + b^2} \right) \\ \hline \mathbf{KEY} \\ 1) 3 2) 2 3) 2 4) 2 5) 2 \\ 6) 3 7) 2 8) 1 9) 2 10) 1 \\ 11) 1 12) 3 13) 4 14) 2 15) 3 \\ 16) 1 17) 2 18) 3 19) 3 20) 3 \\ 21) 1 22) 1 23) 1 24) 3 25) 2 \\ 26) 3 27) 1 28) 2 29) 1 30) 3 \\ 31) 4 32) 3 33) 3 34) 4 35) 1 \\ 36) 3 37) 1 38) 3 39) 4 40) 1 \\ 41) 3 42) 1 43) 2 44) 4 \end{array} $		1) (-cc					1) 3	2) 6	3) 2	4) -4
$2) \left(\frac{-bc}{a^{2}+b^{2}}, \frac{-ac}{a^{2}+b^{2}}\right)$ $3) \left(\frac{ac}{a^{2}+b^{2}}, \frac{bc}{a^{2}+b^{2}}\right)$ $4) \left(\frac{-ac}{a^{2}+b^{2}}, \frac{-bc}{a^{2}+b^{2}}\right)$ $4) \left(\frac{-ac}{a^{2}+b^{2}}, \frac{-bc}{a^{2}+b^{2}}\right)$ (KEY) $1) 3 2) 2 3) 2 4) 2 5) 2$ $6) 3 7) 2 8) 1 9) 2 10) 1$ $11) 1 12) 3 13) 4 14) 2 15) 3$ $16) 1 17) 2 18) 3 19) 3 20) 3$ $21) 1 22) 1 23) 1 24) 3 25) 2$ $26) 3 27) 1 28) 2 29) 1 30) 3$ $31) 4 32) 3 33) 3 34) 4 35) 1$ $36) 3 37) 1 38) 3 39) 4 40) 1$ $41) 3 42) 1 43) 2 44) 4$ $1) \frac{25}{4} 2) \frac{17}{4} 3) \frac{29}{4} 4) \frac{29}{7}$		a^2	$+b^{2}a^{2}+b^{2}a^{$	b^2)			6.	The equate through the	ion of the e point (4,-'	horizontal 1 7) is	line passing
$\begin{array}{c} 7. \text{If the straight line } (3x+4y+5)+k(x+2y-3)=0 \\ \text{parallel to x-axis then the value of k is} \\ 1) 1 & 2) -3 & 3) 4 & 4) 2 \\ \end{array}$ $\begin{array}{c} 8. \text{Equation of the vertical line passing through 1} \\ \text{point } (-4,5) \text{ is} \\ 1) 1 & 2) -3 & 3) 4 & 4) 2 \\ \end{array}$ $\begin{array}{c} 8. \text{Equation of the vertical line passing through 1} \\ \text{point } (-4,5) \text{ is} \\ 1) x+4=0 & 2) x-4=0 & 3) x-5=0 & 4) x+5=0 \\ 9. \text{If the line } (3x+14y+7)+k(5x+7y+6)=0 \\ \text{parallel to y axis then the value of k is} \\ 1) 1/3 & 2) -3/5 & 3) -2 & 4) 2 \\ 10. \text{The vertices of a triangle are } (2,0) & (0,2) & (4, then the equation of the median through the vertex (2,0) is \\ 1) x+y-2=0 & 2)x=2 \\ 3) x+2y-2=0 & 4) 2x+y-4=0 \\ 11. x \text{ intercept of the line parallel to } 4x+7y=9 \text{ and } 2x+y-4=0 \\ 11. x \text{ intercept of the line parallel to } 4x+7y=9 \text{ and } 2x+y-4=0 \\ 11. x \text{ intercept of the line parallel to } 4x+7y=9 \text{ and } 2x+y-4=0 \\ 11. x \text{ intercept of the line parallel to } 4x+7y=9 \text{ and } 2x+y-4=0 \\ 11. x \text{ intercept of the line parallel to } 4x+7y=9 \text{ and } 2x+y-4=0 \\ 11. x \text{ intercept of the line parallel to } 4x+7y=9 \text{ and } 2x+y-4=0 \\ 11. x \text{ intercept of the line parallel to } 4x+7y=9 \text{ and } 2x+y-4=0 \\ 11. x \text{ intercept of the line parallel to } 4x+7y=9 \text{ and } 2x+y-4=0 \\ 11. x \text{ intercept of the line parallel to } 4x+7y=9 \text{ and } 2x+y-4=0 \\ 11. x \text{ intercept of the line parallel to } 4x+7y=9 \text{ and } 2x+y-4=0 \\ 11. x \text{ intercept of the line parallel to } 4x+7y=9 \text{ and } 2x+y-4=0 \\ 11. x \text{ intercept of the line parallel to } 4x+7y=9 \text{ and } 3x+2y-2=0 \\ 11. x \text{ intercept of the line parallel to } 4x+7y=9 \text{ and } 3x+2y-2=0 \\ 11. x \text{ intercept of the line parallel to } 4x+7y=9 \text{ and } 3x+2y-2=0 \\ 11. x \text{ intercept of the line parallel to } 4x+7y=9 \text{ and } 3x+2y-2=0 \\ 11. x \text{ intercept of the line parallel to } 4x+7y=9 \text{ and } 3x+2y-2=0 \\ 11. x \text{ intercept of the line parallel to } 4x+2y-2y-2=0 \\ 11. x \text{ intercept of the line parallel to } 4x+2y+2y-2y-2y-2y-2y-2y-2y-2y-2y-2y-$		2) $\left(\frac{-}{a^2}\right)$	$\frac{-bc}{+b^2}, \frac{-ac}{a^2+b^2}$	$\left(\frac{c}{h^2}\right)$				1) y-7=0	2) y+7=0	3) y-4=0	4) y+4=0
$ \begin{array}{c} 3) \left(\frac{a^2 + b^2}{a^2 + b^2}, \frac{-bc}{a^2 + b^2} \right) \\ 4) \left(\frac{-ac}{a^2 + b^2}, \frac{-bc}{a^2 + b^2} \right) \\ \hline \\ \mathbf{KEY} \\ 1) 3 2) 2 3) 2 4) 2 5) 2 \\ 6) 3 7) 2 8) 1 9) 2 10) 1 \\ 11) 1 12) 3 13) 4 14) 2 15) 3 \\ 16) 1 17) 2 18) 3 19) 3 20) 3 \\ 21) 1 22) 1 23) 1 24) 3 25) 2 \\ 26) 3 27) 1 28) 2 29) 1 30) 3 \\ 31) 4 32) 3 33) 4 40) 1 \\ 41) 3 42) 1 43) 2 44) 4 \end{array} $ $ \begin{array}{c} 1) 1 2) -3 3) 4 4) 2 \\ 8. Equation of the vertical line passing through 1 \\ point (-4,5) is \\ 1) x+4=0 2) x-4=0 3) x-5=0 4) x+5=0 \\ 9. If the line (3x+14y+7)+k(5x+7y+6)=0 \\ parallel to y axis then the value of k is \\ 1) 1/3 2) -3/5 3) -2 4) 2 \\ 10. The vertices of a triangle are (2,0) (0,2) (4, \\ then the equation of the median through the vertex (2,0) is \\ 1) x+y-2=0 2)x=2 \\ 3) x+2y-2=0 4) 2x+y-4=0 \\ 11. x intercept of the line parallel to 4x+7y=9 are passing through (2,3) is \\ 1) \frac{25}{4} 2) \frac{17}{4} 3) \frac{29}{4} 4) \frac{29}{7} \\ \end{array}$		(u	ac bc)			7.	If the straig parallel to	ght line (3x x-axis then	+4y+5)+k(x the value of	x+2y-3)=0 is f k is
$4) \left(\frac{-ac}{a^2+b^2}, \frac{-bc}{a^2+b^2}\right)$ KEY $1) 3 2) 2 3) 2 4) 2 5) 2 6) 3 7) 2 8) 1 9) 2 10) 1 11)1 12)3 13) 4 14) 2 15) 3 16) 1 17) 2 18) 3 19) 3 20) 3 16) 1 17) 2 18) 3 19) 3 20) 3 11) 1 22) 1 23) 1 24) 3 25) 2 26) 3 27) 1 28) 2 29) 1 30) 3 31) 4 32) 3 33) 3 34) 4 35) 1 36) 3 37) 1 38) 3 39) 4 40) 1 41) 3 42) 1 43) 2 44) 4 8. Equation of the vertical line passing through 1 point (-4,5) is 1) x+4=0 2) x-4=0 3) x-5=0 4) x+5=0 9. If the line (3x+14y+7)+k(5x+7y+6)=0 parallel to y axis then the value of k is 1) 1/3 2) -3/5 3) -2 4) 2 10. The vertices of a triangle are (2,0) (0,2) (4, then the equation of the median through the vertex (2,0) is 1) x+y-2=0 2)x=2 3) x+2y-2=0 4) 2x+y-4=0 11. x intercept of the line parallel to 4x+7y=9 ar passing through (2,3) is 1) \frac{25}{4} 2) \frac{17}{4} 3) \frac{29}{4} 4) \frac{29}{7}$		3) $\left(\frac{1}{a^2}\right)$	$+b^{2}$, a^{2} +	$\overline{b^2}$				1) 1	2) -3	3) 4	4) 2
I is the form of the fore		4) $\left(\frac{1}{a^2}\right)$	$\frac{-ac}{a^2+b^2}, \frac{-b}{a^2+b^2}$	$\left(\frac{bc}{b^2}\right)$			8. Equation of the vertical line point (-4,5) is		l line passing	g throught he	
KEY9. If the line $(3x+14y+7)+k(5x+7y+6)=0$ parallel to y axis then the value of k is 1) 1/3 2) -3/5 3) -2 4) 2 $(6) 3 7) 2 8) 1 9) 2 10) 1$ 11)1 12)3 13) 4 14) 2 15) 3 16) 1 17) 2 18) 3 19) 3 20) 3 21) 1 22) 1 23) 1 24) 3 25) 2 26) 3 27) 1 28) 2 29) 1 30) 3 31) 4 32) 3 33) 3 34) 4 35) 1 36) 3 37) 1 38) 3 39) 4 40) 1 41) 3 42) 1 43) 2 44) 49. If the line $(3x+14y+7)+k(5x+7y+6)=0$ parallel to y axis then the value of k is 1) 1/3 2) -3/5 3) -2 4) 2 10. The vertices of a triangle are $(2,0)(0,2)(4,$ then the equation of the median through the vertex $(2,0)$ is 1) $x+y-2=0$ 2) $x=2$ 3) $x+2y-2=0$ 4) $2x+y-4=0$ 11. x intercept of the line parallel to $4x+7y=9$ and passing through $(2,3)$ is 1) $\frac{25}{4}$ 2) $\frac{17}{4}$ 3) $\frac{29}{4}$ 4) $\frac{29}{7}$		(u	10 u I					1) x+4=0	2) x-4=0	3) x-5=0	4) x+5=0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				KEY			9.	If the lin parallel to	e (3x+14y y axis then	+7)+k(5x+ the value of	7y+6)=0 is of k is
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1) 3	2) 2	3) 2	4) 2	5) 2		1) 1/3	2) -3/5	3) -2	4) 2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		6) 3	7) 2	8) 1	9) 2	10) 1	10.	The vertice	es of a trian	igle are (2,0	(0,2) (4,6)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		11)1	12)3	13) 4	14) 2	15) 3		vertex (2,0	uation of t	me median	mough the
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		16) 1	17) 2	18) 3	19) 3	20) 3		1) x+y-2=	0	2)x=2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		21) 1	22) 1	23) 1	24) 3	25) 2		3) x+2y-2=	=0	4) 2x+y-4	=0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		26) 3	27) 1	28) 2	29) 1	30) 3	11.	x intercept	of the line	parallel to 4	x+7y=9 and
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		31)4	32) 3	33)3	34) 4	35) I 40) 1		passing thr	rough (2,3)	is	-
		30) 3 41) 3	37)1 42)1	38) 3 43) 2	39) 4 44) 4	40) 1		1) $\frac{25}{4}$	2) $\frac{17}{4}$	3) $\frac{29}{4}$	4) $\frac{29}{7}$

12.	If the straight line (x perpendicualr to $2x+3$	+y+1)+ λ (2x-y-1)=0 is 3y-8=0 then λ =	20.	Equation of the line passing through the point $(1,2)$ and having intercepts on the axes in the ratio 2:2 is
	1) 5	2) -5		$\begin{array}{c} \text{ratio 2:5 is} \\ 1 \\ 2 \\ 2 \\ 1 \\ 4 \\ -11 \\ 2 \\ 2 \\ 2 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ $
	3) 4	4) -4		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
13.	Equation of a line wh	nich passes through the		3) $3x-2y=7$ 4) $4x+y=6$
	point (-3,8) and cut of the axes whose sum i	ff positive intercepts on s 7 is	21.	If the line $(x-y+1) + k (y-2x+4) = 0$ makes equal intercept on the axes then the value of k
	1) 3x-4y=12	2) 4x+3y=12		Б
	3) 3x+4y=12	4) 4x-3y=12		1) $\frac{1}{2}$ 2) $\frac{3}{4}$ 3) $\frac{1}{2}$ 4) $\frac{2}{2}$
14.	A line through $(2,2)$ is $3x+y=3$. Its y-intercept	perpendicular to the line ot is	22.	Equation of the line having intercepts a, b on
	1) $\frac{1}{3}$ 2) $\frac{2}{3}$	3) 1 4) $\frac{4}{3}$		the axes such that $a+b=5$ and $ab = \frac{21}{4}$ is
15	Equation of the line n	amon di oulon to		1) $3x+2y=6$ 2) $2x+3y=6$
15.	Equation of the line pe	erpendicular to		3) 14x+6y=21 4) x+4y=4
	3x+4y-10=0 with x-in	thercept $\frac{-3}{7}$ is	23.	The points $(3,2)$ (-2,-1) are two opposite vertices of a rectangle if the other two vertices line on $2\pi + 5\pi + 12$. Other the rules of here
	1) 4x-3y+12/7=0	2) 4x-3y+15/7=0		lies on $3x+5y+k=0$ then the value of k is
	3) 4x-3y+5/7=0	4)4x-3y+11/7=0	24	1) 5 2) -4 5) -5 4) 7 Equation of the line on which the length of the
16.	Equation of the line w with x-axis and having is	hich makes an angle 45 ⁰ g an intecept-3 on Y-axis	27.	perpendicular from origin is 5 and the angle which this perpendicular makes with the x axis is 60°
	1) x-y-3=0	2) x-y+3=0		1) $x + \sqrt{3}y = 12$ 2) $\sqrt{3}x + y = 10$
	3) x+y+3=0	4) x+y-3=0		3) $m + \sqrt{2}m + 8$ (1) $m + \sqrt{2}m + 10$
17.	Equation of the line	e with slope $\frac{-3}{2}$ and	25.	S) $x + \sqrt{3}y = 8$ Normal form of $x - \sqrt{3}y + 6 = 0$ is
	x-intercept 5 is			π π
	1) 3x+2y=15	2) 3x-2y=15		1) x cos $\frac{1}{3}$ + y sin $\frac{1}{3}$ = 2
	3) 3x+2y=10	4) 3x+2y=12		2π 2π
18.	Equation of the line w	ith slope 1/3 and divides		2) x cos $\frac{1}{3}$ + y sin $\frac{1}{3}$ = 3
	the join of the points 4.7 is	(0,2) (5,-3) in the ratio		3π 3π
	1) $11x-33v-14=0$	2) $11x-33v+14=0$		3) x cos $\frac{1}{4}$ + y sin $\frac{1}{4}$ = 6
	3) $11x-33v+17=0$	4) $11x - 33y - 17 = 0$		(1) x $\cos \frac{5\pi}{2} + x \sin \frac{5\pi}{2} = 2$
19.	A line passing throug	h (-4.3) have intercepts		$\frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{6}$
	on the axes equal in m	agnitude but opposite in	26.	If the straight line drawn through the point
	sign then the area of the line with the co-ordinate	the triangle formed by the ate axes in square units		$P(\sqrt{3},2)$ making an angle $\frac{\pi}{6}$ with x-axis
	49 25	· 49 · 49		meets the line $\sqrt{3} x-4y+8=0$ at Q. Then PQ is
	1) $\frac{1}{8}$ 2) $\frac{1}{6}$	3) - 4) - 2		1) 4 2) 5 3) 6 4) 9

I

27.	The point on the line $x+y=4$ that lie at a unit distance from the line $4x+3y-10=0$ is	36.	Equation to the line passing through the point
	1) (1, 3) 2) (-7, 11) 3) (11, -7) 4) (2, 2)		of intersection of the lines $\frac{x}{3} - \frac{y}{4} = 1$,
28.	If the distances from the points $(6,-2)$ and $(3,4)$ to the lines $4x+3y=12$, $4x-3y=12$ are d ₁ and		$\frac{x}{4} - \frac{y}{3} = 1$, and origin is
	d_2 respectively then $d_1:d_2 =$		1) x-y=0 2) x+y=0
	1) 2:3 2) 4:5 3) 3:7 4) 1:2		3) $2x+y=0$ 4) $2x+3y=0$
29.	The ratio in which the line $3x+4y-7=0$ divides the line joining the points $(1,2)$ $(2,3)$ is	37.	The point of concurrence of the lines $r - v - r - v$
	1) 4:11 Internally 2) 4:11 Externally		$\frac{x}{3} + \frac{y}{4} = 1$, $\frac{x}{4} + \frac{y}{3} = 1$, $x = y$ is
	3) 7:11 Internally 4) 7:11 Externally		(4 4) $(2 2)$
30.	The ratio in which the line joining the points		1) $\left(\overline{3},\overline{3}\right)$ 2) $\left(\overline{7},\overline{7}\right)$
	(-1,-1) (2,1) divides the line joining the points (3, 4) and (1,2) is		3) $\left(\frac{12}{7}, \frac{12}{7}\right)$ 4) $\left(\frac{7}{12}, \frac{7}{12}\right)$
	1) 7:5 externally 2) 7:3 externally	38	For all values of 'a' the set of straight lines
	3) 7:5 internally 4) 7:4 externally	50.	$(3a+1) \times (2a+3) \times (9a+3) \times ($
31.	If the line $3x+4y-8=0$ is denoted by L, then the points $(2,-5)$ $(-5,2)$		the point 1) $(3, 4)$ 2) $(4,2)$ 3) $(3,3)$ 4) $(1,2)$
	1) lie on L	39.	If 4a+5b+6c=0 then the set of lines ax+by+c=0
	2) lie on same side of L		are concurrent at the point
	3) lie on opposite sides of L		$1) \left(\frac{2}{5}, \frac{5}{2}\right) = 2 \left(\frac{1}{5}, \frac{1}{5}\right) = 2 \left(\frac{1}{5}, \frac{4}{5}\right) = 4 \left(\frac{1}{5}, \frac{7}{5}\right)$
	4) equidistant from L		(3,6) (3,6) (3,2) (3,2) (2,3) (4) (3,3)
32.	The distance between the parallel lines $8x+6y+5=0$ and $4x+3y-25=0$ is	40.	If the lines $y=x+1$, $2x+y=16$, $y=\alpha x-4$ are concurrent then the value of α is
	1) $\frac{7}{2}$ 2) $\frac{9}{2}$ 2) $\frac{11}{2}$ 4) $\frac{5}{2}$		1) 3 2) 5 3) 1 4) 2
33.	1) $\frac{1}{2}$ 2) $\frac{1}{2}$ 3) $\frac{1}{2}$ 4) $\frac{1}{4}$ If the distance between the lines $2x+y+k=0$,	41.	If θ is an acute angle between the lines y=2x+3, y=x+1 then the value of tan θ =
	$6x+3y+2=0$ is $\frac{7}{3\sqrt{5}}$ then the value of k is		1) $\frac{2}{3}$ 2) $\frac{1}{3}$ 3) $\frac{3}{4}$ 4) $\frac{1}{2}$
24	1) 5 2) 3 3) 6 4) 7	42.	The angle between the line passing through the points $(1, -2)$ $(3,2)$ and the line x+2y-7=0 is
54.	quadriateral formed by the lines $\frac{x}{t} + \frac{y}{t} = 1$,		1) $\frac{\pi}{4}$ 2) $\frac{\pi}{6}$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{3}$
	$\frac{x}{h} + \frac{y}{r} = 1, \ \frac{x}{r} + \frac{y}{h} = 2, \ \frac{x}{h} + \frac{y}{r} = 2$ is	43.	The acute angle between the lines $lx + my = l+m$, $l(x-y) + m(x+y) = 2m$ is
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1) $\frac{\pi}{4}$ 2) $\frac{\pi}{6}$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{3}$
35.	4 - 6 - 3 - 2 Circumference of the circle touching the lines 3x+4y-3=0, $6x+8y-1=0$ is	44.	The equation of the line equidistant from the lines $2x+3y-7=0$, $2x+3y-9=0$ is
	13 18 19 11		1) $2x+3y-1=0$ 2) $2x+3y-6=0$
	1) $\frac{15}{5}$ 2) $\frac{13}{7}$ 3) $\frac{17}{6}$ 4) $\frac{11}{7}$		3) 2x+3y-10=0 4) 2x+3y-8=0

45.	The lines $(p-q) x + (q-r) y + (r-p) = 0$	52.	Image of (1,2) w.r.t. (-2, -1) is
	(q-r) x + (r-p) y + (p-q) = 0		1) (0,5) 2) (-4,-3)
	(r-p) x + (p-q) y + (q-r) = 0		3) (-5,-4) 4) (-4,-5)
	1) Form an equilaterial triangle	53.	$\mu \equiv a_1x+b_1y+c_1=0$ and $\lambda \equiv a_2x+b_2y+c_2=0$ are
	2) Form an Isosceles triangle3) Concurrent		two straight lines such that $\frac{a_1}{a_1} = \frac{b_1}{a_1} = \frac{c_1}{a_1}$ then
	4) Form a right angled triangle		two straight lines such that $a_2 b_2 c_2$
46.	The equation of the straight line whose		$\mu + k\lambda = 0, k \varepsilon R$ is
	inclination is $\pi/4$ and x-intercept is 4 is		1) a straight line different from μ and λ
	1) $x+y+4=0$ 2) $x+y-4=0$		2) not a straight line
	3) x-y-4=0 4) x-y+4=0		3) is a straight line concurrent with μ and λ
47.	A straight line passes through $(4,5)$ and makes		4) the same straight line $\mu = 0$
	direction, its equation in the symmetric form is	54.	Equation of a diameter of the circum circle of the triangle formed by the lines
	1) (x-4) $/\sqrt{3} = (y+5)$		3x+4y-7=0, 3x-y+5=0 and 8x-6y+1=0 is
	2) $(x-4) / \sqrt{3} = 5-y$		1) 3x-y-5=0 2) 3x+y+5=0
	$2)(\pi + 4)/(5) = \pi + 5$		3) $3x-y+5=0$ 4) $3x+y-5=0$
	$(x+4)/\sqrt{3} = y+5$	55.	If the lines $ax+by+c = 0$, $bx+cy+a = 0$ and
	4) x-4 = (y-5) $/\sqrt{3}$		$cx+ay+b=0$ ($a\neq b\neq c$) are concurrent then the point of concurrency is
48.	A straight line is such that its distance of 5 units		1) $(0,0)$ 2) $(1,1)$ 3) $(2,2)$ 4) $(-1,-1)$
	from the origin and its inclination is 135 [°] . The	56.	The points $(0, 8/3)$, $(1, 3)$ and $(82, 30)$ are the
	are		vertices of
	1) 5 5 2) $\sqrt{2}$ $\sqrt{2}$		1) obtuse angled triangle
			2) acute angled triangle
	3) $5\sqrt{2}, 5\sqrt{2}$ 4) $5/\sqrt{2}, 5/\sqrt{2}$		3) right angled triangle
49.	The distance between the straight lines		4) set of collinear points
	$y=mx+c_1$ and $y = mx+c_2$ is $ c_1-c_2 $, when	57.	The points $(2,3)$, $(8,11)$, $(5,7)$ form
	1) $m=0$ 2) $m=1$ 3) $m=2$ 4) $m=-2$		1) a right angled triangle
50.	The equation of the line which is parallel to $5x+12x+1=0$ and $5x+12x+7=0$ and lying		2) isosceles triangle
	midway between them is $3x + 12y + 1 = 0$ and $3x + 12y + 1 = 0$ and $1y + 12y + 1 = 0$		4) set of collinear points
	1) $5x+12y+13=0$ 2) $5x+12y-4=0$	58.	A = (5,3), B=(11, -5), C=(12, t), It
	3) $5x+12y+4=0$ 4) $5x+12y-6=0$		$\angle ACB = 90^{\circ}$, then t =
51.	If p, q, r are distinct, then		1) 4 2) -4 3) -2 4) 2
	(q-r)x + (r-p)y + (p-q) = 0 and	59.	L_1 and L_2 are two intersecting lines and the angle
	$(q^3-r^3) + (r^3-p^3) y + (p^3-q^3) = 0$ represents the		between the image of L_1 w.r.t. L_2 and that of L_2
	same line ii 1) $p+q+r=0$ 2) $p=q=r$		w.r.t. L_1 is 45°. Then the angle between L_1 and
	1) p+q+1=0 2) p=q=1		L ₂ is
	3) $p^2+q^2+r^2=0$ 4) $p^3+q^3+r^3=0$		1) 20° 2) 15° 3) 45° 4) 60°

STRAIGHT LINES

٦

60.	L ₁ and I	L_{2} are two	intersect	ing lines.	If the image		HINTS
	of L ₁ w	.r.t. L ₂ an	d that of	L ₂ w.r.t.	L ₁ concide,		
	then	the	ar	ngle	between	5.	Substitute (k, 1) in the equation of the
	L_1 and L_1	L ₂ 18		0			perpendicular bisector of A and B.
	1) 35 ⁰		,	2) 60 ⁰		7.	Coefficient of $x = 0$
	3) 90 ⁰		4) 45 ⁰		9.	Coefficient of $y=0$
61.	If the or	thocentre	and circ	umcentre	of a triangle	13.	Verification with the options.
	are (2,-	5), (5,6) 1	inen the c	entroid is	S	19.	Let the intercepts be a, -a
	1)(2.7)		2	$(-3, -\frac{4}{2})$		20.	Verification
) () ·)			/ (3)	21.	Coefficient of $x = coefficient$ of y
	3) (4,3	3)	4)) (-1, -3)		22.	Verification from the options.
62.	The nut	mber of α	lifferent s	straight 1	ines that are $D(2,7)$ are	23.	Substitute mid piont of $(3, 2)$ (-2, -1) in the
	1) 1	2) 0	2,3), D(3, 2'	(3,0)	(1), D(3, 7) are		equation.
62	1) 1 If the	2) (ر د) 5 f the me	4) 4	24.	Normal form x $\cos \alpha + y \sin \alpha = p$.
05.	distance	es from t	he points	(2,0) (0,	(2) and $(4,4)$	27.	Verification
	to a va	riable lin	e is '0',	then the	line passes		$m = \begin{bmatrix} a_1 & b_2 & b_3 \end{bmatrix}$
	through	the fixed	1 point			29.	Applying $\frac{m}{n} = -\left \frac{dx_1 + by_1 + c}{dx_2 + by_1 + c}\right $
	1) (1,1)	2) (3,3)			
	3) (2,2)	4) (0,0)	1	34.	The quadriateral formed by the lines is Rhombus.
64.	The eq 3v=0, 4	uation to 4x+3v-5=	the sides =0 and 3	s of a tri x+v=0 tl	angle are x-	35.	Distance between parallel lines is equals to the diamter of the circle
	3x-4y=	0 passes	through			38	Verification
	1) The 2) The	incentre centroid				15	Sum of the coefficient of y yand constant term in
	2) The3) The	circumce	entre			ч.Э.	each equation is zero.
	4) The	orthocen	tre of the	triangle		46.	Equation of the line $y = m(x-a)$
			KEY				$\mathbf{r} - \mathbf{r}$ $\mathbf{v} - \mathbf{v}$
	1) 2	2) 4	3) 2	4) 4	5)1	47.	Symmetric form $\frac{x - x_1}{\cos \theta} = \frac{y - y_1}{\sin \theta}$
	6) 2	7) 2	8) 1	9) 3	10) 2	48.	Normal form
	11)3	12) 2 17) 1	13)2 18)1	14) 4 19) 4	15) 1 20) 2	49	Verification
	21) 4	22) 3	23) 2	24) 4	20)2	50	Verification
	26) 3	27) 2	28) 4	29) 2	30) 1	50.	Vernearon
	31) 2	32) 3	33) 2	34) 4	35) 4	51.	$\frac{b^3 - c^3}{a} = \frac{c^3 - a^3}{a^3} = \frac{a^3 - b^3}{a^3}$
	36) 2	37) 3	38) 1	39) 1 44) 4	40) 4		b-c $c-a$ $a-b$
	41) 2	42) 3 47) 4	43) 1	44) 4 49) 1	43) 3 50) 3	52.	Verification
	51) 1	52) 3	53) 4	54) 3	55) 2		$a_1 b_1 c_1$
	56) 4	57) 4	58) 2	59) 2	60) 2	53.	As $\frac{1}{a_2} = \frac{1}{b_2} = \frac{1}{c_2}$ then the two lines represent one
	61) 3	62) 4	63) 3	64) 4			line only.

54. Given lines forms a right angled triangle.

55. Verification.

LEVEL-II

1. If the inclination of the line

$$(2-\lambda) x-(1-\lambda)+(5-2\lambda)=0$$
 is $\frac{3\pi}{4}$ then the value of λ is

1)
$$\frac{5}{2}$$
 2) $\frac{-3}{2}$ 3) $\frac{2}{3}$ 4) $\frac{3}{2}$

2. If the slope of the line

 $\left(\frac{1}{a} + \frac{k}{b}\right)x + \left(\frac{1}{b} + \frac{k}{a}\right)y - (1+k) = 0$ is -1 then the value of k is

- 1) 2 2) -1 3) 1 4) -2
- 3. The angle made by the line passing through the points $(2+\sqrt{2}, 2-\sqrt{2})$ and $(3+\sqrt{2}, 3-\sqrt{2})$ with the positive direction of x-axis.

1)
$$\frac{\pi}{4}$$
 2) $\frac{3\pi}{4}$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{6}$

4. If the line joining the points $(at_1^2, 2at_1) (at_2^2, 2at_2)$ is parallel to y=x then $t_1+t_2=$

1)
$$\frac{1}{2}$$
 2) 4 3) $\frac{1}{4}$ 4) 2

- 5. If (3,-1),(2,4),(-5,7) are the mid points of the sides $\overline{BC}, \overline{CA}, \overline{AB}$ of triangle ABC. Then the equation of the side \overline{CA} is
 - 1) 2x+y-8=0 2) x+2y-12=0

3)
$$x+y-6=0$$
 4) $x-y+6=0$

6. A line passing through the pionts (7,2) (-3,2) then the image of the line in x-axis is

1) y = 42) y = 93) y = -14) y = -2

7. The y-intercept of the line passing through the points (4,7),(1,5) is

1)
$$\frac{13}{3}$$
 2) $\frac{-13}{2}$ 3) $\frac{15}{2}$ 4)

8. Area enclosed by the co-ordinate axes and the line passing through the pionts (8,-3) (-4,12) is

1)
$$\frac{98}{5}$$
 2) $\frac{49}{5}$ 3) $\frac{24}{25}$ 4) $\frac{17}{8}$

9. Equation of the line which join the origin and the point of trisection of the portion of the line x+3y-12=0 intercepted between the axes is

1)
$$x=6y$$
2) $x-5y=0$ 3) $3x-7y=0$ 4) $2x-5y=0$

10. The line 2x+3y+12=0 cuts the axes at A & B. Then the equation of the perpendicular bisector of \overline{AB} is

11. A(1,-1) B(4,-1) C(4,3) are the vertices of a triangle. Then the equation of the altitude through the vertex 'A' is

12. P is the midpoint of the part of the line 3x+y-2=0 intercepted between the axes. Then the image of P in origin is

1)
$$\left(-1, -\frac{1}{3}\right)$$
 2) $\left(-\frac{1}{3}, -4\right)$
3) $\left(-\frac{1}{3}, -1\right)$ 4) (-2, -3)

- 13. A straight line meet the axes in A and B such that the centroid of triangle OAB is (a,a). Then the equation of the line AB is
 - 1) x+y=a 2) x-y=3a

- 14. The two lines y = 2x, y = -2x are
 - 1) Parallel 2) Perpendicular
 - 3) Coincident
 - 4) Equally inclined with the axes
- 15. If the straight lines y = 4-3x, ay=x+10, 2y+bx+9=0 represents three consecutive sides of a rectangle then the value of ab is
 - 1) 12 2) 6 3) 18 4) 24

JR. MATHEMATICS

3

16. A, B, C are the points (-1,2),(8,5),(4,9). If D lies on \overline{AB} such that AD : BD = 1:2. Then the equation of the line \overline{DC} is

1) 4x-y+1=0 2) 3x-y=3

3) 2x-y+1=0 4) 3x+y=21

17. The Locus of the foot of the perpendicular from origin to the line which always passes through the fixed point (h, k) is

1) x (x - h) + y (y - k) = 0

2) x
$$(x + h) + y (y + k) = 0$$

3) x
$$(x + 2h) + y (y + 2k) = 0$$

18. A ray of light passing through the point (8,3) and is reflected at (14,0) on x axis. Then the equation of the reflected ray

1) x+y=14 2) x-y=14 3) 2y=x-14 4) 3y=x-14

19. Equation of the line passing through the intersection of the lines 3x-4y+1=0, 5x+y-1=0 and cutting off equal intercepts on the axes is

1) 13(x+y)=112) 15(x+y) = 73) 23(x+y)=114) 13(x+y) = 7

20. A line passing through P(-2,3) meets the axes in A and B. If P divides AB in the ratio of 3:4 then the perpendicular distance from (1,1) to the line is

1)
$$\frac{9}{\sqrt{5}}$$
 2) $\frac{7}{\sqrt{5}}$ 3) $\frac{8}{\sqrt{5}}$ 4) $\frac{6}{\sqrt{5}}$

21. A part of the line intercepted between the axes is bisected at the pont (2,-5). Then the length of the perpendicular from origin to the line is

1)
$$\frac{20}{\sqrt{19}}$$
 2) $\frac{10}{\sqrt{19}}$ 3) $\frac{20}{\sqrt{29}}$ 4) $\frac{10}{\sqrt{29}}$

22. Equation of the line through the point (2,3) and making intercept 2 units between the lines y+2x=3, y+2x=5 is

1) x=2 2) y=3 3) x+y=5 4) x+y=7

23. A straight line is drawn through (3,4) cutting the axes in A and B. If the rectangle OACB is

completed then the equation to the locus of C is

24. A straight line moves so that the sum of reciprocals of its intercepts on the co-ordinate axes is a constant m. Then the fixed point through which the line passes is

1) (m, m)
2)
$$\left(\frac{1}{m}, \frac{1}{m}\right)$$

3) $\left(\frac{1}{m^2}, \frac{1}{m^2}\right)$
4) $\left(\frac{2}{m^2}, \frac{2}{m^2}\right)$

25. p is the length of the perpendicular drawn from the origin upon a straight line then the locus of mid point of the portion of the line intercepted between the coordinate axes is

1)
$$\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{p^2}$$

2) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{2}{p^2}$
3) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{p^2}$
4) $\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{p}$

26. A straight line segment of length "p" moves with its ends on two mutually perpendicular lines. Then the locus of the point which divides the line segment in the ratio 1:2 is

1)
$$9x^2+36y^2=4p^2$$

2) $9x^2+9y^2=4p^2$
3) $9x^2+36y^2=p^2$
4) $x^2+4y^2=36p^2$

27. P (α , β) lies on the line y = 6x - 1 and Q (β , α) lies on the line 2x-5y=5. Then the equation of the line PQ is

28. The perpendicular distance from the origin to a line passing through the point $(a\cos^3\theta, a\sin^3\theta)$ and perpendicular to the line $x\sec\theta+y\csc\theta=a$ is

1) $acos2\theta$	2) asin 2θ

3) $2asin\theta$ 4) $2acos\theta$

29. If (-4,5) is one vertex and 7x-y+8=0 is one 35. diagonal of a square, then the equation of the other diagonal is 1) x+7y-31=02) x+7y-15=0 36. 3) x+7y+8=04) x+7y-35=030. The equations of the sides of a triangle are x-3y=0, 4x+3y=5, 3x+y=0. The line 3x-4y=0passes through 1) Incentre 2) Centroid 3) Othocentre 4) Circumcentre 37. 31. The parametric equtions of the straight line $\sqrt{3}$ x-y = 4 + 3 $\sqrt{3}$ are 1) x = -4 + r. $\frac{1}{2}$; y = 3 + r. $\frac{\sqrt{3}}{2}$ 38. 2) x = 3+r. $\frac{1}{2}$; y = -4 + r. $\frac{\sqrt{3}}{2}$ 39. 3) x = 3 + r. $\frac{3}{2}$; y = -4 + r. $\frac{1}{2}$ 4) x = 1 + r. $\frac{3}{2}$; y = 3 + r. $\frac{1}{2}$ 40. The slope of a straight line through A(3,2) is 3/32. 4 then the coordinates of the two points on the line that are 5 units away from A are 1) (-7,5) (1,-1) 2) (7,5) (-1,-1)3) (6,9) (-2,4) 4) (7,3) (-2,1) The straight line 7x+24y-61=0 intersect the 33. lines x+2y+1=0, x+2y-1=0 in A and B then 41. AB is 1) $\frac{9}{2}$ 2) 7 3) 5 4) 11

34. Perpendicular distance from the origin to the line joining the points (acosθ,asinθ) (acosθ,asinθ) is

1)
$$2a \cos (\phi - \theta)$$
 2) $a \cos \left(\frac{\theta - \phi}{2}\right)$
3) $4a \cos \left(\frac{\theta - \phi}{2}\right)$ 4) $a \cos \left(\frac{\theta + \phi}{2}\right)$

5. Two sides of a rectangle are 3x+4y+5-0, 4x-3y+15=0 and its one vertex is (0,0). Then the area of the rectangle is

36. One side of an equiateral triangle is 3x+4y=7and its vertex is (1,2). Then the length of the side of the triangle is

1)
$$\frac{4\sqrt{3}}{17}$$
 2) $\frac{3\sqrt{3}}{16}$ 3) $\frac{8\sqrt{3}}{15}$ 4) $\frac{4\sqrt{3}}{15}$

37. Equation of the line through the point of intersection of the lines 3x+2y+4=0 and 2x+5y-1=0 whose distance from (2,-1) is 2.

1)
$$2x-y+5=0$$
2) $4x+3y+5=0$ 3) $x+2=0$ 4) $3x+y+5=0$

- 38. Equation of the straight line parallel to x+2y-5=0 and at the same distance from (3,2) is
 - 1) x+2y-8=02) x+2y+9=03) x+2y-9=04) x+2y-7=0
- 39. The In-centre of the triangle formed by the lines y + 1 = 0, 4x - 3y - 7 = 0, 8x - 15y + 49= 0 is

40. The vertices of a triangle are A(5,6) B(1, -4) C(-4,0) then the length of the altitutude through the vertex A is

1)
$$\frac{66}{\sqrt{41}}$$
 2) $\frac{55}{\sqrt{41}}$
3) $\frac{17}{5}$ 4) $\frac{19}{5}$

41. Product of the perpendicular distances from the points $(\pm \sqrt{p^2 - q^2}, 0)$ to the line $\frac{x}{p}\cos\theta + \frac{y}{q}\sin\theta = 1$

1)
$$2q^2$$
 2) $\frac{4q^2}{p^2}$ 3) q^2 4) $4q^2$

42. If p, q are the perpendicular distances from the origin to the lines $x \sec \alpha + y \csc \alpha = a$ and $x \cos \alpha - y \sin \alpha = a \cos 2\alpha$ then $4p^2+q^2 =$

1)
$$a^2$$
 2) $4a^2$ 3) $2a^2$ 4) $\frac{a^2}{2}$

JR. MATHEMATICS

43.	The equation to the base of an equilateral triangle $\frac{1}{2} \left(\sqrt{2} + 1 \right) = \left(\sqrt{2} - 1 \right) = 2 \sqrt{2} = 0$	51.	The lines $x+2y-3=0$, $x+2y+7=0$, $2x-y-4=0$ form the three sides of two squares. Then the equation
	$1s(\sqrt{3}+1)x + (\sqrt{3}-1)y + 2\sqrt{3} = 0$ and		to the fourth side of one of the square is
	opposite vertex is $A(1,1)$ then the Area of the triangle is		1) $2x-y+6=0$ 2) $2x-y+14=0$
			3) 2x-y-6=0 4) 2x-y-8=0
44.	1) $3\sqrt{2}$ 2) $3\sqrt{3}$ 3) $2\sqrt{3}$ 4) $4\sqrt{3}$ The quadrilateral formed by the lines $2x-5y+7=0$, $5x+2y-1=0$, $2x-5y+2=0$,	52.	Equation of the line passing through the point of intersection of the lines $2x+3y-1=0$, $3x+4y-6=0$ and perpendicular to $5x-2y-7=0$ is
	5x+2y+3=0 is		1) $2x+5y-19=0$ 2) $2x+5y+17=0$
	1) Rectangle 2) Square		3) $2x+5y-16=0$ 4) $2x+5y-22=0$
	3) Parallelogram 4) Rhombus	53.	Equation of the straight line passing through the
45.	The quadrilateral formed by the lines $5x-12y+3=0$, $12x+5y-3=0$, $5x-12y+5=0$,		point of intersection of the lines 3x+4y-7=0, x- y+2=0 and having slope 3 is
	12x+5y+1=0 is		1) $21x-7y+16=0$ 2) $9x-3y+14=0$
	1) Parallelogram 2) Rectangle		3) $21x-7y+12=0$ 4) $9x-3y+5=0$
46.	3) Square 4) Rhombus The quadrilateral formed by the lines 4x-7y-13=0, $8x-y-39=0$, $4x-7y+39=0$, 8x-y+13=0	54.	A quadrilateral is formed by the lines $x=0$, $y=0$, $x+y=1$, $6x+y=3$, then the equation of the diagonal of the quadrilateral passing through origin.
	1) Parallelogram 2) Rhombus		1) 5x-2y=0 2) 3x-4y=0
	3) Rectangle 4) Square		3) 3x-2y=0 4) 5x-7y=0
47.	The quadrilateral formed by the lines $x+8y+37=0$, $7x-6y+11=0$, $x+8y-87=0$, $7x-6y-51=0$	55.	The perpendicular distance from the point of intersection of the lines $3x+2y+4=0$, $2x+5y-1=0$ to the line $7x+24y-15=0$
	1) Parallelogram2) Rectangle3) Square4) Rhombus		1) $\frac{2}{3}$ 2) $\frac{1}{7}$ 3) $\frac{1}{5}$ 4) $\frac{2}{5}$
48.	Area of the quadrilateral formed by the lines $2x-5y+7=0$, $5x+2y-1=0$, $2x-5y+2=0$ and $5x+2y+4=0$	56.	Area of the triangle formed by the lines $x=0$, $x+y=2$, $x-y=1/2$ is
	$3x + 2y + 4 = 0$ 1) $\frac{25}{22}$ 2) $\frac{3}{1}$ 3) $\frac{2}{2}$ 4) $\frac{7}{12}$		1) $\frac{25}{16}$ 2) $\frac{15}{8}$ 3) $\frac{3}{4}$ 4) $\frac{3}{8}$
49.	29 4 7 16 Quadrilateral formed by the lines 2x-5y+4=0, $5x-2y+7=0$, $2x-5y+3=0$, 5x+2y+6=0 is	57.	A triangle is formed by the lines $U \equiv 2x+y-3=0$, $V \equiv x-y=0$, $W \equiv x-2=0$ if $U+kV=0$ passes through the orthocentre of the triangle then the value of k is
	1) Parallelogram 2) Square		1) 2 2) -2 3) 1 4) 2/3
50.	3) Rhombus 4) Trapezium Area of the quadrilateral formed by the lines 4y- $3x-a=0$, $3y-4x+a=0$, $4y-3x-3a=0$, $3y-4x+2a=0$ is	58.	The three lines 4x-7y+10=0, x+y=5, 7x+4y- 15=0 form the sides of a triangle. Then the point (1,2) is 1) Centroid of the triangle 2) In-centre of the triangle
	1) $\frac{a}{5}$ 2) $\frac{a^{2}}{7}$ 3) $\frac{2a^{2}}{7}$ 4) $\frac{2a^{2}}{9}$		3) Orthocentre of the triangle4) Circumcentre of the triangle

59.	Two vertices of a triangle are $(4,-3)$ and $(-2,5)$, if the orthocentre of the triangle is $(1,2)$	69.	The foot of the perpendiculars from origin to the lines $x+y-4=0$, $x+5y-26=0$ lie on
	then its third vertex is		1) 2x+y-6=0 2) x+2y-11=0
	1) (3, 8) 2) (-3,-1) 3) (2,-5) 4) (33,26)		3) $3x+y-8=0$ 4) $4x+5y-9=0$
60.	Circum centre of the triangle formed by the lines $y=x, y=2x, y=3x+4$ is	70.	The equation of the perpendicular bisector of AB is $x+5y-20=0$ if A = (2,1) then B is
61.	1) $(6, -8)$ 2) $(6, 8)$ 3) $(-6, 8)$ 4) $(5, 7)$ If the lines $3x+2y-5=0$, $2x-5y+3=0$.	71.	1) (3, 6) 2) (4, 7) 3) (5, 3) 4) (4,6) If (2, -3) is the foot of the perpendicular from
	5x+by+c=0 are concurrent then $b+c=$		(-4, 5) on a line then its equation is
	1) 7 2) -5 3) 6 4) 9		1) 3x-4y+28=0 2) 3x-4y-18=0
62.	Equation of the line through the intersection of		3) 3x-4y+18=0 4) 3x-4y-17=0
	the lines $4x-3y-1=0$, $2x-5y+3=0$ and equally inclined with the axes is	72.	The angle between the lines $kx+y+9=0$, y-3x=4 is 45° then the value of k is
	1) x+y-2=0 2) x-y+3=0		1) 2 or ½ 2) 2 or -1/2
	3) $x+y-7=0$ 4) $x-y+5=0$		3) -2 of ½ 4) -2 or -1/2
63.	A triangle formed by the lines $3x+4y=12$, $x=0$, $y=0$ then the excentre of the triangle opposite to	73.	The triangle formed by the lines x-7y-22=0, 3x+4y+9=0, $7x+y-54=0$ is
	the vertex $(4,0)$ is		1) Right angled triangle
	1) (-2, 2) 2) (-3, 2) 3) (-3, 1) 4) (-3, 1)		2) Right angled isosceles
04.	An equilateral triangle has its centroid at origin and one side is $x+y-1=0$ then the vertex of the		3) Equilateral 4) Isosceles
	triangle not on the given side is	74.	The triangle formed by the lines $x+y=0$, $3x+y-$
	1) (1, 1) 2) (-1, -1) 3) (2, 2) 4) (-2, -2)		4=0, x+3y-4=0 is
65.	If the lines $2x-ay+1=0$, $3x-by+1=0$,		1) Isoceles 2) Right angled
	4x-cy+1=0 are concurrent then a,b,c are in		3) Equilateral 4) Scalane
66.	One vertex of a square ABCD is A(-1, 1) and	75.	The triangle formed by the lines $5x-2y+10=0$, $5x+2y-10=0$, $y=10$ is
	the equation of one diagonal BD is $3x+y-8=0$		1) Right angled2) Isosceles
	then $C =$		3) Right angled isosceles 4) equilateral
	$\begin{array}{c} 1)(-5, 3) \\ 2)(5, 3) \\ 3)(-5, -3) \\ 4)(2, 5) \\ \end{array}$	76.	The triangle formed by the lines $\sqrt{3}x + y - 2 = 0$,
6/.	Point B is symmetric to A $(7, 3)$ with respect to the bisector of second quadrant, then AB is		$\sqrt{3}x - y + 1 = 0$, y=0 is
	1) $2\sqrt{10}$ 2) $\sqrt{10}$		1) Equilateral 2) Right angled
	$(2) = \sqrt{2}$ (1) $(2) = \sqrt{2}$		3) Right angled isosceles
	$-7/10\sqrt{2}$		4) ISOSCEIES The main of lines the second states in
68.	Image of $(x+2)^2 + (y-3)^2 = 25$ w.r.t. y=x is 1) $(x-3)^2 + (y-2)^2 = 25$	//.	The pair of lines through the origin formed with the line $2x+3y=6$ is an isosceles right angled
	2) $(x-3)^2 + (y+2)^2 = 25$		triangle are
	3) $(x+2)^2 + (y+3)^2 = 25$		1) $x-5y=0$, $5x+y=0$ 2) $2x-y=0$, $x+2y=0$
	4) $(x-2)^2 + (y-3)^2 = 25$		$5) 3x-y=0, x+3y=0 \qquad 4) 4x-y=0, x+4y=0$
	4) $(x-2)^2 + (y-3)^2 = 25$		5) 5x-y=0, x+3y=0 4) 4x-y=0, x+4y=0

78.	The diagonal of a squ vertex of the square is to the sides of the squ vertex are	hare is $8x-15y=0$ and one s (1, 2) then the equations hare passing through this	86.	A variable line is a the origin and mee and B, then the locu is	t a constant distance p from ts the co-ordinates axes in A is of centroid of triangle OAB	
	1) $3x+y=5 x-3y+5=($)		1) $x^{-2} + y^{-2} = 3p^{-2}$	2) $x^{-2} + y^{-2} = 9p^{-2}$	
	2) 23x - 7y = 9 7x + 23y	, =53		3) $x^{-2} + y^{-2} = 6p^{-2}$	4) $x^{-2} + y^{-2} = p^{-2}$	
	3) 4x+3y=10, 3x-4y+	-5=0	87.	A variable line x/a 10. Then the locus	a + y/b = 1 is such that $a+b = 0$ of midpoint of the portion of	
	4) $7x-y=5, x+7y=15$			the line intercepted	2 10 + 5 = 1	
79.	7x-y+3=0, x+y-3=0 a	are two equal sides of an		1) $x+y=0$	2) $10x+5y=1$	
	through $(1,0)$ then the	equation to the third side	88.	If the algebraic s distances from the	4) $3x+10y=1$ sum of the perpendicular points (3,0) (0,3) (0,0) to a	
	1) $3x+y+3=0$	2) x-3y-1=0		variable line is zero	, then the line passes through	
	3) $x-y+1=0$	4) $x+2y-4=0$		1) (1, 1) 2) (3,	1) 3) $(1, 3)$ 4) $(-1, 1)$	
80.	Slope of the line equ 3x=4y+7 and 5y=12x	ally inclined to the lines +6 is	89.	The equation of the of intersection of the and which is at the point $(1,2)$ is	line passing through the point he lines $2x+y=5$ and $y=3x-5$ minimum distance from the	
	1) $\frac{3}{5}$ 2) $\frac{9}{7}$	3) $\frac{7}{9}$ 4) $\frac{5}{2}$		1) $x+y=3$	2) x-v=1	
	5 /	9 3		3) $x-2y=0$	4) $2x+5y=7$	
81.	Equation of the line e $2x+y+4=0$, $3x+6y-5=$	quidistant from the lines 0 is	90.	The equation of set of distance 2 units from	of lines which are at a constant n the origin is	
	1) $3x-3y+17=0$	2) 5x+7y-5=0		1) $x+y+2=0$	2) $x+y+4=0$	
	3) 3x-3y+19=0	4) 9x-9y+17=0		3) $x\cos\alpha + y\sin\alpha =$	=2	
82.	The acute angle bisec $4x = 5-0$, $5x+12x = 26-$	tor between the lines 3x-		4) $x\cos\alpha + y\sin\alpha$	$= \frac{1}{2}$	
	4y-3=0, 3x+12y-20=	2) $0x^{2}x^{\pm}12 = 0$	91.	The lines (a+b)	x+(a-b) y - 2ab = 0,	
	1) $7x-30y+32=0$	2) $9x - 3y + 13 = 0$		(a-b)x + (a+b)y - isosceles triangle wh	2ab = 0 and $x+y=0$ from an nose vertical angle is	
83.	The obtuse angle bise y-4=0, x-2y+10=0 is	4) 7x - 13y + 9 = 0 ctor between the lines 2x-		1) $\frac{\pi}{2}$	2) $\tan^{-1}\left(\frac{2ab}{a^2-b^2}\right)$	
	1) x-v+7=0	2) $3x-v+5=0$		- (a)	(a)	
	3) $x+y-14=0$	4) $2x+3y-5=0$		3) $\tan^{-1}\left(\frac{a}{b}\right)$	4) $2 \tan^{-1} \left(\frac{a}{b} \right)$	
84.	The line 3x-3y+17=0 a pair of lines of which	bisects the angle between ch one line is $2x+y+4=0$,	92.	The foot of the perp to the line $x\cos\alpha +$	pendicular drawn from $(0, 0)$ ysin $\alpha - p = 0$ is	
	then the equation to th	e other line is		1) (psin α , pcos α)		
	1) $3x+6y-5=0$	2) 3x+6y-7=0		2) (psec α , pcos α)		
	3) 7x-y+14=0	4) $4x-y+3=0$		3) ($pcos\alpha$, $psin\alpha$)		
85.	ABC is an isosc co-ordinates of the $C(27)$ there d	teles triangle if the base are $B(1,3)$ and		4) (p, p)		
	C(-2, 7) then the coord be	unates of the vertex A can	93.	All points lying inst points $(1, 3)$ $(5, 0)$	ide the triangle formed by the (-1, 2) satisfy	
	1) (1, 6)	2) (-1/2, 5)		1) $2x+v-13 > 0$	2) 3x + 2y > 0	
	3) (5/6, 6)	4) (-7, 1/8)		$\frac{1}{2x} \frac{2x}{y^{-1}} \frac{y^{-1}}{2} y^{-$	$\Delta y \Delta x + 2y = 0$	
	5) (5/0, 0)	4) (-7, 178)		3) $3x-4y-12 \le 0$	4) $4x+y=0$	

325

JR. MATHEMATICS

94. The total number of circles that can be drawn touching all the three lines x+y-1=0, x-y-1=0, y+1=0 is

95. p_1, p_2 are lengths of the perpendiculars from any point on 2x+11y=5 upon the lines 24x+7y=20, 4x-3y=2 then $p_1 =$

1)
$$p_2$$
 2) $2p_2$ 3) $\frac{1}{2}P_2$ 4) $\frac{1}{3}P_2$

96. In an isosceles triangle OAB, O is the origin and OA = BC = 6. The equation of the side AB is x-y+1=0. Then the area of the triangle is

1)
$$2\sqrt{21}$$
 2) $\sqrt{142}$ 3) $\frac{\sqrt{142}}{2}$ 4) $\frac{\sqrt{71}}{2}$

97. A line passing through (3,4) meets the axes OX and OY at A and B respectively. The maximum area of the triangle OAB in square units is

1) 8.5 2) 16.5 3) 24.5 4) 32.5

98. The number of lines that can be drawn through the point (5, 2) at a distance of 5 units from the point (2, -2) is

1) 0 2) 1 3) 2 4) ∞

99. The equation of a straight line passing through the point (4,5) and equally inclined to the lines 3x=4y+7 and 5y=12x+6 is

1) 9x-7y=12) 9x+7y=13) 7x-9y=14) 7x-9y=17

100. Area of triangle formed by angle bisectors of coordinate axes and the line x=6 in sq.units is

1) 36 2) 18 3) 72 4) 9

101. The distance between two parallel lines is p^1 -p. Equation of one line is $x\cos\alpha + y\sin\alpha = p$ then the equation of the 2^{nd} line is

1) $x\cos\alpha + y\sin\alpha + p^1 + 2p = 0$

2) $x\cos\alpha + y\sin\alpha = 2p^1 - p$

3) $x\cos\alpha + y\sin\alpha = 0$

4) $x\cos\alpha + y\sin\alpha + p^1 - 2p = 0$

102. Number of straight lines passing through (1, 3) (7, -3) (5, -1) (6, -2) is

1) 2 2) $4c_2$ 3) $4p_2$ 4) $4c_4$

103. The point (2,3) is reflected four times about coordinate axes continuously starting with x-axis. The area of quadrilateral formed in sq.units is

104. If triangle formed by the points A (2,4) B(2,6) C(2+ $\sqrt{3}$,5) the equation of the internal bisector of C is

1)
$$x+y=2$$
 2) $x=0$
3) $y=5$ 4) $x+y=1$

- 105. If $2(\sin a + \sin b) x 2\sin (a b) y = 3$ and 2 ($\cos a + \cos b$) $x + 2\cos (a-b) y = 5$ are perpendicular then $\sin 2a + \sin 2b =$
 - 1) $\sin(a-b) 2\sin(a+b)$

2) $\sin 2(a-b) - 2\sin (a+b)$

 $3) 2\sin(a-b) - \sin(a+b)$

106. One diagonal of a square is the portion of the line 7x+5y=35 intercepted by axes one end of other diagonal

1) (-1, 1)2) (6, 5)3) (7, 9)4) (11, 13)

107. The point of intersection of diagonals of the parallelogram formed by the lines 3x-2y+5=0, x+3y-5=0, 3x-2y+11=0 and x+3y+3=0 is

1) (-2, -1) 2) (-2, 1) 3) (2, -1) 4) (2, 1)

108. A particle is moving in a straight line and at some moment it occupied the positions (5, 2) and (-1, -2) then the position of the particle when it is on the x-axis is

1) (-2, 0) 2) (0, 2) 3) (2, 0) 4) (4, 0)

109. The sum of the abscissa of all the points on the line x+y=4 that lie at a unit distance from the line 4x+3y-10=0 is

110. Each side of a square is of length 4. The centre of the square is (3, 7) and one of its diagonals is parallel to y=x. Then co-ordinates of its vertices are

1) (1,5), (1,9), (5,9), (5,5) 2) (2,5), (2,7), (4,7), (4,4)

- 3) (2,5), (2,6), (3,5), (3,6)
- 4) (5,2), (6,2), (5,3), (6,3)

111. If a line AB makes an angle α with OX and is at a distance of p units from the origin then the equation of AB is 1) $x \sin \alpha - y \cos \alpha = p$ 2) $x\cos \alpha + y\sin \alpha = p$ 3) $x \sin \alpha + y \cos \alpha = p$ 4) $x\cos\alpha - y\sin\alpha = p$ 112. If the lines x+py+p=0, qx+y+q=0 and by rx+ry+1=0 (p,q,r being distinct and $\neq 1$) are concurrent, then the value of $\frac{p}{p-1} + \frac{q}{q-1} + \frac{r}{r-1} =$ 1)1 2) -1 3) 2 4) -2 113. The equation of the line passing through the point of intersection of the lines 2x+y=5, 3xy=5 and which is at the minimum distance from 1 the point (1,2) is 1) x+y=3 2) x-y=1 3) x-2y=0 4) x-y=3114. The vertices of a triangle are A(-1,-7), B(5,1)and C(1,4). The equation of the bisector of ∠ABC is 2) x+7y-2=0 1) x+7y+2=04) x-7y+2=0 3) x-7y-2=0 115. The point A(2,1) is translated parallel to the line x-y=3 by a distance of 4 units. If the new position A_1 is in 3rd quadrant, then coordinates A_1 are 1) $(\sqrt{2} - 2, -1 - \sqrt{2})$ 2. $(2 - 2\sqrt{2}, 1 - 2\sqrt{2})$ 3) $(\sqrt{2} - 2, 1 + 2\sqrt{2})$ 4. $(2 - 2\sqrt{2}, 1 - \sqrt{2})$ 116. S_1 , S_2 are the inscribed and circumscribed circles of a triangle with sides 3,4,5. Then area of S_1 / area of S_2 = _____ 1) 16/25 2) 4/25 3) 9/25 4) 91/6 117. Two sides of a Rhombus ABCD are parallel to the lines x-y=5 and 7x-y=3. The diagonals intersect at (2,1) then the equations of the diagonals are

1) x-y=1, 7x-y=13 2) x+y=3,x+7y=9 3) x+2y=4, 2x-y=3

4) 3x+4y=10, 4x-3y=5

- 118. The equation of the bisector of the angle between the lines x-7y+5=0, 5x+5y-3=0which is the supplement of the angle containing the origin will be
 - 1) x+3y-2=0 2) x-3y+2=0
 - 3) 3x-y+1=0 4) 3x+y+2=0
- 119. A line joining A(2,0) and B(3,1) is rotated about A in anticlock-wise direction though 15°, then the equation of the line AB in new position is given by

1)
$$y = \sqrt{3} x - 2$$
 2) $y = \sqrt{3} (x - 2)$

3)
$$y = \sqrt{3} (x+2)$$
 4) $x-2 = \sqrt{3} y$

120. The abscissa of the orthocentre of the triangle

	formed by	the lines y=m _i	$x + \frac{1}{mi}$ (i=1,2,3) is
	1) 1	2) -1	3) 2	4) -2
21.	The orthoc lines 4x-y+9=0 l	entre of the tri x+y=1, ies in quadran	angle formed $2x+3y=6$ t number	by the and

- 122. Equation of a diameter of the circum circle of the triangle formed by the lines 3x+4y-7=0, 3x-y+5=0 and 8x-6y+1=0 is
 - 1) 3x-y-5=02) 3x+y+5=03) 3x-y+5=04) 3x+y-5=0
- 123. One side of a rectangle lies along the line 4x+7y+5=0. Two vertices are (-3,1), (1,1) then the remaining vertices are

1)
$$\left(\frac{1}{65}, \frac{-47}{65}\right), \left(\frac{-131}{65}, \frac{177}{65}\right)$$

2) $\left(\frac{-1}{65}, \frac{47}{65}\right) \left(\frac{-131}{65}, \frac{177}{65}\right)$
3) $\left(\frac{1}{65}, \frac{-47}{65}\right) \left(\frac{131}{65}, \frac{-177}{65}\right)$
4) (1, -47), (131, 47)

- 124. The reflection of $y=\sqrt{x}$ w.r.t. y-axis is
 - 1) $y = -\sqrt{x}$ 3) $y = -\sqrt{-x}$ 2) $y = \sqrt{-x}$ 4) $x = \sqrt{y}$

JR. MATHEMATICS

125.	The equ	uation of	f a st.line	e passing	through the		HINTS
	point (- = x - 1	10,4) and 0 are	l making	angle Ta	n ⁻¹ 2 with 2y	4.	Slope of the line join of $(at_1^2, 2at_1)$ $(at_2^2 2at_2)$ is 1.
	1) 3x-y	=2	2) x-10=0)	5.	Verification
	3) 3x+2	2y=14	4) 2x-y+2	4=0	7.	Write the line join of $(4, 7)$ and $(1, 5)$ then v-
126.	One o	of the	lines	passing	g through		intercept.
	(-2,-7) betweer is given	and hav the two by	ling an 11 lines 4x-	ntercept +3y=12 a	of length 3 nd 4x+3y=3	8.	Area of triangle is $\frac{1}{2}$ la. bl where a is $x - $ intercept and b is $y - $ intercept.
	1) x+2=	=0	2) x-2=0		9.	Lines joining origin to the trisection points of a
	3) y+7=	=0	4) y-7 =0			line.
			KEY			10.	Verify with the midpoint of AB.
	1) 4	2) 3	3) 1	4) 4	5) 3	12.	Mid point of the given line is $P(1/3, 1)$ then the image of $(1/3, 1)$ with respect to origin.
	6) 4	7) 1	8) 1	9) 1	10) 1		x, y , z
	11) 3	12) 3	13) 4	14) 4	15) 3	13.	$\frac{-}{a} + \frac{-}{b} = 3$
	16) 2	17) 1	18) 3	19) 3	20) 3	16.	Find the point which divides AB in the ratio 1:2
	21) 3	22) 1	23) 2	24) 2	25) 3		then verify answer.
	26) 1	27) 3	28) 1	29) 1	30) 3	17.	Verify the point (h, k) on which option it lies.
	31) 2	32) 2	33) 3	34) 2	35) 2	18.	Write the image of $(8, 3)$ in x-axis and write the
	36) 3	37) 2	38) 3	39) 1	40) 1		equation through that point and (14,0).
	41) 3	42) 1	43) 3	44) l	45) 2	21.	Find the distance from origin to the line
	46) 2	4/) 1 52) 2	48) I	49) 4 5 4) 2	50) 3 55) 2		$\frac{x}{x} + \frac{y}{z} = 2$
	51) I 56) 1	52) 2 57) 2	53) I	54) 3	55) 5 60) 1		$x_1 y_1$
	50) I	57)2	58)5	59)4	60) I	23.	The points A, P, B are collinear.
	61)2	62) I	63) I	64) 2 (0) 2	65)2 70)1		$1, 1, \dots, (1/k), (1/k)$
	(00) 2	(0/) 4	08) Z	09) 3 74) 1	70) I 75) 2	24.	$\frac{a}{a} + \frac{b}{b} = k \Longrightarrow \left(\frac{a}{a}\right) + \left(\frac{b}{b}\right) = 1$
	76) 1	72)2	78) 2	74) 1 79) 2	73) 2 80) 2	25.	Equate the distance from $(0, 0)$ to the line
	9 (1) 1	82) 2	82) 2	84) 1	85) 4		x y 2
	86) 2	87) 3	88) 1	89) 1	90) 3		$\frac{1}{x_1} + \frac{1}{y_1} = 2$ to P.
	91) 2	92) 3	93) 2	94) 4	95) 1	27.	$\beta = 6\alpha - 1$. $2\alpha - 5\beta = 5$ solve then get α and
	96) 4	97) 3	98) 2	99)1	100) 1		β.
	101) 4	102) 4	103) 1	104) 3	105) 2	29.	Write the equation to a line perpendicular to $7x-y+8=0$ and substitute $(-4, 5)$
	106) 1	107)2	108) 3	109) 2	110) 1	20	y + 0 = 0 and substitute (-4, 3) Given lines form right angled triangle
	111) 1	112) 1	113) 1	114) 4	115) 2	30.	orven mies form right angled triangle.
	116) 2	117) 3	118) 1	119) 2	120) 2	32.	$\mathbf{x} = \mathbf{x}_1 + \mathbf{r} \cos \theta, \mathbf{y} = \mathbf{y}_1 + \sin \theta, \tan \theta = \frac{3}{4}, (\mathbf{x}_1, \mathbf{y}_2) = (3, 2), \mathbf{r} = 5$
	121) 2	122) 3	123) 3	124) 2	126) 2		J ₁ / (3, 2), 1 3.

35.The perpendicular distances from origin to the
lines are a, b then its area is 'ab' square units.70.B is the image of A with respect to
$$x+5y-20=0$$
36.Apply $a = \frac{2h}{\sqrt{3}}$, h is height, a side of the triangle.71.Verification39.Incentre is equidistant from sides.73.Verification43.Area of an equiletaral triangle is $\frac{h^2}{\sqrt{3}}$, h is height
of the triangle. h^2 with the angular bisector of the direct line.44.Verify the angle between adjacent sides and
distance between the opposite sides.82.Use $\frac{a_1x + b_1y + C_1}{\sqrt{a_1^2 + b_1^2}} = \pm \frac{a_2x + b_2y + C_2}{\sqrt{a_1^2 + b_2^2}}$ 50.Area of the quadrilateral = $\left| \frac{(c_1 - c_2)(d_1 - d_2)}{a_1 b_2 - a_2 b_1} \right|$ 84.Verify with angle bisector formula.51.Verification85.Equation of the line AB is $\frac{x}{x_1} + \frac{y}{y_1} = 3$,
perpendicular distance from (0, 0) to the line is p53.Substitute orthocenter of the triangle in U+K V=0Site orthocenter of the triangle in U+K V=054.Site orthocenter of the triangle in U+K V=087.55.Substitute, the options in the equation
(x-x_1) (x_2-x_3) + (y-y_1) (y_2-y_3) = 0 where
(x_3, y_3) and (x_3, y_3) are the two vertices and (x_3, y_3)89.61.Solving first two lines and substituting the point
in 3⁴⁴ equation.92.Apply foot of the perpendicular formula.62.Taking L_1 + $\lambda L_2 = 0$ then coefficient of
 $x = coefficient of y_1$ 94.Given lines forms a triangle.63.Apply $\left| \frac{2}{3} - \frac{1}{4} \right| = 0$
 $\frac{2}{4} - \frac{1}{-1} = 0$ 90.Equations of the angular bisectors of t

STRAIGHT LINES

to

,

&

106.	Take perpendicular bisector of portion between the axes, verify the options.	4.]
108.	Line passing through given points is		1
	$2x-3y=4 \Rightarrow \frac{x}{2} + \frac{y}{-4/3} = 1$		ŝ
109.	$x+y=4 \implies y=4-x$		
	distance = $\left \frac{4x + 3y - 10}{5}\right = 1$	5.	1
	$= \left \frac{4(x) + 3(4 - x) - 10 - 10}{5} \right = 1$		1
	\Rightarrow x = 3 or -7		
110.	Use $(x_1 \pm r \cos \theta, y_1 \pm r \sin \theta)$ where		
	$r = 2\sqrt{2}; \theta = 45^{\circ}, 135^{\circ}$		2
111.	Slope = $\tan \alpha$ equation is $x \sin \alpha + y \cos \alpha + k$ = 0 and distance from origin is p.	6.	
	LEVEL – III		
Ι.	The lne $3x-2y = 24$ meets x-axis at A and y-axis at B. The perpendicular bisector of AB meets the line through (0, -1) and parallel to x-axis at C. Then C is	7.	
Ι.	The lne $3x-2y = 24$ meets x-axis at A and y-axis at B. The perpendicular bisector of AB meets the line through (0, -1) and parallel to x-axis at C. Then C is 1) $\left(\frac{-7}{2}, -1\right)$ 2) $\left(\frac{-15}{2}, -1\right)$	7. 8.	
Ι.	The lne $3x-2y = 24$ meets x-axis at A and y-axis at B. The perpendicular bisector of AB meets the line through (0, -1) and parallel to x-axis at C. Then C is 1) $\left(\frac{-7}{2}, -1\right)$ 2) $\left(\frac{-15}{2}, -1\right)$ 3) $\left(\frac{-11}{2}, -1\right)$ 4) $\left(\frac{-13}{2}, -1\right)$	7. 8.	
2.	The lne $3x-2y = 24$ meets x-axis at A and y-axis at B. The perpendicular bisector of AB meets the line through (0, -1) and parallel to x-axis at C. Then C is 1) $\left(\frac{-7}{2}, -1\right)$ 2) $\left(\frac{-15}{2}, -1\right)$ 3) $\left(\frac{-11}{2}, -1\right)$ 4) $\left(\frac{-13}{2}, -1\right)$ Area of the triangle formed by the lines 7x+3y=35, x=5, 2y-3=0 is	7. 8. 9.	
2.	The lne $3x-2y = 24$ meets x-axis at A and y-axis at B. The perpendicular bisector of AB meets the line through (0, -1) and parallel to x-axis at C. Then C is 1) $\left(\frac{-7}{2}, -1\right)$ 2) $\left(\frac{-15}{2}, -1\right)$ 3) $\left(\frac{-11}{2}, -1\right)$ 4) $\left(\frac{-13}{2}, -1\right)$ Area of the triangle formed by the lines 7x+3y=35, x=5, 2y-3=0 is 1) $\frac{27}{28}$ 2) $\frac{17}{28}$	 7. 8. 9. 10. 	
1. 2.	The lne $3x-2y = 24$ meets x-axis at A and y-axis at B. The perpendicular bisector of AB meets the line through (0, -1) and parallel to x-axis at C. Then C is 1) $\left(\frac{-7}{2}, -1\right)$ 2) $\left(\frac{-15}{2}, -1\right)$ 3) $\left(\frac{-11}{2}, -1\right)$ 4) $\left(\frac{-13}{2}, -1\right)$ Area of the triangle formed by the lines 7x+3y=35, x=5, 2y-3=0 is 1) $\frac{27}{28}$ 2) $\frac{17}{28}$ 3) $\frac{13}{25}$ 4) $\frac{27}{56}$	 7. 8. 9. 10. 	
2.	The lne $3x-2y = 24$ meets x-axis at A and y-axis at B. The perpendicular bisector of AB meets the line through (0, -1) and parallel to x-axis at C. Then C is 1) $\left(\frac{-7}{2}, -1\right)$ 2) $\left(\frac{-15}{2}, -1\right)$ 3) $\left(\frac{-11}{2}, -1\right)$ 4) $\left(\frac{-13}{2}, -1\right)$ Area of the triangle formed by the lines 7x+3y=35, x=5, 2y-3=0 is 1) $\frac{27}{28}$ 2) $\frac{17}{28}$ 3) $\frac{13}{25}$ 4) $\frac{27}{56}$ Area of the triangle formed by the lines $7x-2y+10=0, 7x+2y-10=0, y+2=0$ is	 7. 8. 9. 10. 	
2. 3.	The lne $3x-2y=24$ meets x-axis at A and y-axis at B. The perpendicular bisector of AB meets the line through (0, -1) and parallel to x-axis at C. Then C is 1) $\left(\frac{-7}{2}, -1\right)$ 2) $\left(\frac{-15}{2}, -1\right)$ 3) $\left(\frac{-11}{2}, -1\right)$ 4) $\left(\frac{-13}{2}, -1\right)$ Area of the triangle formed by the lines 7x+3y=35, x=5, 2y-3=0 is 1) $\frac{27}{28}$ 2) $\frac{17}{28}$ 3) $\frac{13}{25}$ 4) $\frac{27}{56}$ Area of the triangle formed by the lines $7x-2y+10=0, 7x+2y-10=0, y+2=0$ is 1) 7 2) 14	 7. 8. 9. 10. 	
2.	The lne $3x-2y=24$ meets x-axis at A and y-axis at B. The perpendicular bisector of AB meets the line through (0, -1) and parallel to x-axis at C. Then C is 1) $\left(\frac{-7}{2}, -1\right)$ 2) $\left(\frac{-15}{2}, -1\right)$ 3) $\left(\frac{-11}{2}, -1\right)$ 4) $\left(\frac{-13}{2}, -1\right)$ Area of the triangle formed by the lines 7x+3y=35, x=5, 2y-3=0 is 1) $\frac{27}{28}$ 2) $\frac{17}{28}$ 3) $\frac{13}{25}$ 4) $\frac{27}{56}$ Area of the triangle formed by the lines $7x-2y+10=0, 7x+2y-10=0, y+2=0$ is 1) 7 2) 14 3) 18 4) 12	 7. 8. 9. 10. 	

In triangle ABC the equations of the sides $\overline{AB}, \overline{AC}$ are 2x+3y=29, x+2y=16. If the mid point of \overline{BC} is (5,6) then the equation of the side \overline{BC} is 1) x+y+11=02) 2x+y-16=03) x-y+1=04) 2x-y-4=0A straight line drawn through the point of intersection of the lines $\frac{x}{p} + \frac{y}{q} = 1$, $\frac{x}{q} + \frac{y}{p} = 1$ meets coordinates axes in A and B. Then the locus of midpoint of AB is 1) 4 (p+q) xy = pq (x+y)2) 2 (p+q) xy = pq (x+y)3) (p+q) xy = 2pq (x+y)4) (p+q) xy = 4pq (x+y)Ortho centre of the triangle formed by the lines 3x-2y-6=0, 3x+4y+12=0, 3x-8y+12=01) $\left(\frac{-1}{6}, \frac{-23}{9}\right)$ 2) $\left(\frac{-1}{7}, \frac{-1}{8}\right)$ 3) $\left(\frac{-1}{7}, \frac{1}{8}\right)$ 4) $\left(\frac{2}{3}, \frac{7}{9}\right)$ Orthocentre of the triangle formed by the lines x-2y+9=0, x+y-9=0, 2x-y-9=0 is 1) (7, 2) 2) (6, 6) 3) (1, 2)4) (5, 5) Circum centre of the triangle formed by the lines x+y=0, 2x+y+5=0, x-y=2 is 1) (-2, -1) 2) (-3, 1) 3) (-4, 3) 4) (-1, -3) Centroid of the triangle formed by the lines x+2y-5=0, 2x+y-7=0, x-y+1=0 is 1) (1, 3) 2) (3, 5) 3) (2, 2)4) (1, 1) For all values of θ all the lines represented by the equation $(2\cos\theta + 3\sin\theta)x +$ $(3\cos\theta - 5\sin\theta) - y - (5\cos\theta - 2\sin\theta) = 0$ passes through a fixed opint then the reflection of that point with respect to the line $x+y = \sqrt{2}$ is 1) $(\sqrt{2}+1,\sqrt{2}+1)$ 2) $(\sqrt{2}-1,\sqrt{2}-1)$

3)
$$(\sqrt{3}-1,\sqrt{3}-1)$$
 4) $(\sqrt{3}+1,\sqrt{3}+1)$

JR. MATHEMATICS

 One vertex of an equilateral triangle is (2,3) and the equation of one side is x-y+5=0 then the equations to the other sides are

1)
$$y-3 = -(2 \pm \sqrt{3}) (x-2)$$

2) $y-3 = (\sqrt{2} \pm 1) (x-2)$
3) $y-3 = (\sqrt{3} \pm 1) (x-2)$
4) $y-3 = (\sqrt{5} \pm 1) (x-2)$

- 12. The vertices of triangle OBC are O (0,0) B(-3,-1) C(-1, -3) then the equation of the line parallel to the side BC and cutting the sides OB & OC at a distance 1/2 from the origin is
 - 1) x+y-1/ $\sqrt{2} = 0$
 - 2) $x+y+1/\sqrt{2} = 0$
 - 3) x+y-1/2 = 0
 - 4) x+y+1/2=0
- 13. The equation of the line which passes through the point of intersection of the lines x+2y+2=0and 2x+5y+3=0 and which is at the maximum distance from the piont (-2,-3) is

1)
$$2x+y+7=0$$
2) $x-2y+6=0$ 3) $x+3y+1=0$ 4) $2x-y+3=0$

14. In an isosceles triangle, the ends of the base are (2a, 0) and (0, a) and one side is parallel to y-axis. The third vertex is

1)
$$\left(2a\frac{5a}{2}\right)$$
 2) $\left(\frac{5a}{4},a\right)$
3) $(2a,a)$ 4) $(4a,a)$

15. The equation of a straight line L is x+y=2, and L_1 is another straight line perpendicular to L and passes through the piont (1/2, 0), then area of the triangle formed by the y-axis and the lines L, L_1 is

1)
$$\frac{25}{8}$$
 2) $\frac{25}{16}$
3) $\frac{25}{4}$ 4) $\frac{25}{12}$

16. $A = (a_1, b_1), B=(a_2, b_2)$. If every point on the line $(a_1-a_2) x + (b_1-b_2) y = c$ is equidistant from A and B. Then c =

1)
$$\frac{a_1^2 + b_1^2 - a_2^2 - b_2^2}{2}$$

2)
$$\frac{a_1^2 + a_2^2 - b_1^2 - b_2^2}{2}$$

3)
$$\frac{a_1^2 + a_2^2 + (b_1^2 + b_2^2)}{2}$$

4)
$$\frac{b_1^2 - a_1^2 - b_2^2 - a_2^2}{2}$$

17. Two sides of a triangle are $y = m_1 x$ and $y=m_2 x$. m_1, m_2 are the roots of the equation $x^2+ax-1=0$. For all values of a, the orthocentre of the triangle lies at

1) (1, 1) 2) (2, 2) 3)
$$\left(\frac{3}{2}, \frac{3}{2}\right)$$
 4) (0,0)

18. The straight lines x+2y-9=0, 3x+5y-5=0 and ax+by-1 are concurrent if the straight line 22x-35y-1=0 passes through the point

19. $\frac{x}{a} + \frac{y}{b} = 1$ is a variable line where $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}$ (c-constant) locus of the foot of the perpendicular drawn from origin is

1)
$$x^{2}+y^{2} = c^{2}$$

2) $x^{2}+y^{2} = 2c^{2}$
3) $x^{2}+y^{2} = \frac{c^{2}}{2}$
4) $x^{2}+y^{2} = \frac{1}{c^{2}}$

- 20. The lines 2x+3y=6, 2x+3y=8 cut the x-axis at A, B a line *l* is drawn through (2,2) meets x-axis at C such that abscissa of A, B and C are in A.P. Then the equation of line is
 - 1) 2x+3y=102) 3x+2y=103) 2x-3y=104) 3x-2y=10
- 21. If (2a-3, a²-1) is on the same side of the line x+y-4=0 as that of origin then the set of values of 'a' is
 - 1) (-4, 2) 2) (-2,4) 3) (-7,8) 4) (-7,5)

JR. MATHEMATICS

331

							
22. If the lines $x+ay+a=0$, $bx+y+b=0$, $cx+cy+1=0$			Then the correct answer is				
	(a, b, c being distinct and $\neq 1$) are concurrent			А	В	С	D
	then the value of $\frac{a}{a-1} + \frac{b}{b-1} + \frac{c}{c-1} =$		1)	2	4	1	3
	1) -1 2) 0 3) 1 4) 3		2)	4	3	2	1
23.	Origin is the centre of the square with one of its		3)	4	5	1	3
	vertices at $(3,4)$ then the other vertices are		4)	4	5	3	1
	1) (-3, 4), (-3, -4), (3, -4)	2.	Observ	e the fo	llowing es	lists wit	h respect to
	2) (-4, 3), (-3, -4), (4, -3)	List	· I		I	jst II	
	3) (-4, 3), (-4, -3), (3, -4)				-	<u>ר אומר אומר</u> ר	
	4) (3, 4), (-4, -3), (4, -3)	A) 3	33x-3y-3	8=0	1	$) \frac{-2}{3}$	
24.	The base of an Isosceles triangle is of length "2a" and length of the altitude dropped to the base is	B) 4	4x-y-2=0		2	2) 4	
	"h" then the distance from the mid point of base to the side of a triangle is	C) 2	2x+3y-6=	0	3	$-\frac{2}{13}$	
	ah ah	D) 2	2x+25y=1		4) 11	
	1) $\frac{1}{h^2 + a^2}$ 2) $\frac{1}{\sqrt{h^2 + a^2}}$				5	() $\frac{-2}{25}$	
	$h = \sqrt{h^2 + a^2}$		Then t	he corre	ect answ	er is	
	3) $\sqrt{h^2 + a^2}$ 4) <u>ah</u>			А	В	С	D
			1)	1	2	3	3
	KEY		2)	4	2	1	5
	1) 4 2) 4 3) 2 4) 1 5) 2		3) 4)	2	т Л	3	1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	т) Observ	2 e the foll	r owing lis	J ts with re	I senet to areas
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	of triangle formed by the lines with coordinate axes in Sq units					
		List	t I	- 1	Ι	List II	
	LEVEL - IV			_		[2]	
	NEW PATTERN QUESTIONS	A) 2	A) x+y=10 $\sqrt{2}$		1	1) $\sqrt[8]{2}$	
1.	Observe the following lists w.r.t inclinations of lines	B) 2	2x-3y-6=()	2	$2) \frac{2}{\sqrt{3}}$	
List	<u>I</u> <u>List - II</u>	C)	$\sqrt{3} x+y-1$	12=0	3) 6	
A) V	Vertical line 1) 60°	D) 3	3x-4y-12=	=0	4) 100	
B) li	ne bisecting angle 2) 75 ⁰		2		5	5) 3	
	ne with slope $\sqrt{2}$ 2) 0^0	The	n the co	rrect an	swer is		
	$10^{10} \text{ with slope} \sqrt{3} \qquad 5)^{10}$			А	В	С	D
D) h	orizontal line 4) $\frac{\pi}{2}$		1)	4	2	1	5
	2		2)	4	3	2	5
	5) $\frac{\pi}{4} or \frac{3\pi}{4}$		3)	4	5	2	3
			4)	1	2	3	4

4. Observe the following lists with respect to distance of the line from origin					n respect to	6.	Write the distance in ascending order from $O(0,0)$ to $A(1,1)$ $B(3,4)$ $C(2,1)$		
List	<u>t I</u>		I	list II			1) A, B,C	2) A, C,B	
	2 1 0		1	<u>.</u> 7/			3) B,C,A	4) B,A,C	
A) x	-2y+1=0		1)/		7.	The arrangement of in ascending order of	the following straight lines of their slopes	
B) x	$+\sqrt{3} y+2=$	=0	2) $4\sqrt{5}$			A) $2y = \sqrt{3}x$	B) y=2	
(C) 3	x-v+7=0		3	$\frac{1}{5}$			C) $y = x$	D) y = -x	
			-	, ∕ √2			1) A,B,C,D,	2) D,B,A,C	
D) 2	x-y-4=0		4) 1			3) B,C,D,A	4) D,A,B,C	
			5) $7/\sqrt{10}$		8.	The arrangement of the following straight lines with descending order of their perpendicular		
	Then th	e corre	ect answ	er is			distance from origin		
		А	В	С	D		A) $3x+4y+15=0$	B) $y=3x$	
	1)	3	4	1	2		C) y=2	D) $x+y+1=0$	
	2)	1	2	3	4		1) A,B,C,D,	2) A,C,D,B	
	3)	2	1	3	4		3) A,C,B,D	4) A,D,B,C	
5	4) 5 3 4 1 5 Observe the faller is a list with respect to the		9.	Write the ascending order of areas of the triangle formed with coordinate axes and the following lines					
line ax+by+c=0				$\Delta \mathbf{x} + \mathbf{y} + 3 = 0$	B) $x+y+1 = 0$				
List	I			List]	<u>II</u>		C) $2x+y-6=0$	D) $4x+3y-12=0$	
A)Perpendicular distance from $(0,0)$ 1) $\frac{-c}{b}$				1) A B C D	$\frac{D}{4x} + \frac{3y}{2} = 12 0$				
				3) C A B D	$\begin{array}{c} 2) D, R, C, B \\ 4) D C A B \end{array}$				
B) X-intercept of the line 2) $\left(\frac{-c}{a}, \frac{-c}{b}\right)$			10.	Write the ascending order of the distance between the parallel lines					
				1			A) 2x+3y+1=0; 2x+3y+14=0		
C) Y-	intercept of	the line		3) $\frac{1}{ a^2 }$	$\frac{c}{b}$		B) 3x+4y+10=0, 3x	x+4y+5=0	
				I	I		C) x+y+1=0, x+y+3=0		
D) Ci	rcumcentre	of triang	le OAB	$4)\left[\frac{-c}{2}\right]$	$\frac{-c}{c}$		D) 2x+y+1=0, 2x+y+6=0		
		-		² L 2 <i>a</i>	26		1) B,C,D,A	2) A,B,C,D,	
				5) ^{-c} /	/		3) B,D,C,A,	4) B,C,A,D	
Then the correct answer is			11.	Write the descending distance of the line	g order of the perpendicular $2x-y+5=0$ from				
		А	В	С	D		A) (2,1)	B) (2,-1)	
	1)	3	5	1	2		C) (-2,1)	D)(-2,1)	
	2)	3	5	1	4		1) A,B,C,D	2) B,A,D,C	
	3)	3	4	1	5		3) B,D,C,A	4) B,C,D,A	
	4)	1	2	3	4				

12. I: Inclinations of parallel lines are equal I : The condition for three lines ax+hy+g=0, 17. hx+by+f=0, gx+fy+c=0 tobe concurrent is II: The slopes of parallel lines are equal abc+2fgh-af²-bg²-ch²=0 Then which of the following is true II : If the lines x-1=0, y+1=0, x+2y+k=0 are 1) Only I 2) Only II concurrent then k=3. 3) both I & II 4) neither I nor II Then which of the following is true. 13. I : Every first degree equation in x and y is 1) only I 2) only II ax+by+c=0, $(a,b) \neq (0,0)$ represent a straight line 3) both I & II 4) neither I or II II : Every first degree equation in x and y can 18. I : If the lines ax+y+1=0, x+by+1=0 and be convert into slope intecept form x+y+c=0 are concurrent ($a\neq 0, b\neq 0, c\neq 0$) then Then which of the following is true $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1$ 1) Only I 2)only II 3) both I & II 4) neither I nor II II: If A, B are points on the line 3x+4y+15=0I : Length of the perpendicular from (x_1, y_1) to such that OA=OB=9 units where 'O' is origin 14. then area of the triangle OAB is $18\sqrt{2}$ the line ax+by+c=0 is $\left|\frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}}\right|$ sq.units. Then which of the following is true II : The equation of the line passing through (0,0) and perpendicular to ax+by+c=01) only I 2) only II is bx-ay=0 4) neither I nor II 3) both I &II Then which of the following is true. 19. I: The points (a,0) (0,b) and (1,1) will be 1) only I 2) only II collinear if $\frac{1}{a} + \frac{1}{b} = 1$ 3) both I & II 4) neither I nor II 15. I : The ratio in which $L \equiv ax+by+c=0$ divides II: If $4a^2+9b^2-c^2+12ab=0$, then the family of the line segment joining $A(x_1, y_1) B(x_2, y_2)$ is lines ax+by+c=0 is either concurrent at (2,3) $\frac{-L_{11}}{L_{22}}$ or at (-2,-3). Then which of the following is true II: the equation of the line in which (x_1,y_1) 1) only I 2) only II divides the line segment between the coordinate 4) neither I nor II 3) both I &II axes in the ratio m:n is $\frac{nx}{x_1} + \frac{my}{v_1} = m + n$ 20. I:A straight line is such that the algebraic sum of the distance from any no. of fixed points is Then which of the following is true zero. Then that line always passes through a 1) only I 2) only II fixed point 3) both I&II 4)neither I nor II II: The base of the triangle lie along the line x=a and is of length a. If the area of the triangle I:The normal form of the line $\sqrt{3} x+y+4=0$ is x 16. is a^2 then the third vertex lies on x=-a or x=3a. $\cos \frac{\pi}{6} + y \sin \frac{\pi}{6} + 2 = 0$ Then which of the following is true. 1) only I 2) only II II: The condition for the straight lines to be ax+by+c=0and px+qy+r=03) both I & II 4) neither I nor II perpendicular is ap+bq=0. I: If the st.lines ax+by+p=0, $x\cos\alpha+y\sin\alpha=p$ enclose 21. Then which of the following is true an angle between them and meet the st.line x $\sin \alpha - y \cos \alpha = 0$ in the same point, then 2) only II 1) only I $a^{2}+b^{2}=2$. 3) both I &II 4) neither I nor II

	II: $y=10^x$ is the reflection of $y=\log_{10}^x$ with respect to the line $y=x$.	25.	A : The product of the slopes of the two lines passing through origin and equally inclined with axes is - 1.
	1) only I 2) only II		R : Equations of the lines which are equally inclined with axes are x+y=0, x-y=0.
	3) both 1 & II 4) neither 1 or II		Then the correct answer
22.	A:The angle of inclination of the line $\sqrt{3} x+y$ -		1) A, R are correct, R is correct explanation of A
	2=0 is $\frac{2\pi}{3}$		2) A,R are correct, R is not correct explanation of A
	R : If θ is the angle of inclination of the line ax+by=c=0 with positive x-axis then tan θ =		3) A is true, R is false
			4) A is false, R is true
	$\frac{b}{b}$. Then the correct answer	26.	A: The distance betwen the st.lines $2x-y+3=0$,
	1) A, R are correct, R is correct explanation of A		y=2x+4 is $\frac{1}{\sqrt{5}}$
	2) A,R are correct, R is not correct explanation of A		R: Distance between parallel lines $ax+by+c_1=0$,
	3) A is true, R is false		ax+by+c ₂ =0 is $\frac{ c_1 - c_2 }{\sqrt{a^2 + b^2}}$
	4) A 1s false, R 1s true		Then the correct answer
23.	A : The area of the triangle formed by the St.line $2x-3y+6=0$ with coordinate axis is 3 sq. units		1) A, R are correct, R is correct explanation of A
	R: Area of triangle = $1/2$.base.height		2) A R are correct R is not correct evolution
	Then the correct answer		of A
	1) A, R are correct, R is correct expalanation of A		3) A is true, R is false
	2) A,R are correct, R is not correct explanation of A	27.	4) A is false, R is trueA: The equation of the perpendicular bisector
	3) A is true R is false		of the segment joining $(4,-1)(2,3)$ is x-2y-1=0
	4) A is false, R is true		R: Equation to perpendicular bisector of line segment joining $A(x, y) = B(x, y)$ is $2x(x - x)$
24.	A:Thenormal form of the line $x+y=\sqrt{2}$ is x cos		$x_{2})+2y(y_{1}-y_{2})=(x_{1}^{2}+y_{1}^{2})-(x_{2}^{2}+y_{2}^{2})$
	π . π .		Then the correct answer
	$\frac{1}{4} + y \sin \frac{1}{4} = 1$		1) A, R are correct, R is correct explanation of A
	K: Equation to normal form of a line is $x\cos\alpha+y\sin\alpha = p$ (p>0). Then the correct answer		2) A,R are correct, R is not correct explanation of A
	1) A, R are correct, R is correct explanation of		3) A is true, R is false
	A		4) A is false, R is true
	2) A,R are correct, R is not correct explanation of A	28.	A : if the angle between the lines kx-y+6=0, π
	3) A is true, R is false		$3x-5y+7=0$ is $\frac{\pi}{4}$ then k=4 is one of the value.
	4) A is false, R is true		$R: If \theta \text{ is angle between }$ the lines with slopes

335

		-	
	m_1, m_2 then $\tan\theta = \frac{ m_1 - m_2 }{ 1 + m_1 m_2 }$		R: For equilateral triangle altitude length = $\frac{\sqrt{3}}{2}$.
	Then the correct answer		side length
	1) A, R are correct, R is correct explanation of		Then the correct answer
	 A 2) A,R are correct, R is not correct explanation of A 3) A is true, R is false 		1) A, R are correct, R is correct explanation of
			A
			2) A,R are correct, R is not correct explanation of A
	4) A is false, R is true		3) A is true, R is false
29.	A: If P is perpendicular distance from the origin		4) A is false, R is true
	to the straight line $\frac{x}{a} + \frac{y}{b} = 1$ then	32.	A: The algebraic sum of the distances from the point $(2,0)$, $(0,2)$ and $(4,4)$ to a variable line is zero, then that line passes through $(2,2)$
	$\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{4a^2}$		P: A s the electronic sum of the distances is zero
	R : The perpendicular distance from origin to		then the line passes through centroid
			Then the correct answer
	the line ax+by+c=0 is $\sqrt{a^2 + b^2}$		1) A, R are correct, R is correct explanation of
	Then the correct answer		A 2) A D
	1) A, R are correct, R is correct explanation of A		2) A,R are correct, R is not correct explanation of A
	2) A,R are correct, R is not correct explanation		3) A is true, R is false
	of A		4) A is false, R is true
	3) A is true, R is false	33.	A : The area of the triangle formed by the line which is passing through $(3, 4)$ with coordinate
	4) A is false, R is true		axes is 24 sq.units
30.	A: The diagonals of the parallelogram whose sides are $lx+my+n=0$, $lx+my+n_1=0$, $mx+ly+n=0$, $mx+ly+n_1=0$ include		R: If the line passes (p,q) then area of the triangle with coordinate axes 2pq sq.units.
	an angle of $\frac{\pi}{2}$		Then the correct answer
	R : In a parallelogram diagonals bisect each other		1) A, R are correct, R is correct explanation of A
	Then the correct answer		2) A,R are correct, R is not correct explanation
	1) A, R are correct, R is correct explanation of		of A 3) A is true, R is false
	A 2) A B are connect B is not connect our lowetion		4) A is false. R is true
	2) A,R are correct, R is not correct explanation of A	34.	A: The area of the figure formed by the lines
	3) A is true, R is false	5.11	$x+y+a=0$ in $2a^2$ sq.units
	4) A is false, R is true		R: Area of the figure formed by the lines = 4 .
31.	A:The equation of the base of an equilateral triangle is		Area of $\triangle OAB$
	x+y-2=0 and the vertex is (2,-1) then the length of side		Then the correct answer
	is $\sqrt{\frac{2}{3}}$		1) A, R are correct, R is correct explanation of A

2) A,R are correct, R is not correct explanation of A

3) A is true, R is false

4) A is false, R is true

35. A : The no.of lines that can be drawn through the point (4,-5) at a distance of 10 units from the point (1,3) is zero

R : Required distance is greater than the distance between given points or distance 10 units from (1,3) through (4,-5) is not possible

i)

ii)

iii)

iv)

Then the correct answer

1) A, R are correct, R is correct explanation of A

2) A,R are correct, R is not correct explanation of A

- 3) A is true, R is false
- 4) A is false, R is true
- 36. A : The distance between the St.lines $y=mx+c_1$, $y=mx+c_2$ is $|c_1-c_2| \Rightarrow m=0$

R : The distance between parallel lines

ax+by+c₁=0, ax+by+c₂=0 is
$$\left|\frac{c_1 - c_2}{\sqrt{a^2 + b^2}}\right|$$

Then the correct answer

1) A,R are correct, R is correct explanation of A

2) A,R are correct, R is not correct explanation of A

- 3) A is true, R is false
- 4) A is false, R is true

KEY

1) 3	2) 2	3) 3	4) 1	5) 2
6) 2	7) 2	8) 2	9) 2	10) 1
11) 2	12) 1	13) 1	14) 3	15) 3
16) 2	17) 1	18) 3	19) 3	20) 3
21) 3	22) 1	23) 2	24) 1	25) 1
26) 1	27) 1	28) 1	29) 4	30) 2
31) 1	32) 1	33) 1	34) 1	35) 1
36) 1				

LEVEL - V

1. In a triangle the point of concurrence of all altitudes is called orthocentre, the point of concurrence of all medians is called centroid and the point of concurrence of all perpendicular bisectors of the sides is called circumcentre

The orthocentre of the triangle formed by (1,0), (2,-4) and (-5,-2) is

1)
$$\left(\frac{11}{13}, \frac{7}{13}\right)$$
 2) $\left(\frac{11}{13}, \frac{-7}{13}\right)$
3) $\left(\frac{-11}{13}, \frac{7}{13}\right)$ 4) $\left(\frac{-11}{13}, \frac{-7}{13}\right)$

The circumcentre of the triangle whose sides are 3x-y-5=0; x+2y-4=0 and 5x+3y+1=0 is

1)
$$\left(\frac{6}{7}, \frac{2}{7}\right)$$

2) $\left(\frac{6}{7}, \frac{-2}{7}\right)$
3) $\left(\frac{-6}{7}, \frac{2}{7}\right)$
4) $\left(\frac{-6}{7}, \frac{-2}{7}\right)$

The centroid of the triangle formed by $(1, \sqrt{3})$ $(1, -\sqrt{3}), (3, -\sqrt{3})$ is $1)\left(\frac{5}{3}, \frac{-1}{\sqrt{3}}\right)$ $2)\left(\frac{5}{3}, \frac{1}{\sqrt{3}}\right)$ $3)\left(\frac{3}{5}, \frac{-1}{\sqrt{3}}\right)$ $4)\left(\frac{3}{5}, \frac{1}{\sqrt{3}}\right)$ If the lines 4x+3y-1=0; x-y+5=0 and kx+5y-3=0 are concurrent then k=

1) 4	2) 5

2. The locus of the point which is equidistant from two intersecting lines is an angular bisector of two lines and the locus of the point which is equidistant from two given points is a perpendicular bisector of the line joining the given points.

i)	The equation to the perpendicular bisector of the	2004
	line segment of the line $\frac{x}{a} + \frac{y}{b} = 1$ cut off by the axes is	4. Suppose A, B are two points on 2x-y+3=0 and P(1,2) is such that PA=PB. Then themid point of AB is
	1) $ax - by - a^2 + b^2 = 0$	1) $\left(\frac{-1}{5}, \frac{13}{5}\right)$ 2) $\left(\frac{-7}{5}, \frac{9}{5}\right)$
	2) $ax + by - a^2 + b^2 = 0$	
	3) $2ax + 2by - a^2 + b^2 = 0$	$3) \left(\frac{7}{5}, \frac{-9}{5}\right) \qquad \qquad 4) \left(\frac{-7}{5}, \frac{-9}{5}\right)$
	4) $2ax - 2by - a^2 + b^2 = 0$	2003
ii)	If $x+3y=16$ is the perpendicular bisector of the line joining A, B and B=(3,1) then A is	5. If the lines $4x+3y-1=0$; $x-y+5=0$ and $kx+5y-3=0$ are concurrent then k=
	1) (5,-7) 2) (5,7)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	3) (4, 4) 4) (4,-4)	6 If a straight line perpendicular to
iii)	The acute angle bisector between the lines $3x-4y+5=0$ and $5x+12y-26=0$ is	2x-3y+7=0 forms a triangle with the coordinate axes whose area is 3sq. units, then the equation of the straight line (s) is
	1) 7x-56y+32 = 0 2) 9x - 3y+13=0	1) $3x+2y=\pm 2$ 2) $3x+2y=\pm 6$
	3) $14x - 112y + 65 = 0$ 4) $/x - 13y + 9 = 0$	3) $3x+2y=\pm 8$ 4) $3x+2y=\pm 4$
IV)	2x-y-4=0 and $x-2y+10=0$ is	7. If (-2, 6) is the image of the point (4,2) with respect to the line L=0, then L=
	1) $x-y+7=0$ 2) $3x-y+5=0$	1) 6x-4y-7 2) 2x+3y-5
	3) $x+y-14=0$ 4) $2x+3y-5=0$	3) $3x - 2y + 5$ 4) $3x - 2y + 10$
	KEY 1. i) 2 ii) 3 iii) 1 iv) 3 2. i) 4 ii) 2 iii) 3 iv) 3	 8. The line 2x+3y=6, 2x+3y=8 cut the X-axis at a A,B respectively. A line <i>l</i> drawn through the point (2,2) meets the X-axis at C in such a way that abscissae of A,B,C are in arithmetic Progression. then the equation of the line <i>l</i> is
	PREVIOUS EAMCET QUESTIONS	1) $2x+3y=10$ 2) $3x+2y=10$
	5	3) $2x-3y=10$ 4) $3x-2y=10$
	The area (in sq. units) of the triangle formed by the lines $x=0$; $y=0$ and $3x+4y=12$ is	9. The number of circles that touch all the straight lines $x+y - 4 = 0$, $x - y+2 = 0$ and $y = 2$ is
	1) 3 2) 4 2) 6 4	1) 1 2) 2 3) 3 4) 4
2.	3) 6 4) 12 If PM is the perpendicular from P (2,3) on to the line x+y=3 then the co-ordinates of M are	10. For all values of a and b the line (a+ab) x+ (a-b)y + (a+5b) = 0 passes through the point
	1) (2,1) 2) (-1,4)	$\begin{array}{c} 1 \\ 1 \\ 1 \\ (-1,2) \\ 2 \\ 2 \\ (2,-1) \\ 3 \\ (-2,1) \\ 4 \\ (1,-2) \end{array}$
	3) (1,2) 4) (4,-1)	11. The incentre of the triangle formed by the lines
3.	The equation of the straight line perpendicular to $5x-2y=7$ and passing through the point of intersection of the lines $2x+3y=1$ and $3x+4y=6$	x+y=1, x=1, y=1 is 1) $\left(1-\frac{1}{5}, 1-\frac{1}{5}\right)$ 2) $\left(1-\frac{1}{5}, \frac{1}{5}\right)$
	is	$ \begin{array}{cccc} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$
	is 1) 2x+5y+17=0 2) 2x+5y-17=0	$ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} $

2000 12. The area of the triangle formed by the axes and the line $(\cosh \alpha - \sinh \alpha) x + (\cosh \alpha + \sinh \alpha)$ y=2 in square units is 1) 4 2) 3 3) 2 4) 1 13. If the points (1,2) and (3,4) were to be on the same side of the line 3x-5y+a=0 then 2) a = 7 1) 7 < a < 11 4) a <7 or a > 11 3) a = 11 14. The coordinates of the image of the origin O with respect to the straight line x+y+1=0 are 1) $\left(-\frac{1}{2},-\frac{1}{2}\right)$ 2) (-2, -2) 4) (-1, -1) (1,1)1999 The equation of the straight line making an 15. intercept of 3 units on the y-axis and inclined at 45° to the x-axis is 2) y= x+3 1) y = x-13) y = 45x + 3 4) y = x + 4516. If the straight lines y=4-3x, ay=x+10 and 2y+bx+9=0 represent the three consecutive sides of rectangle then ab = 2) - 34) -1/3 1) 18 3) 1/2 The equation of the line passing through the 17. intersection of the lines, x-2y+5=0 and 3x+2y+7=0and perpendicular to the line x-y=0 1) x+y=02) x+y=23) x+y+2=04) x+y+1=0The reflection of the point (6,8) in the line x=y 18. 15 1) (4,2) 2) (-6,-8) 3) (-8,-10) 4) (,8,6) 1998 19. The perpendicular distance from (1,2) to the straight line 12x+5y=7 is 1) 15/13 2) 12/13 3) 5/13 4) 7/13 k is a nonzero constant. If $k = \frac{a+b}{ab}$ then the 20. straight line $\frac{x}{a} + \frac{y}{b} = 1$ passes through the point 2) (1/k, 1/k)1) (k,k)4) (k, 1/k)(1,1)

21. Let a and b be nonzero reals such that a b Then the equation of the line passing through theorigin and the point of inter section of x/a + y/b = 1 and x/b + y/a = 1

1997

- 22. A line passing through A(1,-2) has slope 1. The points on the line at a distance of $4\sqrt{2}$ units from A are
 - 1) (3, -6), (5, 2)2) (-3, -6), (5, -2)3) (-3, -6) (5,2)4) (3, 6) (-5,2)
- 23. If the point of intersection of kx+4y+2=0, x-3y+5=0 lies on 2x+7y-3=0 then k=

24. If 2x+3y+4=0 is the perpendicular bisector of the segment joining the points A(1,2) and B (α β) then the value of α+β is

1)
$$-\frac{81}{13}$$
 2) $-\frac{136}{13}$ 3) $-\frac{135}{13}$ 4) $-\frac{134}{5}$

1996.Re

25. the foot of the perpendicular from the point (3,4) on the line 3x-4y+5=0 is

1)
$$\left(\frac{81}{25}, \frac{92}{25}\right)$$
 2) $\left(\frac{92}{25}, \frac{81}{25}\right)$

3)
$$\left(\frac{46}{25}, \frac{54}{25}\right)$$
 4) $\left(\frac{-81}{25}, \frac{92}{25}\right)$

26. The angle between the lines $x \cos \alpha + y \sin \alpha = p_1$ and $x \cos \beta + y \sin \beta = p_2$ where $\alpha > \beta$ is 1) $\alpha + \beta$ 2) $\alpha - \beta$ 3) $\alpha\beta$ 4) $2\alpha - \beta$

27. The variable line $\frac{x}{a} + \frac{y}{b} = 1$ such that a+b=10. The locus of the midpoint of the potion of the

line intercepted between the axes is

1)
$$x+y=10$$
2) $10x+5y=1$ 3) $x+y=5$ 4) $5x+10y=1$

		KEY		
1) 3	2) 3	3) 1	4) 1	5) 3
6) 2	7) 3	8) 1	9) 4	10) 3
11) 3	12) 3	13) 4	14) 4	15) 2
16) 1	17) 2	18) 4	19) 1	20) 2
21) 3	22) 3	23) 2	24) 1	25) 1
26) 2	27) 3			