# 22

Time allowed: 45 minutes

## **PRACTICE PAPER**

Maximum Marks: 200

General Instructions: Same as Practice Paper-1.

Choose the correct option.

| Choo | se the corr                                                                                                                                                                                                                                                                                                                                            | ect option.                                                                                            |                                        |            |    |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------|------------|----|--|--|--|
| 1.   | (a) attraction (b) temper                                                                                                                                                                                                                                                                                                                              | motion is due to on and repulsion between the charg ature fluctuation within the liquid p ion current. |                                        |            |    |  |  |  |
|      | (d) impact                                                                                                                                                                                                                                                                                                                                             | of molecules of dispersion medium                                                                      | on colloidal particles.                |            |    |  |  |  |
| 2.   | Which of                                                                                                                                                                                                                                                                                                                                               | the following is a zero order reaction                                                                 | n?                                     |            |    |  |  |  |
|      | (a) CH <sub>3</sub> CC                                                                                                                                                                                                                                                                                                                                 | $OOC_2H_5 + H_2O \longrightarrow CH_3COOF$                                                             |                                        |            |    |  |  |  |
|      | $(b) H_2 + 0$                                                                                                                                                                                                                                                                                                                                          | $Cl_2 \xrightarrow{h\nu} 2HCl$                                                                         |                                        |            |    |  |  |  |
|      | (c) 2NO +                                                                                                                                                                                                                                                                                                                                              | $O_2 \longrightarrow 2NO_2$                                                                            |                                        |            |    |  |  |  |
|      | (d) CH <sub>3</sub> CC                                                                                                                                                                                                                                                                                                                                 | $OOC_2H_5 + NaOH \longrightarrow CH_3COC$                                                              | ONa + C <sub>2</sub> H <sub>5</sub> OH |            |    |  |  |  |
| 3.   |                                                                                                                                                                                                                                                                                                                                                        | nt of chlorine prepared by electron 10 minutes is                                                      | olysis of molten sodium c              |            | ıt |  |  |  |
|      | (a) 3.8 g                                                                                                                                                                                                                                                                                                                                              | (b) 2.2 g                                                                                              | (c) 4.4 g                              | (d) 6 g    |    |  |  |  |
| 4.   | Mole fract                                                                                                                                                                                                                                                                                                                                             | ion of the solute in a 1.0 molal aqu                                                                   | eous solution is                       |            |    |  |  |  |
|      | $(a) \ 0.1770$                                                                                                                                                                                                                                                                                                                                         | (b) 0.0177                                                                                             | (c) 0.0344                             | (d) 1.7700 |    |  |  |  |
| 5.   | Given belo                                                                                                                                                                                                                                                                                                                                             | ow are two statements labelled as A                                                                    | ssertion and Reason:                   |            |    |  |  |  |
|      | Assertion (A): Ferrimagnetic substances lose magnetism on heating.                                                                                                                                                                                                                                                                                     |                                                                                                        |                                        |            |    |  |  |  |
|      | Reason (R): Fe <sub>3</sub> O <sub>4</sub> and MgFe <sub>2</sub> O <sub>4</sub> are examples of substances that show ferrimagnetism.  (a) Assertion and reason both are correct statements and reason is correct explanation for assertion.  (b) Assertion and reason both are correct statements but reason is not correct explanation for assertion. |                                                                                                        |                                        |            |    |  |  |  |

- (c) Assertion is correct statement but reason is wrong statement.
- (d) Assertion is wrong statement but reason is correct statement.
- 6. Which of the following solids is not an electrical conductor?

 (i) Mg(s)
 (ii) TiO(s)

 (iii) I<sub>2</sub>(s)
 (iv) H<sub>2</sub>O(s)

 (a) (i) only
 (b) (ii) only

 (c) (iii) and (iv)
 (d) (ii), (iii) and (iv)

| 7.                                   | The value of Henry's cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                            | 1.125                                                                                                                                            |  |  |  |  |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                      | <ul><li>(a) greater for gases with</li><li>(c) constant for all gases</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nigner solubility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) greater for gases with lower solubility (d) not related to the solubility of gases                                                                                                                                                                                                                                                                                     |                                                                                                                                                  |  |  |  |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (d) not related to the solubility of gases                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                  |  |  |  |  |
| ٥.                                   | (a) one gram equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | electricity is passed throu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gh AgNO <sub>3</sub> solution, the metal deposited will be equal to<br>(b) 1 gram mole                                                                                                                                                                                                                                                                                     |                                                                                                                                                  |  |  |  |  |
|                                      | (c) 1 gram metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (d) electrochemical equiva                                                                                                                                                                                                                                                                                                                                                 | lent                                                                                                                                             |  |  |  |  |
| 0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of a second order reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                  |  |  |  |  |
| 9.                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of a second order reaction<br>(b) sec <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                            | (d) mol litre <sup>-1</sup> sec                                                                                                                  |  |  |  |  |
| 10.                                  | (a) the colloidal particles (b) the colloidal particles (c) the colloidal particles (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | have positive charge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | because                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                  |  |  |  |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e negatively charged colloids                                                                                                                                                                                                                                                                                                                                              | š.                                                                                                                                               |  |  |  |  |
| 11                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nent, the radius ratio $r^+/r^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                  |  |  |  |  |
| 11.                                  | (a) 0.732 – 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (b) 0.225 - 0.414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (c) 0.414 - 0.732                                                                                                                                                                                                                                                                                                                                                          | (d) 0.155 - 0.225                                                                                                                                |  |  |  |  |
| 10                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                            | (a) 0.133 - 0.223                                                                                                                                |  |  |  |  |
| 12.                                  | (a) freezing point of the so<br>(b) freezing point of the so<br>(c) boiling point of the so<br>(d) Both (a) and (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | olution is increased.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oivent                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                  |  |  |  |  |
| 13.                                  | If an article is to be elect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | roplated, would it be made                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e as                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                  |  |  |  |  |
|                                      | (a) cathode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) anode                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                  |  |  |  |  |
|                                      | (c) neither cathode nor as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | node                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (d) either cathode or anoc                                                                                                                                                                                                                                                                                                                                                 | le                                                                                                                                               |  |  |  |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ng plata gives the value of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | activation anarous                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                  |  |  |  |  |
| 14.                                  | Which one of the followi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ng pious gives the value of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | activation energy:                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                  |  |  |  |  |
| 14.                                  | Which one of the followi<br>(a) $\log k \operatorname{vs} \frac{1}{T}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (b) $\log k$ vs $T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (c) k vs T                                                                                                                                                                                                                                                                                                                                                                 | $(d) \frac{1}{k} \operatorname{vs} T$                                                                                                            |  |  |  |  |
|                                      | (a) $\log k \operatorname{vs} \frac{1}{T}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (b) $\log k$ vs $T$ electrolysis is related to th cation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (c) k vs T                                                                                                                                                                                                                                                                                                                                                                 | ĸ                                                                                                                                                |  |  |  |  |
| 15.                                  | (a) $\log k$ vs $\frac{1}{T}$<br>Second Faraday's law of (a) atomic number of the (c) equivalent mass of the $\lambda_{\rm m}^0({\rm Ag}^+) = 83 \ {\rm ohm}^{-1} \ {\rm cm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (b) $\log k$ vs $T$ electrolysis is related to the cation. electrolyte.  ivity of a saturated solution $\lambda_m^0(Cl^-) = 87$ oher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (c) k vs T  (b) atomic number of the (d) speed of the cation.  tion of AgCl in water is m <sup>-1</sup> cm <sup>2</sup> mol <sup>-1</sup> , then solubilities                                                                                                                                                                                                              | anion. $3.9 \times 10^{-6} \text{ ohm}^{-1} \text{ cm}^{-1}. \text{ If}$                                                                         |  |  |  |  |
| 15.<br>16.                           | (a) $\log k$ vs $\frac{1}{T}$<br>Second Faraday's law of (a) atomic number of the (c) equivalent mass of the At 298 K, the conduct $\lambda_{\rm m}^{\rm 0}({\rm Ag^+}) = 83~{\rm ohm^{-1}~cm^2}$ (a) $2.29 \times 10^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (b) $\log k$ vs $T$ electrolysis is related to the cation. electrolyte.  ivity of a saturated solution $\lambda_m^0(Cl^-) = 87$ oher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (c) k vs T  (b) atomic number of the (d) speed of the cation.  tion of AgCl in water is m <sup>-1</sup> cm <sup>2</sup> mol <sup>-1</sup> , then solubility (c) 4.80 × 10 <sup>-10</sup>                                                                                                                                                                                   | anion.  3.9 × $10^{-6}$ ohm <sup>-1</sup> cm <sup>-1</sup> . If ity product of AgCl is                                                           |  |  |  |  |
| 15.<br>16.                           | (a) $\log k$ vs $\frac{1}{T}$<br>Second Faraday's law of (a) atomic number of the (c) equivalent mass of the At 298 K, the conduct $\lambda_{\rm m}^{\rm 0}({\rm Ag^+}) = 83~{\rm ohm^{-1}~cm^2}$ (a) $2.29 \times 10^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (b) $\log k$ vs $T$ electrolysis is related to the cation. electrolyte.  ivity of a saturated solution $\lambda_m^0(C\Gamma) = 87$ ohiomol <sup>-1</sup> and $\lambda_m^0(C\Gamma) = 87$ ohiomol <sup>-1</sup> (b) $5.24 \times 10^{-10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (c) k vs T  (b) atomic number of the (d) speed of the cation.  tion of AgCl in water is m <sup>-1</sup> cm <sup>2</sup> mol <sup>-1</sup> , then solubility (c) 4.80 × 10 <sup>-10</sup>                                                                                                                                                                                   | anion.  3.9 × $10^{-6}$ ohm <sup>-1</sup> cm <sup>-1</sup> . If ity product of AgCl is                                                           |  |  |  |  |
| 15.<br>16.<br>17.                    | (a) $\log k$ vs $\frac{1}{T}$<br>Second Faraday's law of (a) atomic number of the (c) equivalent mass of the At 298 K, the conduct $\lambda_{\rm m}^{\rm 0}({\rm Ag}^{+})=83~{\rm ohm}^{-1}~{\rm cm}^{2}$ (a) $2.29\times10^{-5}$<br>In the extraction of iron (a) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (b) $\log k$ vs $T$ electrolysis is related to the cation.  electrolyte.  ivity of a saturated solution $\delta = 0$ and $\delta = 0$ (Cl <sup>-</sup> ) = 87 ohis (b) $\delta = 0$ 5.24 × $\delta = 0$ from iron oxide ore, the results (b) CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (c) k vs T  (b) atomic number of the (d) speed of the cation.  tion of AgCl in water is m <sup>-1</sup> cm <sup>2</sup> mol <sup>-1</sup> , then solubility (c) 4.80 × 10 <sup>-10</sup> reducing agent is                                                                                                                                                                 | anion. 3.9 × 10 <sup>-6</sup> ohm <sup>-1</sup> cm <sup>-1</sup> . If ity product of AgCl is (d) $2.19 \times 10^{-5}$ (d) $SiO_2$               |  |  |  |  |
| 15.<br>16.<br>17.                    | (a) $\log k$ vs $\frac{1}{T}$<br>Second Faraday's law of (a) atomic number of the (c) equivalent mass of the At 298 K, the conduct $\lambda_{\rm m}^{\rm 0}({\rm Ag}^{+})=83~{\rm ohm}^{-1}~{\rm cm}^{2}$ (a) $2.29\times10^{-5}$<br>In the extraction of iron (a) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (b) $\log k$ vs $T$ electrolysis is related to the cation.  electrolyte.  ivity of a saturated solution $\delta = 0$ and $\delta = 0$ (Cl <sup>-</sup> ) = 87 ohis (b) $\delta = 0$ 5.24 × $\delta = 0$ from iron oxide ore, the results (b) CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (c) k vs T  (b) atomic number of the (d) speed of the cation.  (d) speed of the cation.  (ion of AgCl in water is m <sup>-1</sup> cm <sup>2</sup> mol <sup>-1</sup> , then solubility (c) 4.80 × 10 <sup>-10</sup> (c) 4.80 × 10 <sup>-10</sup> (d) educing agent is (e) CaCO <sub>3</sub>                                                                                 | anion. 3.9 × 10 <sup>-6</sup> ohm <sup>-1</sup> cm <sup>-1</sup> . If ity product of AgCl is (d) $2.19 \times 10^{-5}$ (d) $SiO_2$               |  |  |  |  |
| 16.<br>17.                           | (a) $\log k$ vs $\frac{1}{T}$<br>Second Faraday's law of (a) atomic number of the (c) equivalent mass of the $\lambda^0_{\rm m}({\rm Ag}^+)=83~{\rm ohm}^{-1}~{\rm cm}^2$<br>(a) $2.29\times 10^{-5}$<br>In the extraction of iron (a) C<br>The number of electrons (a) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (b) $\log k$ vs $T$ electrolysis is related to the cation. electrolyte.  ivity of a saturated solution $\delta = 0$ (CI <sup>-</sup> ) = 87 of $\delta = 0$ (b) $\delta = 0$ (considerate or $\delta = 0$ ) from iron oxide ore, the results (b) CO is that are involved in the oxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (c) k vs T  (b) atomic number of the (d) speed of the cation.  tion of AgCl in water is m <sup>-1</sup> cm <sup>2</sup> mol <sup>-1</sup> , then solubility (c) 4.80 × 10 <sup>-10</sup> educing agent is (c) CaCO <sub>3</sub> kidation of KMnO <sub>4</sub> in acidio                                                                                                    | anion.  3.9 × 10 <sup>-6</sup> ohm <sup>-1</sup> cm <sup>-1</sup> . If ity product of AgCl is  (d) $2.19 \times 10^{-5}$ (d) $SiO_2$ c medium is |  |  |  |  |
| 16.<br>17.                           | (a) $\log k$ vs $\frac{1}{T}$<br>Second Faraday's law of (a) atomic number of the (c) equivalent mass of the $\lambda^0_{\rm m}({\rm Ag}^+)=83~{\rm ohm}^{-1}~{\rm cm}^2$<br>(a) $2.29\times 10^{-5}$<br>In the extraction of iron (a) C<br>The number of electrons (a) 1<br>To which isomers the following the $\lambda^0_{\rm m}({\rm Ag}^+)=83$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b) $\log k$ vs $T$ electrolysis is related to the cation. electrolyte.  ivity of a saturated solution $\delta = 0$ (CI <sup>-</sup> ) = 87 ohiomorphism $\delta = 0$ (b) $\delta = 0$ from iron oxide ore, the results $\delta = 0$ (c) $\delta = 0$ that are involved in the oxide $\delta = 0$ (d) $\delta = 0$ lowing complexes belong?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (c) k vs T  (d) speed of the cation.  tion of AgCl in water is m <sup>-1</sup> cm <sup>2</sup> mol <sup>-1</sup> , then solubility (c) 4.80 × 10 <sup>-10</sup> educing agent is (c) CaCO <sub>3</sub> kidation of KMnO <sub>4</sub> in acidicy (c) 3                                                                                                                      | anion.  3.9 × 10 <sup>-6</sup> ohm <sup>-1</sup> cm <sup>-1</sup> . If ity product of AgCl is  (d) $2.19 \times 10^{-5}$ (d) $SiO_2$ c medium is |  |  |  |  |
| 16.<br>17.                           | (a) $\log k$ vs $\frac{1}{T}$<br>Second Faraday's law of (a) atomic number of the (c) equivalent mass of the $\lambda^0$ (Ag +) = 83 ohm -1 cm -2 (a) $2.29 \times 10^{-5}$<br>In the extraction of iron (a) C  The number of electrons (a) 1  To which isomers the following second results and the second results are second results as $\lambda^0$ and $\lambda^0$ are second results are second results as $\lambda^0$ and $\lambda^0$ are second results are second results as $\lambda^0$ and $\lambda^0$ are second results are second results as $\lambda^0$ and $\lambda^0$ are second results are second results as $\lambda^0$ and $\lambda^0$ are second results are second results are second results as $\lambda^0$ and $\lambda^0$ are second results are second | (b) $\log k$ vs $T$ electrolysis is related to the cation. electrolyte.  ivity of a saturated solution $\delta = 0$ (CI <sup>-</sup> ) = 87 ohiomorphism $\delta = 0$ (b) $\delta = 0$ from iron oxide ore, the results $\delta = 0$ (c) $\delta = 0$ that are involved in the oxide $\delta = 0$ (d) $\delta = 0$ lowing complexes belong?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (c) k vs T  (b) atomic number of the (d) speed of the cation.  tion of AgCl in water is m <sup>-1</sup> cm <sup>2</sup> mol <sup>-1</sup> , then solubility (c) 4.80 × 10 <sup>-10</sup> educing agent is (c) CaCO <sub>3</sub> kidation of KMnO <sub>4</sub> in acidio                                                                                                    | anion.  3.9 × 10 <sup>-6</sup> ohm <sup>-1</sup> cm <sup>-1</sup> . If ity product of AgCl is  (d) $2.19 \times 10^{-5}$ (d) $SiO_2$ c medium is |  |  |  |  |
| 15.<br>16.<br>17.<br>18.             | (a) $\log k$ vs $\frac{1}{T}$<br>Second Faraday's law of (a) atomic number of the (c) equivalent mass of the $\lambda^0_{\rm m}({\rm Ag}^+)=83~{\rm ohm}^{-1}~{\rm cm}^2$<br>(a) $2.29\times 10^{-5}$<br>In the extraction of iron (a) C<br>The number of electrons (a) 1<br>To which isomers the following (b) Linkage isomer (c) Ligand isomer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (b) $\log k$ vs $T$ electrolysis is related to the cation. electrolyte.  ivity of a saturated solution $\delta = 0$ (CI <sup>-</sup> ) = 87 ohiomorphism $\delta = 0$ (b) $\delta = 0$ from iron oxide ore, the results $\delta = 0$ (c) $\delta = 0$ that are involved in the oxide $\delta = 0$ (d) $\delta = 0$ lowing complexes belong?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (c) k vs T  (d) speed of the cation.  tion of AgCl in water is m <sup>-1</sup> cm <sup>2</sup> mol <sup>-1</sup> , then solubility (c) 4.80 × 10 <sup>-10</sup> educing agent is (c) CaCO <sub>3</sub> xidation of KMnO <sub>4</sub> in acidicy (c) 3                                                                                                                      | anion.  3.9 × 10 <sup>-6</sup> ohm <sup>-1</sup> cm <sup>-1</sup> . If ity product of AgCl is  (d) $2.19 \times 10^{-5}$ (d) $SiO_2$ c medium is |  |  |  |  |
| 15.<br>16.<br>17.<br>18.<br>19.      | (a) $\log k$ vs $\frac{1}{T}$<br>Second Faraday's law of (a) atomic number of the (c) equivalent mass of the $\lambda^0$ (Ag <sup>+</sup> ) = 83 ohm <sup>-1</sup> cm <sup>2</sup> (a) $2.29 \times 10^{-5}$<br>In the extraction of iron (a) C  The number of electrons (a) 1  To which isomers the following isomer (c) Ligand isomer  Among the following ion (a) $[Cr(H_2O)_6]^{3+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (b) $\log k$ vs $T$ electrolysis is related to the cation.  e electrolyte.  ivity of a saturated solution $h_0^{-1}$ and $h_0^{0}$ (CI <sup>-</sup> ) = 87 ohiomorphisms $h_0^{-1}$ (b) $h_0^{-1}$ from iron oxide ore, the result $h_0^{-1}$ (c) $h_0^{-1}$ from iron oxide ore, the result $h_0^{-1}$ (d) $h_0^{-1}$ from iron oxide ore, the result $h_0^{-1}$ (e) $h_0^{-1}$ from iron oxide ore, the result $h_0^{-1}$ from iron oxide ore, $h_0^{-1}$ from iron oxide ore, $h_0^{-1}$ from iron oxide oxide oxide $h_0^{-1}$ from iron oxide | (c) k vs T  (d) speed of the cation.  tion of AgCl in water is m <sup>-1</sup> cm <sup>2</sup> mol <sup>-1</sup> , then solubility (c) 4.80 × 10 <sup>-10</sup> educing agent is (c) CaCO <sub>3</sub> cidation of KMnO <sub>4</sub> in acidicy (c) 3  (b) Ionisation isomer (d) Geometrical isomer  paramagnetism? (b) [Fe(H <sub>2</sub> O) <sub>6</sub> ] <sup>2+</sup> | anion.  3.9 × 10 <sup>-6</sup> ohm <sup>-1</sup> cm <sup>-1</sup> . If ity product of AgCl is  (d) $2.19 \times 10^{-5}$ (d) $SiO_2$ c medium is |  |  |  |  |
| 115.<br>116.<br>117.<br>118.<br>119. | (a) $\log k$ vs $\frac{1}{T}$<br>Second Faraday's law of (a) atomic number of the (c) equivalent mass of the $\lambda^0_{\rm m}({\rm Ag}^+)=83~{\rm ohm}^{-1}~{\rm cm}^2$<br>(a) $2.29\times 10^{-5}$<br>In the extraction of iron (a) C<br>The number of electrons (a) 1<br>To which isomers the following isomer (c) Ligand isomer<br>(a) Linkage isomer<br>(b) Ligand isomer<br>Among the following ion (a) $[{\rm Cr}({\rm H}_2{\rm O})_6]^{3+}$<br>(c) $[{\rm Cu}({\rm H}_2{\rm O})_6]^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) $\log k$ vs $T$ electrolysis is related to the cation.  e electrolyte.  ivity of a saturated solution $h_0^{-1}$ and $h_0^{0}$ (CI <sup>-</sup> ) = 87 ohiomorphisms $h_0^{-1}$ (b) $h_0^{-1}$ from iron oxide ore, the result $h_0^{-1}$ (c) $h_0^{-1}$ from iron oxide ore, the result $h_0^{-1}$ (d) $h_0^{-1}$ from iron oxide ore, the result $h_0^{-1}$ (e) $h_0^{-1}$ from iron oxide ore, the result $h_0^{-1}$ from iron oxide ore, $h_0^{-1}$ from iron oxide ore, $h_0^{-1}$ from iron oxide oxide oxide $h_0^{-1}$ from iron oxide | (c) k vs T  (d) speed of the cation.  tion of AgCl in water is m <sup>-1</sup> cm <sup>2</sup> mol <sup>-1</sup> , then solubility (c) 4.80 × 10 <sup>-10</sup> educing agent is (c) CaCO <sub>3</sub> cidation of KMnO <sub>4</sub> in acidicy (c) 3  (b) Ionisation isomer (d) Geometrical isomer  paramagnetism? (b) [Fe(H <sub>2</sub> O) <sub>6</sub> ] <sup>2+</sup> | anion.  3.9 × 10 <sup>-6</sup> ohm <sup>-1</sup> cm <sup>-1</sup> . If ity product of AgCl is  (d) $2.19 \times 10^{-5}$ (d) $SiO_2$ c medium is |  |  |  |  |

| 22. | The IUPAC name of the comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pound $F$ $CH_3$                                                      | s:                                                                   |                                                               |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------|
|     | (a) 4-fluoro-1-methyl-3-nitrob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                     | (b) 1-fluoro-4-metl                                                  | nyl-2-nitrobenzene                                            |
|     | (c) 2-fluoro-5-methyl-1-nitrob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | (d) 4-methyl-1-fluo                                                  | ·                                                             |
| 23. | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rately strong oxidising a                                             | agent. It oxidises both                                              | metals and non-metals. Which of the                           |
|     | (a) Cu (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       | (c) C                                                                | (d) Zn                                                        |
| 24. | Which of the following states (a) $Fe^{2+}$ is more paramagnetic (c) $Cr^{2+}$ is less paramagnetic than $Fe^{2+}$ is less paramagnetic t | than Mn <sup>2+</sup> .                                               |                                                                      | magnetic than $Cr^{2+}$ . paramagnetic than $V^{2+}$ .        |
| 25. | A transition element X has a (a) 25 (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                       | in its +3 oxidation (c) 22                                           | state. Its atomic number is<br>(d) 19                         |
| 26. | Given below are two statemen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nts labelled as Stateme                                               | nt P and Statement                                                   | Q:                                                            |
|     | Statement P: The reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | is feasible only when th                                              | he value of $\Delta G$ is neg                                        | ative.                                                        |
|     | Statement $Q: \Delta G$ is negative $(a)$ P is true, but Q is false $(c)$ Both P and Q are true                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e only when $\Delta S$ is posit                                       | ive.  (b) P is false, but Q  (d) Both P and Q a                      |                                                               |
| 27. | The coordination number of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cobalt in [Co(NH <sub>2</sub> ) <sub>9</sub> Cl                       | ol is                                                                |                                                               |
|     | (a) 3 (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                       | (c) 5                                                                | (d) 4                                                         |
| 28. | black precipitate is obtained.<br>Addition of excess of aqueous<br>(a) deep blue precipitate of Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | On boiling the precip<br>s solution of ammonia<br>1 (OH) <sub>2</sub> | oitate with dil. HNO<br>to this solution give<br>(b) deep blue solut | ion of [Cu (NH <sub>3</sub> ) <sub>4</sub> ] <sup>2+</sup>    |
|     | (c) deep blue solution of Cu(N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                      | ion of Cu(OH) <sub>2</sub> .Cu(NO <sub>3</sub> ) <sub>2</sub> |
| 29. | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                     |                                                                      | creasing order of oxidising power.                            |
|     | Ion<br>Reduction potential E <sup>o</sup> /V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ClO_4^-$ IO<br>$E^0 = 1.19 \text{ V}$ E                              | o = 1.65  V                                                          |                                                               |
|     | (a) $ClO_4^- > IO_4^- > BrO_4^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       | $(b) IO_4^- > BrO_4^- >$                                             | ClO <sub>4</sub>                                              |
|     | (c) $BrO_4^- > IO_4^- > ClO_4^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       | $(d)$ BrO $_4^- > ClO_4^-$                                           | > IO-4                                                        |
| 30. | Arrange the following compo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ounds in increasing or                                                | der of their boiling p                                               | points.                                                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · ·                                                                   | CH <sub>3</sub>                                                      |                                                               |
|     | (i) $CH_3$ $CH$ $CH_2Br$ (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> Br    |                                                                      |                                                               |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       | ы                                                                    |                                                               |
|     | $(a)\ (ii) < (i) < (iii) \qquad \qquad (b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (i) < (ii) < (iii)                                                    | (c) (iii) < (i) < (ii)                                               | (d) (iii) < (ii) < (i)                                        |
| 31. | The position of Br in the com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pound in CH <sub>3</sub> CH=C                                         | HC(Br)(CH <sub>3</sub> ) <sub>2</sub> can b                          | e classified as                                               |
|     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Aryl                                                                  | (c) Vinyl                                                            | (d) Secondary                                                 |
| 32. | Which of the following comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ound will not react wi                                                | th ammonical AgNO                                                    | o <sub>3</sub> solution?                                      |
|     | (a) Acetylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       | (b) Acetone                                                          | -                                                             |
|     | (c) Acetaldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       | (d) Formic acid                                                      |                                                               |
| 33. | Natural rubber is a polymer of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of:                                                                   |                                                                      |                                                               |
|     | (a) butadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       | (b) ethylene                                                         |                                                               |
|     | (c) isoprene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                       | (d) chloroprene                                                      |                                                               |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |                                                                      |                                                               |

| 34. | Which of the following medicine is used for the tr                      | eatment of typhoid?                                                |
|-----|-------------------------------------------------------------------------|--------------------------------------------------------------------|
|     | (a) Quinine                                                             | (b) Chloramphenicol                                                |
|     | (c) Novalgin                                                            | (d) Aspirin                                                        |
| 35. | Glucose cannot be classified as:                                        |                                                                    |
|     | (a) carbohydrate (b) aldose                                             | (c) oligosaccharide (d) hexose                                     |
| 36. | Acetamide and ethylamine can be distinguished b                         | y reacting with                                                    |
|     | (a) Aqueous HCl and heat                                                | (b) Aqueous NaOH and heat                                          |
|     | (c) Acidified KMnO <sub>4</sub>                                         | (d) Bromine water                                                  |
| 37. | An ether is more volatile than an alcohol having th                     |                                                                    |
| ٠,, | (a) dipolar character of ethers.                                        | ie same morecular formalia 1 ms is also to                         |
|     | (b) alcohols having resonance structures.                               |                                                                    |
|     | (c) inter-molecular hydrogen bonding in ethers.                         |                                                                    |
|     | (d) inter-molecular hydrogen bonding in alcohols.                       |                                                                    |
| 38  | Which of the following is more basic than aniline?                      |                                                                    |
| 50. | (a) Benzylamine                                                         | (b) Diphenylamine                                                  |
|     | (c) Triphenylamine                                                      | (d) p-Nitroaniline                                                 |
| 90  |                                                                         |                                                                    |
| 39. | Aniline upon heating at 288 K with conc. HNO <sub>3</sub> at            | (b) o-nitroaniline                                                 |
|     | (a) o-and p-nitroaniline<br>(c) o-, m- and p-nitroaniline               | (d) p-nitroaniline                                                 |
| 40  | *                                                                       |                                                                    |
| 40. | Match the following enzymes given in Column I w                         | ith the reactions they catalyse given in Column II.                |
|     | Column I                                                                | Column II                                                          |
|     | A. Invertase                                                            | (i) Decomposition of urea into NH <sub>3</sub> and CO <sub>2</sub> |
|     | B. Maltase                                                              | (ii) Conversion of glucose into ethyl alcohol                      |
|     | C. Pepsin                                                               | (iii) Hydrolysis of maltose into glucose                           |
|     | D. Urease                                                               | (iv) Hydrolysis of cane sugar                                      |
|     | E. Zymase                                                               | (v) Hydrolysis of proteins into peptides                           |
|     | (a) A-(iv), B-(iii), C-(v), D-(ii), E-(i)                               | (b) A-(iii), B-(iv), C-(v), D-(i), E-(ii)                          |
|     | (c) A-(iv), B-(iii), C-(v), D-(i), E-(ii)                               | (d) A-(iv), B-(iii), C-(i), D-(v), E-(ii)                          |
| 41. | The weakest acid among the following is                                 |                                                                    |
|     | (a) CHCl <sub>2</sub> COOH                                              | (b) CH <sub>3</sub> COOH                                           |
|     | (c) CH <sub>2</sub> ClCOOH                                              | (d) CCl <sub>3</sub> COOH                                          |
| 42. | The main force(s) which stabilise the 2° and 3° str                     | uctures of proteins is/are                                         |
|     | (a) hydrogen bonds                                                      | (b) disulphide linkages                                            |
|     | (c) van der Waals                                                       | (d) all of these                                                   |
| 43. | When compound X is oxidised by acidified potassi                        | ium dichromate, compound Y is formed. Compound Y or                |
|     | reduction with LiAlH <sub>4</sub> gives X. (X) and(Y) respect           |                                                                    |
|     | (a) C <sub>2</sub> H <sub>5</sub> OH, CH <sub>3</sub> COOH              | (b) CH <sub>3</sub> COCH <sub>3</sub> , CH <sub>3</sub> COOH       |
|     | (c) C <sub>2</sub> H <sub>5</sub> OH, CH <sub>3</sub> COCH <sub>3</sub> | (d) CH <sub>3</sub> CHO, CH <sub>3</sub> COCH <sub>3</sub>         |
| 44. | The correct order of boiling points of for primary                      | (1°), secondary(2°) and tertiary(3°) alcohol is                    |
|     | (a) $1^{\circ} > 2^{\circ} > 3^{\circ}$                                 | (b) $3^{\circ} > 2^{\circ} > 1^{\circ}$                            |
|     | (c) $2^{\circ} > 1^{\circ} > 3^{\circ}$                                 | $(d) \ 2^{\circ} > 3^{\circ} > 1^{\circ}$                          |
| 45. | Calcium acetate when dry distilled gives                                |                                                                    |
|     | (a) formaldehye                                                         | (b) acetaldehyde                                                   |
|     | (c) acetone                                                             | (d) acetic anhydride                                               |
| 46. | n-propyl alcohol and isopropyl alcohol can be che                       | emically distinguished by                                          |
|     | (a) PCl <sub>5</sub>                                                    | (b) Reduction                                                      |
|     |                                                                         |                                                                    |
|     | (c) Oxidation with potassium dichromate                                 | (d) Ozonolysis                                                     |

#### 47. IUPAC name of m-cresol is

(a) 3-chlorophenol

(b) Benzene-1, 3-diol

(c) 3-methoxyphenol

(d) 3-methylphenol

#### 48. The role of phosphate in detergent powder is to

- (a) control pH level of the detergent water mixture.
- (b) remove Ca<sup>2+</sup> and Mg<sup>2+</sup> ions from the water that causes the hardness of water.
- (c) provide whiteness to the fabrics.
- (d) form solid detergent as phosphate less detergent are liquid in nature.

#### 49. Terylene is a condensation polymer of ethylene glycol and

(a) benzoic acid

(b) phthalic acid

(c) terephthalic acid

(d) salicylic acid

#### 50. Given below are two statements labelled as Assertion and Reason:

- Assertion (A): Aromatic acids do not undergo Friedel-Crafts reaction.
- **Reason** (R): —COOH group is a m-directing group.
- (a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
- (b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
- (c) Assertion is correct statement but reason is wrong statement.
- (d) Assertion is wrong statement but reason is correct statement.



### **Answers**

| PRACTICE PAPER – 2 |     |     |     |     |     |     |     |     |     |     |     |     |     |
|--------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1.                 | (d) | 2.  | (b) | 3.  | (b) | 4.  | (b) | 5.  | (b) | 6.  | (c) | 7.  | (b) |
| 8.                 | (a) | 9.  | (c) | 10. | (c) | 11. | (b) | 12. | (a) | 13. | (a) | 14. | (a) |
| 15.                | (c) | 16. | (b) | 17. | (b) | 18. | (b) | 19. | (b) | 20. | (b) | 21. | (b) |
| 22.                | (b) | 23. | (c) | 24. | (a) | 25. | (a) | 26. | (a) | 27. | (d) | 28. | (b) |
| 29.                | (c) | 30. | (c) | 31. | (a) | 32. | (b) | 33. | (c) | 34. | (b) | 35. | (c) |
| 36.                | (b) | 37. | (d) | 38. | (a) | 39. | (c) | 40. | (c) | 41. | (b) | 42. | (d) |
| 43.                | (a) | 44. | (a) | 45. | (c) | 46. | (c) | 47. | (d) | 48. | (b) | 49. | (c) |
| 50.                | (b) |     |     |     |     |     |     |     |     |     |     |     |     |

#### PRACTICE PAPER — 2

- 1. (d) Brownian movement is believed to be due to unequal bombardment of colloidal particles by the molecules of the dispersion medium.
- 2. (b) Combination of hydrogen and chlorine in presence of sunlight over the surface of water to yield hydrogen chloride is a zero order reaction as the rate of this reaction independent of concentration of  $H_2$  and  $Cl_2$  i.e., Rate = k.

$$H_2(g) + Cl_2(g) \xrightarrow{h\nu} 2HCl(g)$$

- $H_2(g) + Cl_2(g) \xrightarrow{h\nu} 2HCl(g)$ 3. (b)  $w = Zit = \frac{E}{F} \times i \times t = \frac{35.5}{96500} \times 10 \times 10 \times 60$ = 2.21g
- 4. (b) 1 molal aqueous solution means 1 mole of solute is dissolved in 1 kg of water
  - ⇒ Number of moles of solute = 1 mole Number of moles of water =  $\frac{1000}{18}$

= 55.55 moles

∴ Total no. of moles = 1 + 55.55=56.55 moles Now, we know

Mole fraction of solute

- Moles of solute Total moles in solution
- $\Rightarrow$  Mole fraction of solute =  $\frac{1}{56.55}$  = 0.0177
- 5. (b) The correct explanation of assertion is, there is a loss of ferrimagnetism of ferrimagnetic substances on heating changing them into paramagnetic due to realignment of the electron spins which get oriented in particular direction.
- 6. (c) Iodine is a non-polar molecular solid in which iodine molecules are held together by London force or dispersion force, this is soft and non conductor for electricity. Water is a hydrogen bonded molecular solid in which H and O are held together polar covalent bond and each water molecular held together by hydrogen bonding. Due to non-ionic nature, so, it is not an electrical conductor.
- 7. (b) According to Henry's law,  $p = K_H \chi$ , i.e., Henry's constant is inversely proportional to mole fraction of gas in solution. So, Henry's constant is greater for gases with lower solubility.
- 8. (a) The cathodic reaction is

$$Ag^{+} + e^{-} \longrightarrow Ag$$
1 mol
108 g
1 F = 96500 G

Therefore, 96500 coulombs of charge is needed to deposit one gram equivalent of Ag at cathode.

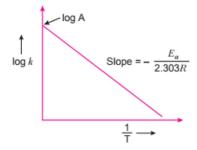
9. (c) The unit of rate constant for nth order reaction is  $k = (concentration)^{1-n} time^{-1}$ .

> Therefore, for second order reaction, the unit of k is(concentration)<sup>1-2</sup> time<sup>-1</sup> or mol<sup>-1</sup> litre sec<sup>-1</sup>.

- 10. (c) The greater stability of the lyophilic colloidal sols than the lyophobic sols is due to the fact that the former are highly hydrated in the solution.
- 11. (b) For tetrahedral arrangement, co-ordination number is 4 and radius ratio  $(r^+/r^-)$  is 0.225 - 0.414.
- 12. (a) Non-volatile solutes lowers the vapour pressure of a solvent. This results in decrease in the freezing point of a solution. As only at lower temperature, the vapour pressure of solution will be equal to that of the solute.
- 13. (a) The electroplating process uses an electric current to dissolve metal and deposit it onto the surface. The process works using four primary components:

Anode: The anode, or positively charged electrode, in the circuit is the metal that will form the plating.

Cathode: The cathode in the electroplating


circuit is the part that needs to be plated. It is also called the substrate. This part acts as the negatively charged electrode in the circuit.

Solution: The electrodepositing reaction takes place in an electrolytic solution. This solution contains one or more metal salts, usually including copper sulphate, to facilitate the flow of electricity.

Power source: Current is added to the circuit using a power source. This power source applies a current to the anode, introducing electricity to the system.

**14.** (a) A plot of  $\log k$  v/s  $\frac{1}{T}$  is a straight line, whose

slope is 
$$\frac{-E_a}{2.303R}$$
.

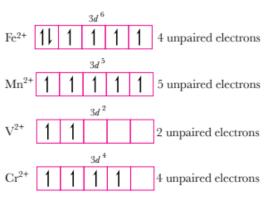


- **15.** (c) According to the Faraday's second law of electrolysis "when same quantity of electricity is passed through different electrolytes, the amount of different substance deposited at the electrodes is directly proportional to their equivalent mass."
- 16. (b)  $\lambda_{\rm m}^0({\rm AgCl}) = \lambda_{({\rm Ag}^+)}^0 + \lambda_{({\rm Cl}^-)}^0$ =  $(83 + 87) \, {\rm ohm}^{-1} \, {\rm cm}^2 \, {\rm mol}^{-1}$ =  $170 \, {\rm ohm}^{-1} \, {\rm cm}^2 \, {\rm mol}^{-1}$

Solubility of sparingly soluble salt can be calculated as

$$S = \frac{\kappa \times 1000}{\lambda_m^0} \text{ (mol/L)}$$

$$\therefore S = \frac{3.9 \times 10^{-6} \times 1000}{170} = 2.29 \times 10^{-5} \text{ mol/L}$$


$$AgCl(s) \longrightarrow Ag^+(aq) + Cl^-(aq)$$

$$K_{sn} = (S)^2 = (2.29 \times 10^{-5})^2 = 5.24 \times 10^{-4} \text{ mol}^2/L^2$$

- 17. (b) In the combustion zone (higher temperature range in the blast furnace) carbon dioxide reacts with carbon to produce carbon monoxide. It is the carbon monoxide which is the main reducing agent in the furnace.
- 18. (b) In acidic medium, the reaction is
  MnO<sub>4</sub><sup>-</sup> + 8H<sup>+</sup> + 5e<sup>-</sup> → Mn<sup>2+</sup> + 4H<sub>2</sub>O
  So, 5 electrons are involved.
- 19. (b) [Co(NH<sub>3</sub>)<sub>5</sub> SO<sub>4</sub>] Cl and [Co(NH<sub>3</sub>)<sub>5</sub> Cl] SO<sub>4</sub>. shows ionisation isomerism as the counter ion in a complex salt is itself a potential ligand and can displace a ligand which can then become the counter ion.
- **20.** (b) Among the given ions, [Fe(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup> has maximum paramagnetism. This is because, it contains maximum number of unpaired electrons, *i.e.*, 4.
- **21.** (b)  $PCl_3 + H_2O \longrightarrow POCl_3 + 2HCl;$  $POCl_3 + 3H_2O \longrightarrow H_3PO_4 + 3HCl$
- **22.** (b) F<sub>1</sub> NO<sub>2</sub> S<sub>4</sub> CH<sub>3</sub>

1-fluoro-4-methyl-2-nitrobenzene by lowest locant rule.

- **23.** (c)  $C + 2H_9SO_4 \longrightarrow 2SO_9(s) + CO_9(g) + 2H_9O$
- 24. (a) Paramagnetism can be identified by number of unpaired electrons. More number of unpaired electrons, more is magnetic strength.



Hence, Mn<sup>2+</sup> is more magnetic than Fe<sup>2+</sup> as it contains more number of unpaired electrons than Mn<sup>2+</sup>.

**25.** (a)  $X = [Ar]^{18} 3d^4$ 

Number of electrons = 18 + 4 = 22

As given, the element is in +3 oxidation state and therefore the number of electrons is 22 + 3 = 25.

So, the atomic number is 25.

- 26. (a) Statement 2 is false as ΔG = ΔH T. ΔS. As, it is not only depends on the sign of ΔS while on ΔH also.
- 27. (d) The coordination number of a metal ion in a complex may be defined as the total number of ligand donor atoms to which the metal ion is directly bonded. Here, cobalt is attached to 4 ligands and therefore its coordination number is 4.

28. (b) 
$$CuSO_4 + H_2S \longrightarrow CuS_{Black ppt} + H_2SO_4$$

$$CuS + 2HNO_3 \longrightarrow Cu(NO_3)_2 + H_2S_{Blue solution}$$

$$Cu(NO_3)_2 + 4NH_3 \longrightarrow [Cu(NH_3)_4]^{2+} + 2NO_3^-$$
Deep blue solution

**29.** (*c*) As by convention, positive sign is used to represent the reduction potential, this implies that greater is the reduction potential, more earily is the substance reduced or in other words stronger oxidising agent it is. Hence, the correct order is

$$BrO_4^- > IO_4^- > ClO_4^-$$
  
 $E^0 = 1.74 \text{ V} > E^0 = 9.65 \text{ V} > E^0 = 1.19 \text{ V}$ 

- (c) With increase in surface area boiling point increases.
- 31. (a) In, Allylic halides the halogen is linked to sp<sup>3</sup>-hybridised carbon atom which is next to a carbon-carbon double bond i.e., to an allylic carbon.

- 32. (b) Acetone being a ketone does not react with ammonical AgNO<sub>3</sub>.
- 33. (c) Natural rubber may be considered as a linear polymer of isoprene (2-methyl-1, 3-butadiene) and is also called as cis - 1, 4 - polyisoprene.
- 34. (b) Chloramphenicol has been the drug of choice for typhoid fever for more than 40 years in regions of the world where Salmonella typhi remains susceptible to the drug.
- 35. (c) Glucose is a monosaccharide.
- 36. (b) Acetamide evolves NH<sub>3</sub> while ethyalmine does not after reacting with aq.NaOH.

$$\label{eq:ch3} {\rm CH_3CONH_2 + NaOH} \xrightarrow{\Delta} {\rm CH_3COONa + NH_3 \uparrow}_{{\rm Ammonia}}$$

$$CH_3CH_2NH_2 + NaOH \xrightarrow{\Delta} No reaction$$

- 37. (d) An ether is more volatile than an alcohol having the same molecular formula. This is due to intermolecular hydrogen bonding in alcohols. In alcohols, H atom is attached to strongly electronegative O atom of other molecule. Therefore, they exist as an associated molecule due to hydrogen bonding.
- 38. (a)  $\lim_{n \to \infty} \frac{CH_2NH_2}{CH_2NH_2}$  is more basic than  $\lim_{n \to \infty} \frac{NH_2}{CH_2NH_2}$  because the

benzene ring does not exert any conjugation effect in benzyl amine due to which delocalisation of electron does not occur and electron pair on N get easily protonated.

**39.** (c)

$$\begin{array}{c|c} NH_3 & NH_2 & NH_2 & NH_2 \\ \hline & conc. \ HNO_3, \\ \hline & conc. \ H_2SO_4, \\ Aniline & NO_2 & m-nitroaniline \\ \hline & p-nitroaniline \\ \hline & (51\%) & (47\%) & (2\%) \\ \hline \end{array}$$

41. (b) Acidity increases with increasing number of electron-withdrawing substituents on the α-carbon. Therefore, the correct increasing order of the given compounds is

Acetic acid < Chloroacetic acid < Dichloroacetic acid (Cl<sub>2</sub>CH—COOH) < Trichloroacetic acid (Cl<sub>3</sub>C—COOH).

43. (a)
$$C_{2}H_{5}OH + K_{2}Cr_{2}O_{7} \xrightarrow{H_{2}SO_{4}} CH_{3}COOH$$
Ethanol
(X)
$$CH_{3}COOH + LiAlH_{4} \xrightarrow{H^{+}} CH_{3}CH_{2}OH$$
Ethanol
(X)
$$CH_{3}COOH + LiAlH_{4} \xrightarrow{H^{+}} CH_{3}CH_{2}OH$$
Ethanol
(X)

- **44.** (*a*) Amongst isomeric alcohols, the boiling point decrease with branching due to corresponding decrease in surface area.
- 45. (c) Calcium acetate when dry distilled gives acetone. The reaction is as follows:

$$(CH_3COO)Ca \xrightarrow{Dry \text{ distillation}} CH_3COCH_3 + CaCO_3$$
Calcium acetate

Acetone

- 46. (c) n-propyl alcohol oxidize with acidified K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> to give propanoic acid while isopropyl alcohol oxidizes with acidified K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> to give propanone.
- **47.** (d) The structure of m-cresol is

So, the IUPAC name is 3-methylphenol.

- 48. (b) The advantage of using phosphates in a consumer laundry detergent or dishwashing detergent is that they acts as a water softner by remaining Ca<sup>2+</sup> and Mg<sup>2+</sup> ions from hard water by forming stable soluble complex.
- **49.** (c)

$$n \text{HO-CH}_2\text{-CH}_2\text{-O-H+} n \text{H-O-C} \\ \text{Ethylene glycol} \\ \text{Terephthalic acid} \\ \frac{420\text{-}460 \text{ K}}{-(2_n-1)\text{H}_2\text{O}} + \text{O-CH}_2\text{-CH}_2\text{-O-C} \\ \text{-C} \\ \frac{1}{n} \\ \text{CH}_2\text{-CH}_2\text{-O-C} \\ \text{-C} \\ \text{-C}$$

50. (b) The correct explanation, is due to deactivation of the ring by the —COOH group; aromatic acids do not undergo Friedal craft reactions.