
Appendix B
Relativistic Kinematics

In particle physics, most scattering interactions take place between particles whose

speeds are comparable with the speed of light c. This is often true even in decays,

particularly if light particles are emitted. The requirements of special relativity

therefore cannot be ignored. In nuclear physics accurate predictions can also often

only be obtained if relativistic effects are taken into account. In this appendix we

review (usually without proof) some relativistic kinematical results and the use of

invariants to simplify calculations.

B.1 Lorentz Transformations and Four-Vectors

Consider a particle of mass m in an inertial frame of reference S. Its co-ordinates

are ðt; rÞ � ðt; x; y; zÞ and its speed is u ¼ juj, where u is its velocity. In a second

inertial frame S0 its co-ordinates are ðt0; r0Þ � ðt0; x0; y0; z0Þ and its speed is u0 ¼ ju0j
where u0 is its velocity. If S and S0 coincide at t ¼ 0 and S0 is moving with uniform

speed v in the positive z-direction with respect to S, then the two sets of

coordinates are related by the Lorentz transformation

x0 ¼ x

y0 ¼ y

z0 ¼ �ðvÞðz � vtÞ
t0 ¼ �ðvÞðt � vz=c2Þ

ðB:1Þ

where �ðvÞ ¼ ð1 � �2Þ�
1
2 is the Lorentz factor and � � v=c. From the definition of

velocity and using these transformations, the particle’s speed in S0 is related to its

speed in S by

u0 ¼ u � v

1 � uv=c2
ðB:2Þ

Nuclear and Particle Physics B. R. Martin
# 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01999-9



and hence

�ðu0Þ � ½1 � ðu0=cÞ2	�
1
2 ¼ �ðuÞ�ðvÞð1 � uv=c2Þ: ðB:3Þ

As v ! 0, the transformations in Equations (B.1) approach the Galilean transfor-

mations.

The most general Lorentz transformation has its simplest form in terms of four-

vectors, whose general form is a ¼ ða0; a1; a2; a3Þ ¼ ða0; aÞ. Then Equations (B.1)

become

a00 ¼ �ða0 � va3=cÞ; a01 ¼ a1; a02 ¼ a2; a03 ¼ �ða3 � va0=cÞ: ðB:4Þ

For example, the space-time four-vector is x ¼ ðct; xÞ and when used in Equations

(B.4) reproduces Equations (B.1). The scalar product of two four-vectors a and b is

defined as

ab � a0b0 � a � b ðB:5Þ

and is an invariant, i.e. is the same in all inertial frames of references.

The basic four-vector in particle kinematics is the four-momentum, defined by

P � mu; ðB:6Þ

where m is the rest mass and u is the four-velocity, whose components are

u ¼ �ðvÞðc, vÞ, where v is the three-velocity and v � jvj. In terms of the total

energy E (i.e. including the rest mass) and the three-momentum p,

P ¼ ðE=c;pÞ: ðB:7Þ

Thus for two four-momenta P1 and P2 the invariant scalar product is

P1P2 ¼ E1E2=c2 � p1:p2 ðB:8Þ

and for P1 ¼ P2 ¼ P,

P2 ¼ E2=c2 � p2: ðB:9Þ

However, from Equations (B.5) and (B.6) we have u2 ¼ c2 and hence P2 ¼ m2c2,

so combining this with Equation (B.9) gives

E2 ¼ p2c2 þ m2c4: ðB:10Þ

It follows that

E ¼ �ðvÞmc2; p ¼ �ðvÞmv; v ¼ c2p=E: ðB:11Þ
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The Lorentz transformations for energy and momentum follow from these

definitions and Equations (B.4). Thus, in S0 we have

E0 ¼ m c2�ðu0Þ ¼ �ðvÞðE � vpÞ ðB:12aÞ

and

p0 ¼ mu0�ðu0Þ ¼ �ðvÞðp � vE=c2Þ; ðB:12bÞ

where p ¼ jpj and p0 ¼ jp0j. For a set of N non-interacting particles,

p0z ¼ �ðvÞðpz � vE=c2Þ; p0x ¼ px; p0
y ¼ py; ðB:13aÞ

and

E0 ¼ �ðvÞðE � vpzÞ; ðB:13bÞ

where

E ¼
XN

i¼1

Ei and p ¼
XN

i¼1

pi: ðB:13cÞ

In the general case where the relative velocity v of the two frames is in an arbitrary

direction, the transformations in Equations (B.12) become

p0 ¼ p þ �v
� v � p

� þ 1
� E

� �
1

c2
; E0 ¼ �ðE � v � pÞ: ðB:14Þ

B.2 Frames of Reference

The two most commonly used frames of reference for particle kinematics are the

laboratory system (LS) and the centre-of-mass system (CMS). We will start by

discussing these in the context of two-particle scattering. In the LS, a moving

projectile a in a beam strikes a target particle b at rest, i.e.

Pa ¼ ðEa=c;paÞ; Pb ¼ ðmbc; 0Þ: ðB:15Þ

In the CMS, the three-momenta of the two particles a and b are equal and opposite,

so that the total momentum is zero,1 i.e.

Pa ¼ ðEa=c;paÞ; Pb ¼ ðEb=c; pbÞ; ðB:16aÞ

1Although ‘centre-of-mass’ system is the most frequently used name, some authors refer to this as the

‘centre-of-momentum’ system. Logically, a better name would be ‘zero-momentum’ frame.
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with

pa þ pb ¼ 0: ðB:16bÞ

In a colliding beam accelerator, these two views become mixed. The colliding

particles are both moving, but only if they have equal momenta and collide at zero

crossing angle is the system identical to the centre-of-mass system.

The four-vectors of the initial-state particles in the two systems may be written

(L ¼ laboratory, T ¼ target)

Pa ¼ ðEL=c; 0; 0; pLÞ; PT ¼ ðmTc; 0; 0; 0Þ LS ðB:17aÞ

with E2
L ¼ m2

Bc4 þ p2
Lc2 (B ¼ beam), and

Pa ¼ ðEa=c; 0; 0; pÞ; Pb ¼ ðEb=c; 0; 0;�pÞ CMS ðB:17bÞ

with E2
a ¼ m2

Bc4 þ p2c2 and E2
b ¼ m2

Tc4 þ p2c2.

The Lorentz transformations between them are

p ¼ �ðpL � vEL=c2Þ; Ea ¼ �ðEL � vpLÞ; ðB:18Þ

where

v ¼ c2pL

EL þ mTc2
; � ¼ EL þ mTc2

c2
ffiffi
s

p ; v� ¼ pLffiffi
s

p ðB:19Þ

and s is the invariant mass squared of the system defined by

s � ðpa þ pbÞ2=c2 ¼ ½ðEa þ EbÞ2 � ðpac þ pbcÞ2	=c4: ðB:20Þ

In particular, in the LS,

s ¼ m2
T þ m2

B þ 2mTEL=c2: ðB:21Þ

This result was used in Chapter 4 when discussing the relative merits of fixed-

target and colliding beam accelerators.

Substituting Equations (B.19) into Equations (B.18) gives

p ¼ pLmTffiffi
s

p ; Ea ¼ m2
Bc2 þ mTELffiffi

s
p ðB:22aÞ

and similarly for particle b:

p ¼ pLmTffiffi
s

p ; Eb ¼ m2
Tc2 þ mTELffiffi

s
p : ðB:22bÞ
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Finally we state, without proof, the transformation of scattering angles for the

specific case of laboratory and centre-of-mass systems. Consider the general

scattering reaction

BðEL; pLÞ þ Tðm2
T; 0Þ ! PðE; qÞ þ � � � � � � ; ðB:23Þ

where B is a beam particle incident on a target particle T at rest in the laboratory

system and P is one of a number of possible particles in the final state. If pL is

taken along the z-direction, then

pL ¼ ð0; 0; pLÞ and q ¼ ð0; q sin �L; q cos �LÞ; ðB:24Þ

where �L is the scattering angle in the laboratory system, i.e. the angle between the

beam direction and q. In the CMS,

p0
B þ p0

T ¼ 0; ðB:25Þ

where p0
B and p0

T are the CMS momenta of the beam and target, respectively. The

relation between the scattering angle �C in this system and �L is

tan �L ¼ 1

�ðvÞ
q0 sin �C

q0 cos �C þ vE0=c2
; ðB:26Þ

where

E0 ¼ mPc2�ðuÞ and q0 ¼ mPu�ðuÞ ðB:27Þ

and u is the magnitude of the velocity of P in the centre-of-mass frame.

It is instructive to consider the form of Equation (B.26) at high energies. From

Equation (B.19) the velocity of the transformation is

v ¼ pLc2½EL þ mTc2	�1; ðB:28Þ

so at high energies where E2
L � pLc � mBc2, mTc2, v � cð1 � mTc=pLÞ � c and

�ðvÞ � pL

2mTc

� �1=2

: ðB:29Þ

Substituting Equations (B.27), (B.28) and (B.29) into Equation (B.26) gives

tan �L � 2mTc

pL

� �1=2

� u sin �C

u cos �C þ c
: ðB:30Þ

Thus, unless u � c and cos �C � �1, the final-state particles will lie in a narrow

cone about the beam direction in the laboratory system. Similarly, when a
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high-energy particle decays, its decay products will emerge predominantly at small

angles to the initial beam direction.

B.3 Invariants

The transformations between laboratory and centre-of-mass systems for energy

and momentum have been worked out explicitly above, but a more efficient way is

to work with quantities that are invariants, i.e. have the same values in all inertial

frames. We have already met one of these: s the invariant mass squared, defined in

Equation (B.20). We will now find expressions for the energy and momentum in

terms of invariants for both the LS and the CMS.

First, in the LS, from Equations (B.15), we have

pB ¼ 0; EB ¼ mBc: ðB:31Þ

However, from Equation (B.23),

s ¼ m2
B þ m2

T þ 2mTEL=c2 ðB:32Þ

i.e.

EL ¼ ðs � m2
T � m2

BÞc2

2mT

ðB:33Þ

and so

p2
L ¼ E2

L

c2
� m2

Bc2 ¼ ðs � m2
B � m2

TÞ
2
c2 � 4m2

Bm2
Tc2

4m2
T

: ðB:34Þ

This can be written in the useful compact form

pL ¼ c

2mT

�
1
2ðs;m2

B;m
2
TÞ; ðB:35aÞ

where the triangle function � is defined by

�ðx; y; zÞ � ðx � y � zÞ2 � 4yz: ðB:35bÞ

This function is invariant under all permutations of its arguments and in particular

Equation (B.35a) can be written in the form

pL ¼ c

2mT

�
s � ðmT þ mBÞ2
h i

s � ðmT � mBÞ2
h i�1

2

: ðB:36Þ
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In a similar way it is straightforward to show that, in the CMS,

p ¼ c

2
ffiffi
s

p
�

s � ðmT þ mBÞ2
h i

s � ðmT � mBÞ2
h i�1

2

ðB:37Þ

from which it follows that

Ea ¼ ðs þ m2
B � m2

TÞc2

2
ffiffi
s

p ; Eb ¼ ðs � m2
B þ m2

TÞc2

2
ffiffi
s

p : ðB:38Þ

The above formulae have many applications. For example, if we wish to produce

particles with a certain mass M, the minimum laboratory energy of the beam

particles is, from Equation (B.33),

ELðminÞ ¼ M2c2 � m2
Bc2 � m2

Tc2

2mT

: ðB:39Þ

In the case of the decay of a particle A to a set of final-state particles i ¼
1; 2; 3; . . . ;N, i.e.

A ! 1 þ 2 þ 3 þ � � � þ N; ðB:40Þ

the invariant mass W of the final-state particles is given by

W2c4 ¼
X

i

Ei

 !2

�
X

i

pic

 !2

¼ E2
A � ðpAcÞ2 ¼ M2

Ac4: ðB:41Þ

Hence the mass of the decaying particle is equal to the invariant mass of its decay

products. The latter can be measured if the particle is too short-lived for its mass to

be measured directly.

Problems

B.1 The Mandelstam variables s, t and u are defined for the reaction A þ B ! C þ D by

s ¼ ðpA þ pBÞ2=c2; t ¼ ðpA � pCÞ2=c2; u ¼ ðpA � pDÞ2=c2;

where pA etc. are the relevant energy-momentum four-vectors.

(a) Show that

s þ t þ u ¼
X

j¼A;B;C;D

m2
j :
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(b) In the case of elastic scattering show that t ¼ �2p2ð1 � cos �Þ=c2, where

p � jpj, p is the centre-of-mass momentum of particle A and � is its scattering

angle in the CMS.

B.2 A pion travelling with speed v � jvj in the laboratory decays via �! 	þ 
. If the

neutrino emerges at right angles to v, find an expression for the angle � at which the

muon emerges.

B.3 A pion at rest decays via �! 	þ 
. Find the speed of the muon in terms of the

masses involved.

B.4 A neutral particle X0 decays via X0 ! Aþ þ B�. The momentum components of the

final-state particles are measured to be (in GeV/c):

Test the hypotheses that the decay is (a) D0 ! �þ þ K� and (b) � ! p þ ��.

B.5 In a fixed-target e�p scattering experiment, show that the squared four-momentum

transfer is given by Q2 � 2E2ð1 � cos �Þ=c2, where E is the total laboratory energy

of the initial electron and � is the laboratory scattering angle.

B.6 Calculate the minimum laboratory energy Emin of the initial proton for the

production of antiprotons in a fixed-target experiment using the reaction

pp ! ppp�pp. If the protons are bound in nuclei, show that taking the internal motion

of the nucleons into account leads to a smaller minimum energy given by

E0
min � ð1 � p=mPcÞEmin;

where p is the modulus of the average internal longitudinal momentum of a

nucleon. Use a typical value of p to calculate E0
min.

B.7 A particle A decays at rest via A ! B þ C. Find the total energy of B in terms of the

three masses.

B.8 A meson M decays via M ! ��. Find an expression for the angle in the laboratory

between the two momentum vectors of the photons in terms of the photon energies

and the mass of M.

B.9 Pions and protons, both with momentum 2 GV/c, travel between two scintillation

counters distance L m apart. What is the minimum value of L necessary to

px py pz

Aþ �0:488 �0:018 2.109

B� �0.255 �0.050 0.486
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differentiate between the particles if the time-of-flight can be measured with an

accuracy of 200 ps?

B.10 A photon is Compton scattered off a stationary electron through a scattering angle of

60� and its final energy is half its initial energy. Calculate the value of the initial

energy in MeV.
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