Statement	Figure	
Equal chords of a circle subtend equal angles at the centre.	$ \begin{array}{ccc} A & O & \text{If } AB = CD \\ & \text{then} & \\ & \angle AOB = \angle COD \end{array} $	All the four vertices
If the angles subtended by the chords of a circle at the centre are equal, then the chords are equal.	$ \begin{array}{ccc} A & & & \angle AOB = \angle COD \\ A & & & & \\ B & C & & & \\ \end{array} $ then $AB = CD$	
The perpendicular from the centre of a circle to a chord bisects the chord.	If OM ⊥ AB then AM = MB	A circle is the locus of a point equidistant from a given point called centre of the circle Radius Radius Fixed point Centre Radius Centre Radius Radius
The line drawn through the centre of a circle to bisect a chord is perpendicular to the chord.	If AM = MB then OM ⊥ AB	a point equidistant from a given point called centre of the circle Radius (r)
5. Equal chords of a circle are equidistant from the centre.	$ \begin{array}{ccc} A & C & \text{If } AB = CD \\ \text{then} & OL = OM \end{array} $	Circle
Chords equidistant from the centre of a circle are equal in length.	$ \begin{array}{ccc} A & C & \text{If OL = OM} \\ C & \text{then AB = CD} \end{array} $	Theorems Diameter (D) Theorems Diameter (D) Theorems Diameter (D)
7. The angle subtended by an arc at the centre is double the angle subtended by it at any point on the circumference of the circle.	$ \begin{array}{c} A \\ \angle POQ = 2 \angle PAQ \end{array} $	Major of the circle AB = Diameter
Angles in the same segment of a circle are equal.	$P Q \angle RPS = \angle RQS$ $R S$	Major arc Exterior
9. The sum of either pair of opposite angles of a cyclic quadrilateral is 180°.	$P = \begin{cases} S & \angle P + \angle R = 180^{\circ} \\ \angle Q + \angle S = 180^{\circ} \end{cases}$	Minor segment P S Minor arc
10. If the sum of a pair of opposite angles of a quadrilateral is 180°, then the quadrilateral is cyclic.	P S If $\angle P + \angle R = 180^\circ$ $\angle Q + \angle S = 180^\circ$ then PQRS is cyclic quadrilateral	Trace the Mind Map → First Level → Second Level → Third Level
40		This bever