PRECIPITATION AND **GENERAL ASPECTS OF HYDROLOGY**

INDEX OF WETNESS

- rainfall in a given year at a given place average annual rainfall of that place Index of wetness =
- % Rain deficiency = 100 % Index of wetness

ARIDITY INDEX

$$A.I = \frac{PET - AET}{PET} \times 100$$
 where, A.I. = Aridity Index
$$PET = Potential Evap$$

PET = Potential Evapo-transpiration

AET = Actual Evapotranspiration

(a) $AI \leq 0 \rightarrow Non arid$

- (b) $1 \le A.I \le 25 \rightarrow Mild Arid$
- (c) $26 \le A.I \le 50 \rightarrow Moderate Arid$
- (d) A.I > 50→Severe Arid.

In this Al calculation, AET is calculated according to Thornthwaite's water balance technique.

OPTIMUM NUMBER OF RAIN GAUGE: (N)

where, $C_v = Coefficient of variation, \in =Allowable % Error,$ σ = Standard deviation of the data. n = Number of stations \bar{x} = Mean of rainfall value

ESTIMATION OF MISSING RAINFALL DATA

(a)
$$P_x = \frac{P_1 + P_2 + ... + P_n}{(n-1)}$$
 If N_1 , N_2 ... $N_n < 10\%$ of N_x

where, N₁, N₂, ... N_y ... N_p are normal annual precipitation of 1, 2, ... x ... n respectively.

P₁, P₂ ... P_n are rainfall at station 1, 2, ... n respectively. and P, is the rainfall of station x.

Case: A minimum number of three stations closed to station 'x'

$$P_{x} = \frac{P_{1} + P_{2} + P_{3}}{3}$$

(b)
$$P_{x} = \frac{N_{x}}{n-1} \left[\frac{P_{1}}{N_{1}} + \frac{P_{2}}{N_{2}} + \dots + \frac{P_{n}}{N_{n}} \right]$$
 If any of N_{1} , N_{2} , N_{3} ... $N_{n} > 10\%$ of N_{x} .

MEAN RAINFALL DATA

To convert the point rainfall values at various stations into an average value over a catchment the following three methods are in use

(i) Arithmetic Avg Method: When the rainfall measured at various stations in a catchment show little variation, the average precipitation over the catchment area is taken as the arithmetic mean of the station values.

$$P_{\text{avg}} = \frac{P_1 + P_2 + \dots + P_n}{n}$$

 $P_{avg} = \frac{P_1 + P_2 + ... + P_n}{n}$ where, P_1 , P_2 ... P_n are rainfall values of station 1, 2, ... n respectively.

In practice this method is used very rarely.

(ii) Thiessen Polygon Method: In this method the rainfall recorded at each station is given a weightage on thebasis of an area closest to the station.

$$P_{\text{avg}} = \frac{P_1 A_1 + P_2 A_2 + \ldots + P_n A_n}{A_1 + A_2 + \ldots + A_n} \quad \text{where, } P_1, P_2, \ldots P_n \text{ are the rainfall} \\ \text{data of areas } A_1, A_2 \ldots A_n.$$

The Thiessen-polygon method of calculating the average percipitation over an area is superior to the arithmetic average method.

Isohvetal Method: An isohvet is a line joining points of equal rainfall magnitude. The recorded values for which areal average P is to be determined are then marked on the plot at appropriate stations. Neighbouring stations outside the catchment are also considered.

$$P_{avg} = \frac{A_1 \frac{(P_1 + P_2)}{2} + A_2 \frac{(P_2 + P_3)}{2} + \dots + A_{n-1} \frac{(P_{n-1} + P_n)}{2}}{A_1 + A_2 + \dots + A_{n-1}}$$