By Substitution

Solve:
$$7x - 15y = 2$$

$$x+2y=3$$

(i) (ii)

Solution: From equation (ii), x = 3 - 2y substitute value of x in eq. (i)

$$7(3-2y) - 15y = 2$$

$$-29y = -19$$

$$\Rightarrow$$
 $y = \frac{1}{2}$

Now, from x = 3 - 2y

$$x = 3 - 2\left(\frac{19}{29}\right) = \frac{49}{29}$$

 $a_{1}x + b_{1}y + c_{1} = 0$ $a_{2}x + b_{2}y + c_{2} = 0$ where a_{1} , b_{1} , c_{1} , a_{2} , b_{2} , c_{2} are Real Numbers

General Form

Each solution (*x*, *y*) corresponds to a point on the line representing the equation and vice-versa

Solution through graph

By Elimination

Solve:
$$x + 3y = 6$$
 (1)

$$2x + 3y = 12$$
 (ii)

Solution: Now, from (ii) - (i)

$$x = 6$$

and from (i)
$$\times 2$$
 – (ii)

$$3y = 0$$
$$y = 0$$

Pair of Linear Equations in Two Variables

Pair of Lines: = x + -2y = 03x + 4y - 20 = 0

$$\frac{a_1}{a_2} = \frac{1}{3}$$
, $\frac{b_1}{b_2} = \frac{-2}{4}$, $\frac{c_1}{c_2} = \frac{0}{-20}$

Compare the Ratios:
$$=\frac{a_1}{a_2} = \frac{b_1}{b_2}$$

Algebraic Interpretation : unique solution

Graphical Representation

Pair of Lines: = x + 2y - 4 = 0 Graphical Representation 2x + 4y - 12 = 0

Algebraic Methods

$$\frac{a_1}{a_2} = \frac{1}{2}, \frac{b_1}{b_2} = \frac{2}{4}, \frac{c_1}{c_2} = \frac{-4}{-12}$$

Compare the Ratios = $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

Algebraic Interpretation : No solution

Pair of Lines: = 2x + 3y - 9 = 0 Graphical Representation 4x + 6y - 18 = 0

$$\frac{a_1}{a_2} = \frac{2}{4}$$
, $\frac{b_1}{b_2} = \frac{3}{6}$, $\frac{c_1}{c_2} = \frac{-9}{-18}$

Compare the Ratios = $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$

Algebraic Interpretation = Infinitely many solutions

Trace the Mind Map

► First Level ► Second Level ► Third Level