7.WORK, POWER & ENERGY

WORK DONE BY CONSTANT FORCE:

$$W = F \cdot \vec{S}$$

WORK DONE BY MULTIPLE FORCES

$$\Sigma \vec{F} = \vec{F}_{i} + \vec{F}_{ig} + \vec{F}_{ig} + \dots$$

$$W = [\Sigma F] \cdot S \qquad \dots (i)$$

$$W = F_{i} \cdot \vec{S} + \vec{F}_{ig} \cdot \vec{S} + \vec{F}_{ig} \cdot \vec{S} + \dots$$

$$W = W_{i} + W_{ig} + W_{ig} + \dots$$

WORK DONE BY A VARIABLE FORCE

$$dW = \vec{F} \cdot d\vec{s}$$

RELATION BETWEEN MOMENTUM AND KINETIC ENERGY

$$K = \frac{p^{18}}{2m}$$
 and $P = \sqrt{2 m K}$; $P = \text{linear momentum}$

POTENTIAL ENERGY

$$\begin{split} &\int_{U_{i}}^{U_{ix}} dU = - \int_{r_{i}}^{r_{ix}} \vec{F} \cdot d\vec{r} & \text{i.e.,} \qquad U_{2} - U_{1} = - \int_{r_{i}}^{r_{ix}} \vec{F} \ d\vec{r} = -W \\ &U = - \int_{\infty}^{r} \vec{F} \cdot d\vec{r} = -W \end{split}$$

CONSERVATIVE FORCES

$$F = \frac{U}{r}$$

WORK-ENERGY THEOREM

$$W_{\bullet} + W_{\bullet} + W_{\bullet} = \Delta K$$

Modified Form of Work-Energy Theorem

$$\begin{aligned} \mathbf{W}_{\mathbf{30}} &= -\Delta \mathbf{U} \\ \mathbf{W}_{\mathbf{30}} &+ \mathbf{W}_{\mathbf{20}} &= \Delta \mathbf{K} + \Delta \mathbf{U} \\ \mathbf{W}_{\mathbf{30}} &+ \mathbf{W}_{\mathbf{20}} &= \Delta \mathbf{E} \end{aligned}$$

POWER

The average power (\overline{P} or p) delivered by an agent is given by \overline{P} or p = $\frac{W}{t}$

$$P = \frac{F dS}{dt} = F \frac{dS}{dt} = \vec{F} \cdot \vec{v}$$