Chapter 1. Relations and Functions

Conceptof Relation and Functions

1 Mark Questions

1. If $R = \{(a, a^3) : a \text{ is a prime number less than } 5\}$ be a relation. Find the range of R.

Foreign 2014

(1)

Given, $R = \{(a, a^3): a \text{ is a prime number less}$ than 5}

We know that, 2 and 3 are the prime numbers less than 5.

:. a can take values 2 and 3. Then, $R = \{(2,2^3), (3,3^3)\} = \{(2,8), (3,27)\}$

Hence, the range of *R* is {8,27}.

2. If
$$f: \{1,3,4\} \rightarrow \{1,2,5\}$$
 and $g: \{1,2,5\} \rightarrow \{1,3\}$
given by $f = \{(1,2), (3,5), (4,1)\}$ and
 $g = \{(1,3), (2,3), (5,1)\}$. Write down gof.
All India 2014C

The functions $f: \{1,3,4\} \rightarrow \{1,2,5\}$ and $g: \{1,2,5\} \rightarrow \{1,3\}$ are defined as $f = \{(1,2), (3,5), (4,1)\}$ and $g = \{(1,3), (2,3), (5,1)\}$ \therefore gof (1) = g (f(1)\} = g(2) = 3 [$\because f(1) = 2$ and g(2) = 3] gof(3) = g(f(3)) = g(5) = 1[$\because f(3) = 5$ and g(5) = 1] gof (4) = g(f(4)) = g(1) = 3[$\because f(4) = 1$ and g(1) = 3] \therefore gof = $\{(1,3), (3,1), (4, 3)\}$ (1)

3. Let R is the equivalence relation in the set $A = \{0,1,2,3,4,5\}$ given by $R = \{(a,b): 2 \text{ divides}$ $(a - b)\}$. Write the equivalence class [0]. Delhi 2014C Given, $R = \{(a, b): 2 \text{ divides } (a-b)\}$ Here, all even integers are related to zero, i.e. (0, 2)(0, 4).

Hence, equivalence class of $[0] = \{2, 4\}$ (1)

4. If $R = \{(x, y) : x + 2y = 8\}$ is a relation on N, then write the range of R. All India 2014

Given, the relation R is defined on the set of natural numbers, i.e. N as

 $R = \{(x, y) : x + 2y = 8\}$

To find the range of R, x + 2y = 8 can be rewritten as $y = \frac{8 - x}{2}$. On putting x = 2, we get $y = \frac{8 - 2}{2} = 3$ On putting x = 4, we get $y = \frac{8 - 4}{2} = 2$ On putting x = 6, we get $y = \frac{8 - 6}{2} = 1$ As, $x, y \in N$, then $R = \{(2, 3), (4, 2), (6, 1)\}$ Hence, range of relation is $\{3, 2, 1\}$. (1)

If A = {1, 2, 3}, B = {4, 5, 6, 7} and
 f = {(1, 4), (2, 5), (3, 6)} is a function from A to
 B. State whether f is one-one or not.
 All India 2011

Given, $A = \{1, 2, 3\}$ and $B = \{4, 5, 6, 7\}$ Now, $f : A \rightarrow B$ is defined as $f = \{(1, 4), (2, 5), (3, 6)\}$ Therefore, f(1) = 4, f(2) = 5 and f(3) = 6. It is seen that the images of distinct elements of A under f are distinct. So, f is one-one. (1)

6. If $f : R \rightarrow R$ is defined by f(x) = 3x + 2, then define f[f(x)]. Foreign 2011; Delhi 2010

Given,
$$f(x) = 3x + 2$$

Now, $f[f(x)] = f(3x + 2) = 3(3x + 2) + 2$
 $= 9x + 6 + 2 = 9x + 8$

7. Write fog, if $f : R \rightarrow R$ and $g : R \rightarrow R$ are given by f(x) = |x| and g(x) = |5x - 2|. Foreign 2011

Given,
$$f(x) = |x|, g(x) = |5x - 2|$$

Now, fog $(x) = f[g(x)] = f\{|5x - 2|\}$
 $= ||5x - 2|| = |5x - 2|$

8. Write fog, if $f : R \rightarrow R$ and $g : R \rightarrow R$ are given by $f(x) = 8x^3$ and $g(x) = x^{1/3}$. Foreign 2011

Given, $f(x) = 8x^3$ and $g(x) = x^{1/3}$ Now, fog $(x) = f[g(x)] = f(x^{1/3}) = 8(x^{1/3})^3 = 8x(1)$

9. State the reason for the relation R in the set $\{1, 2, 3\}$ given by $R = \{(1, 2), (2, 1)\}$ not to be transitive. Delhi 2011

We know that, for a relation to be transitive $(x, y) \in R$ and $(y, z) \in R$

 $\Rightarrow (x, z) \in R$ Here, $(1, 2) \in R$ and $(2, 1) \in R$ but $(1, 1) \notin R$. Hence, *R* is not transitive. (1)

10. What is the range of the function

$$f(x) = \frac{|x-1|}{|x-1|}, x \neq 1$$
?
Delhi 2010; HOTS

Given, function is $f(x) = \frac{|x-1|}{|x-1|}, x \neq 1$

The above function may be written as

$$f(x) = \begin{cases} \frac{x-1}{x-1}, & \text{if } x > 1\\ -\frac{(x-1)}{x-1}, & \text{if } x < 1 \end{cases}$$
$$\Rightarrow \qquad f(x) = \begin{cases} 1, & \text{if } x > 1\\ -1, & \text{if } x < 1 \end{cases}$$

 \therefore Range of f(x) is the set $\{-1, 1\}$.

11. If $f : R \rightarrow R$ is defined by $f(x) = (3 - x^3)^{1/3}$, then find fof(x). All India 2010

Given, function is
$$f: R \to R$$
 such that
 $f(x) = (3 - x^3)^{1/3}$.
Now, fof $(x) = f[f(x)] = f[(3 - x^3)^{1/3}]$
 $= [3 - \{(3 - x^3)^{1/3}\}^3]^{1/3}$
 $= [3 - (3 - x^3)]^{1/3} = (x^3)^{1/3}$
 $= x$ (1)

12. If f is an invertible function, defined as $f(x) = \frac{3x - 4}{5}$, then write $f^{-1}(x)$. Foreign 2010

Given,
$$f(x) = \frac{3x-4}{5}$$
 and is invertible.
Let $y = \frac{3x-4}{5} \implies 5y = 3x-4$
 $\Rightarrow \quad 3x = 5y+4 \implies x = \frac{5y+4}{3}$
 $\therefore \quad f^{-1}(y) = \frac{5y+4}{3} \implies f^{-1}(x) = \frac{5x+4}{3}$

13. If
$$f : R \rightarrow R$$
 and $g : R \rightarrow R$ are given by
 $f(x) = \sin x$ and $g(x) = 5x^2$, then find $gof(x)$.
Foreign 2010

Given,
$$f(x) = \sin x$$
 and $g(x) = 5x^2$.
 $\therefore \qquad gof(x) = g[f(x)] = g(\sin x)$
 $= 5(\sin x)^2 = 5 \sin^2 x$

14. If $f(x) = 27x^3$ and $g(x) = x^{1/3}$, then find gof(x). Foreign 2010

Given,
$$f(x) = 27x^3$$
 and $g(x) = x^{1/3}$.
 \therefore $gof(x) = g[f(x)] = g(27x^3)$
 $= (27x^3)^{1/3} = (27)^{1/3} \cdot (x^3)^{1/3}$
 $= (3^3)^{1/3} \cdot (x^3)^{1/3} = 3x$
 \therefore $gof(x) = 3x$

15. If the function $f : R \rightarrow R$, defined by f(x) = 3x - 4 is invertible, then find f^{-1} . All India 2010C

Given, function is f(x) = 3x - 4 and is invertible.

 $y = 3x - 4 \implies 3x = y + 4$ Let $x = \frac{y+4}{2}$ \Rightarrow $f^{-1}(y) = \frac{y+4}{3} \implies f^{-1}(x) = \frac{x+4}{3}$ (1) *.*.

16. If $f : R \rightarrow R$ defined by $f(x) = \frac{3x+5}{2}$ is an invertible function, then find $f^{-1}(x)$

All India 2009C

Do same as Que 12.
$$\left[Ans. \ \frac{2x-5}{3} \right]$$

-

17. State whether the function $f : N \rightarrow N$ given by f(x) = 5x is injective, surjective or both. All India 2008C; HOTS

For injective function, it should be one-one and for surjective function, it should be onto.

Given function is f(x) = 5x. As, $f(x_1) = f(x_2) \Rightarrow 5x_1 = 5x_2$ $\Rightarrow \quad x_1 = x_2, \forall x_1, x_2 \in N$ So, f(x) is an injective function. (1/2) Also, range of f(n) = 5n, $n \in N$.

But codomain = N \therefore Range \neq Codomain $\therefore f(x)$ is not surjective. Hence, the given function is injective.

18. If $f : R \rightarrow R$ defined by $f(x) = \frac{2x - 7}{4}$ is an invertible function, then find $f^{-1}(x)$. Delhi 2008C

Do same as Que. 12. $\begin{bmatrix} Ans. & \frac{4x+7}{2} \end{bmatrix}$

4 Marks Questions

19. If $f: W \rightarrow W$, is defined as f(x) = x - 1, if x is odd and f(x) = x + 1, if x is even. Show that f is invertible. Find the inverse of f, where W is the set of all whole numbers. Foreign 2014 $f: W \rightarrow W$ is defined as

$$f(x) = \begin{cases} x - 1, & \text{if } x \text{ is odd} \\ x + 1, & \text{if } x \text{ is even} \end{cases}$$

First, we need to show that f is one-one. Let $f(x_1) = f(x_2)$ **Case I** When x_1 and x_2 are odd. $f(x_1) = f(x_2) \implies x_1 - 1 = x_2 - 1$ Then, $x_1 = x_2, \forall x_1, x_2 \in W$ (1) \Rightarrow **Case II** When x_1 and x_2 are even. $f(x_1) = f(x_2)$ Then, $x_1 + 1 = x_2 + 1$ \Rightarrow $x_1 = x_2, \forall x_1, x_2 \in W$ \Rightarrow So, from case I and II, we observe that $f(x_1) = f(x_2) \Longrightarrow x_1 = x_2 \in W$ Hence, f(x) is a one-one function. (1)Now, we need to show that f is onto. Any odd number 2y + 1, in the codomain W, is the image of 2y in the domain W. Also, any even number 2y in the codomain W, is the image of 2y - 1 in the domain W. Thus, every element in W (codomain) has its image in W (domain). So, f is onto. Therefore, f is bijection. So, it is (1)invertible. Let $x, y \in W$, such that

$$\Rightarrow \qquad x - 1 = y, \text{ if } x \text{ is odd} \\ x + 1 = y, \text{ if } x \text{ is even} \\ \Rightarrow \qquad x = \begin{cases} y + 1, \text{ if } y \text{ is even} \\ y - 1, \text{ if } y \text{ is odd} \end{cases}$$
Clearly, $f = f^{-1}$
(1)

(1)

- **20.** If $f,g: R \to R$ are two functions defined as f(x) = |x| + x and g(x) = |x| - x, $\forall x \in R$, Then, find fog and gof. All India 2014C Given, f(x) = |x| + x and g(x) = |x| - x for all $x \in R$. $\Rightarrow f(x) = \begin{cases} 2x, x > 0 \\ 0, x < 0 \end{cases} \text{ and } g(x) = \begin{cases} 0, x > 0 \\ -2x, x < 0 \end{cases}$ (1) Thus, for x > 0, gof(x) = g(2x) = 0and for x < 0, gof(x) = g(0) = 0 $gof(x) = 0, \forall x \in R$ (1¹/₂) \Rightarrow and for x > 0, fog (x) = f(0) = 0x < 0, fog (x) = f(-2x) = - < for $fog(x) = \begin{cases} 0, & x > 0 \\ -4x, & x < 0 \end{cases}$ (11/2) \Rightarrow
- If R is a relation defined on the set of natural numbers N as follows:

 $R = \{(x, y), x \in N, Y \in N \text{ and } 2x + y = 24\}$, then find the domain and range of the relation R. Also, find if R is an equivalence relation or not. **Delhi 2014C**

Given $R = \{(x, y), x \in N, y \in N \text{ and } 2x + y = 24\}$ When, $x = 1 \Rightarrow y = 22; x = 2 \Rightarrow y = 20$ $x = 3 \Rightarrow y = 18; x = 4 \Rightarrow y = 16$ $x = 5 \Rightarrow y = 14; x = 6 \Rightarrow = 12$ $x = 7 \Rightarrow y = 10; x = 8 \Rightarrow y = 8$ $x = 9 \Rightarrow y = 6; x = 10 \Rightarrow y = 4$ $x = 11 \Rightarrow y = 2$

So, domain of $R = \{1,2,3, ..., 11\}$. and range of $R = \{2,4,6,8,10,12,14,16,18,20,22\}$ and $R = \{(1,22)(2,20)(3,18)(4,16)(5,14)(6,12)$ $(7,10)(8,8)(9,6)(10,4)(11,2)\}$ (1)

Reflexive

Since, for $a \in$ domain of R, $(a, a) \notin R$.Hence, R is not reflexive.**Symmetric**Since, $(1,22) \in R$ but $(22,1) \notin R$.Hence, R is not symmetric(1)

Transitive

There are no elements such that $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R$. Hence, R is not transitive and so, it is not an equivalence relation. (1)

22. If
$$A = R - \{3\}$$
 and $B = R - \{1\}$. Consider the function $f : A \rightarrow B$ defined by $f(x) = \frac{x-2}{x-3}$ for all $x \in A$. Then show that f is bijective. Find $f^{-1}(x)$. Delhi 2014C; Delhi 2012

Given, function is $f : A \rightarrow B$, where $A = R - \{3\}$ and $B = R - \{1\}$, such that $f(x) = \frac{x-2}{x-3}$.

One-one Let $f(x_1) = f(x_2), \forall x_1, x_2 \in A$ $\frac{x_1 - 2}{x_1 - 3} = \frac{x_2 - 2}{x_2 - 3}$ \Rightarrow $(x_1 - 2) (x_2 - 3) = (x_2 - 2) (x_1 - 3)$ \Rightarrow $\Rightarrow x_1x_2 - 3x_1 - 2x_2 + 6 = x_1x_2 - 3x_2 - 2x_1 + 6$ $-3x_1 - 2x_2 = -3x_2 - 2x_1$ \Rightarrow \Rightarrow -3 (x₁ - x₂) + 2 (x₁ - x₂) = 0 $-(x_1 - x_2) = 0$ \Rightarrow $x_1 - x_2 = 0 \implies x_1 = x_2$ = $\therefore f(x_1) = f(x_2) \Longrightarrow x_1 = x_2, \forall x_1, x_2 \in A.$ So, f(x) is $(1\frac{1}{2})$ a one-one function.

Onto To show f(x) is onto, we show that range of f(x) and its codomain are same.

Now, let $y = \frac{x-2}{x-3} \implies xy - 3y = x - 2$ $xy - x = 3y - 2 \implies x(y - 1) = 3y - 2$ \Rightarrow $x = \frac{3y - 2}{y - 1}$...(i) \Rightarrow Since, $x \in R - \{3\}$, $\forall y \in R - \{1\}$, so range of $f(x) = R - \{1\}.$ Also, given codomain of $f(x) = R - \{1\}$: Range = Codomain Hence, f(x) is an onto function. $(1\frac{1}{2})$ Therefore, f(x) is an bijective function. From Eq. (i), we get $f^{-1}(y) = \frac{3y-2}{y-1} \implies f^{-1}(x) = \frac{3x-2}{x-1}$ which is the inverse function of f(x). (1)**23.** If $A = \{1, 2, 3, \dots, 9\}$ and R be the relation in $A \times A$ defined by (a, b) R (c, d). If a + d = b + cfor (a, b), (c, d) in $A \times A$. Prove that R is an equivalence relation, Also, obtain the equivalence class [(2, 5)]. Delhi 2014 Given, relation R defined by (a, b) R(c, d), if a + d = b + c for (a, b), (c, d) in $A \times A$. Here, $A = \{1, 2, 3, \dots, 9\}$ We observe the following properties on R: **Reflexive** Let (1, 2) be an element of $A \times A$. Then, $(1, 2) \in A \times A \implies 1, 2 \in A$ 1+2=2+1 [: addition is commutative] \Rightarrow (1, 2) R (1, 2) \Rightarrow Thus, (1, 2) R (1, 2), \forall (1, 2) $\in A \times A$ So, *R* is reflexive on $A \times A$. (1)

Symmetric Let $(1, 2), (3, 4) \in A \times A$ such that (1, 2) R (3, 4)1+4=2+3Then, 3+2=4+1 [:: addition \Rightarrow is commutative] (3, 4) R (1, 2) \Rightarrow Thus, (1, 2) R (3, 4) \Rightarrow (3, 4) R (1, 2), \forall (1, 2), (3, 4) \in A \times A So, R is symmetric on $A \times A$. (1)**Transitive** Let $(1, 2), (3, 4), (5, 6) \in A \times A$ such that (1, 2) R (3, 4) and (3, 4) R (5, 6). Then, (1, 2) R (3, 4) 1+4=2+3 \Rightarrow (3, 4) R (5, 6)3+6=4+5 \Rightarrow (1 + 4) + 3 + 6 = (2 + 3) + (4 + 5) \Rightarrow $1+6=2+5 \implies (1,2) R(5,6)$ \Rightarrow Thus, (1, 2) R (3, 4) and (3, 4) R (5, 6) \Rightarrow (1, 2) R (5, 6), \forall (1, 2), (3, 4), (5, 6) $\in A \times A$

So, *R* is transitive on $A \times A$. (1) Hence, it is an equivalence relation on $A \times A$. Equivalence class containing element *x* of *A* is given by $[x]_R = \{y:(x, y) \in R\}$ Hence, equivalence class $[(2, 5)] = \{(1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 9)\}$ 24. If the function $f: R \longrightarrow R$ is given by $f(x) = x^2 + 2$ and $g: R \rightarrow R$ is given by $g(x) = \frac{x}{x-1}$; $x \neq 1$, then find fog and gof and hence, find fog (2) and gof (-3). All India 2014

We have
$$f(x) = x^2 + 2$$
 and $g(x) = \frac{x}{x - 1}$; $x \neq 1$

Since, range f = domain gand range g = domain f \therefore fog and gof exist. For any $x \in R$, we have (fog)(x) = f[g(x)] $= f\left[\frac{x}{x-1}\right] = \left(\frac{x}{x-1}\right)^2 + 2$ $= \frac{x^2 + 2(x-1)^2}{(x-1)^2} = \frac{x^2 + 2(x^2 + 1 - 2x)}{(x-1)^2}$ $= \frac{3x^2 + 2 - 4x}{(x-1)^2}$

∴ fog : R → R is defined by
(fog)(x) =
$$\frac{3x^2 - 4x + 2}{(x - 1)^2}$$
, $\forall x \in R$...(i) (1)
For any $x \in R$, we have
(gof)(x) = g[f(x)]
= $g[x^2 + 2] = \frac{x^2 + 2}{x^2 + 2 - 1} = \frac{x^2 + 2}{x^2 + 1}$ (1)
∴ gof : R → R is defined by
(gof) (x) = $\frac{x^2 + 2}{x^2 + 1}$, $\forall x \in R$...(ii)
On putting $x = 2$ in Eq. (i), we get
 $fog(2) = \frac{3 \times (2)^2 - 4(2) + 2}{(2 - 1)^2} = \frac{3 \times 4 - 8 + 2}{(1)^2}$ (1)
= $12 - 6 = 6$
On putting $x = -3$ in Eq. (ii), we get
(gof)(-3) = $\frac{(-3)^2 + 2}{(-3)^2 + 1}$

 $=\frac{9+2}{9+1}=\frac{11}{10}$ (1)

25. If $A = R - \{2\}$ and $B = R - \{1\}$. If $f : A \to B$ is a function defined by $f(x) = \frac{x-1}{x-2}$, then show that f is one-one and onto. Hence, find f^{-1} . Delhi 2013C Given, $f(x) = \frac{x-1}{x-2}$ and $f: A \to B$, where $A = R - \{2\}$ and $B = R - \{1\}$. **One-one** Let $f(x_1) = f(x_2), \forall x_1, x_2 \in A$ $\frac{x_1 - 1}{x_1 - 2} = \frac{x_2 - 1}{x_2 - 2}$ (1/2) \Rightarrow $(x_1 - 1) (x_2 - 2) = (x_2 - 1) (x_1 - 2)$ \Rightarrow $\Rightarrow x_1x_2 - 2x_1 - x_2 + 2 = x_1x_2 - 2x_2 - x_1 + 2$ $\Rightarrow -x_1 = -x_2 \Rightarrow x_1 = x_2$ $\therefore \quad f(x_1) = f(x_2) \quad \Rightarrow \quad x_1 = x_2, \forall \ x_1, \ x_2 \in A$ (1)Therefore, f(x) is one-one. $y = \frac{x-1}{x-2} \implies xy-2y = x-1$ Onto Let x(y-1) = 2y-1 $x = \frac{2y-1}{y-1}$ (1/2) \Rightarrow ...(i) \Rightarrow Since, $x \in R - \{2\}, \forall y \in R - \{1\}$ So, range of $f(x) = R - \{1\}$ ∴ Range = Codomain (1) Therefore, f(x) is onto. Also, from Eq. (i), we get $f^{-1}(y) = \frac{2y-1}{y-1}$ $[:: x = f^{-1}(y)]$ $f^{-1}(x) = \frac{2x-1}{x-1}$ (1) \Rightarrow

26. Show that the function *f* in

A =
$$R - \left\{\frac{2}{3}\right\}$$
 defined as $f(x) = \frac{4x + 3}{6x - 4}$ is
one-one and onto. Hence, find f^{-1} . **Delhi 2013**

Given, $f(x) = \frac{4x+3}{6x-4}$ $x_1, x_2 \in A = R - \left\{\frac{2}{3}\right\}; x_1 \neq x_2$ Let **One-one** Consider, $f(x_1) = f(x_2)$ $\frac{4x_1+3}{6x_1-4} = \frac{4x_2+3}{6x_2-4}$... $\Rightarrow (4x_1 + 3) (6x_2 - 4) = (4x_2 + 3) (6x_1 - 4)$ $\Rightarrow 24x_1x_2 - 16x_1 + 18x_2 - 12$ $= 24x_1x_2 - 16x_2 + 18x_1 - 12$ $-34x_1 = -34x_2 \implies x_1 = x_2$ \Rightarrow $(1\frac{1}{2})$ So, f is one-one. **Onto** Let $y = \frac{4x+3}{6x-4} \Rightarrow 6xy - 4y = 4x+3$ \Rightarrow (6y - 4) x = 3 + 4y $x = \frac{3+4y}{6y-4}$ and $y \neq \frac{4}{6}$, i.e. $y \neq \frac{2}{3}$ ⇒ $y \in R - \left\{\frac{2}{3}\right\}$

Thus, f is onto.

(1½)

Since, f is one-one and onto.

$$\therefore x = f^{-1}(y) = \frac{3+4y}{6y-4} \Longrightarrow f^{-1}(x) = \frac{3+4x}{6x-4}$$
(1)

27. Consider $f : R_+ \rightarrow [4, \infty)$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse f^{-1} of f given by $f^{-1}(y) = \sqrt{y - 4}$, where R_+ is the set of all non-negative real numbers. All India 2013; Foreign 2011; HOTS

To show that f(x) is an invertible function, we will show that f is both one-one and onto function

Here, function $f: R_+ \rightarrow [4, \infty)$ is given by $f(x) = x^2 + 4$. Let $x, y \in R_+$, such that f(x) = f(y). $x^2 + 4 = y^2 + 4$ \Rightarrow $x^2 = y^2 \implies x = y$ ⇒ . [∵ we take only positive sign as $x, y \in R_+$] Therefore, f is a one-one function. (1) For $y \in [4, \infty)$, $y = x^2 + 4$ let $x^2 = y - 4 \ge 0$ $[:: y \ge 4]$ \Rightarrow $x = \sqrt{y - 4} \ge 0$ \Rightarrow [we take positive sign, as $x \in R_+$]

Therefore, for any $y \in R_+$, there exists $x = \sqrt{y - 4} \in R_+$, such that $f(y) = f(\sqrt{y-4}) = (\sqrt{y-4})^2 + 4$

$$= y - 4 + 4 = y$$

f is onto. Thus, f is one-one ar

٦d Therefore, onto and therefore, f^{-1} exists. (1)Let us define $g : [4, \infty) \to R_+$, by $g(y) = \sqrt{y - 4}$. Now, $gof(x) = g(f(x)) = g(x^2 + 4)$ $=\sqrt{(x^2+4)-4}=\sqrt{x^2}=x$

and

$$fog(y) = f[g(y)] = f(\sqrt{y-4})$$
$$= (\sqrt{y-4})^2 + 4$$
$$= (y-4) + 4 = y$$
(1)

Therefore, $gof = I_{R_+}$ and $fog = I_{[4,\infty)}$ $f^{-1}(y) = g(y) = \sqrt{y - 4}$ (1) \Rightarrow

NOTE Above fact significantly helps in proving a function f to be invertible by showing that f is one-one and onto, specially when the actual inverse of fis not to be determined

Inverse of J is not to be determined.

28. Show that $f: N \to N$, given by [x + 1] if y is odd

$$f(x) = \begin{cases} x + 1, & \text{if } x \text{ is even} \\ x - 1, & \text{if } x \text{ is even} \end{cases}$$

is bijective (both one-one and onto).

All India 2012

Given function is $f : N \rightarrow N$ such that

$$f(x) = \begin{cases} x + 1, & \text{if } x \text{ is odd} \\ x - 1, & \text{if } x \text{ is even} \end{cases}$$

One-one From the given function, we observe that

Case I When x is odd.

Let
$$f(x_1) = f(x_2)$$

 $\Rightarrow \quad x_1 + 1 = x_2 + 1 \Rightarrow x_1 = x_2$
 $\therefore \quad f(x_1) = f(x_2)$
 $\Rightarrow \quad x_1 = x_2, \forall x_1, x_2 \in N.$
So $f(x)$ is one-one (1)

50, T(x) is one-one.

(I)

(1)

Case II When x is even.

Let $f(x_1) = f(x_2)$ $x_1 - 1 = x_2 - 1 \implies x_1 = x_2$ \Rightarrow $f(x_1) = f(x_2)$..

 $x_1 = x_2, \forall x_1, x_2 \in N.$ \Rightarrow

So, f(x) is one-one.

Hence, from case I and case II, we observe that, $f(x_1) = f(x_2)$

 $x_1 = x_2, \forall x_1, x_2 \in N$ \Rightarrow

Therefore, f(x) is a one-one.

Onto To show f(x) is onto, we show that its range and codomain are same.

From the definition of given function, we observe that

> f(1) = 1 + 1 = 2(n) 2

$$I(2) = 2 - 1 = 1$$

$$f(3) = 3 + 1 = 4$$

$$f(4) = 4 - 1 = 3 \text{ and so on.} (1)$$
So, we get set of natural numbers as the set of values of $f(x)$.

$$\Rightarrow \qquad \text{Range of } f(x) = N$$
Also, given that codomain = N

$$\left[\because f: N \rightarrow N \\ \text{domain} \quad \text{codomain} \right]$$
Thus, range = codomain
Thus, range = codomain
Therefore, $f(x)$ is an onto function.
Hence, the function $f(x)$ is bijective. (1)
29. If $f: R \rightarrow R$ is defined as $f(x) = 10x + 7$. Find
the function $g: R \rightarrow R$, such that
 $gof = fog = I_R$. All India 2011
Given, $f(x) = 10x + 7$
Let $y = 10x + 7 \Rightarrow 10x = y - 7$
 $\Rightarrow \qquad x = \frac{y - 7}{10}$ (1)

Now, let
$$g(x) = \frac{x-7}{10}$$

Then, $gof(x)$ may be written as
 $gof(x) = g[f(x)] = g(10x + 7)$
 $= \frac{10x + 7 - 7}{10} = x$ (1)

Also, fog(x) may be written as

 \Rightarrow

$$fog(x) = f[g(x)] = f\left(\frac{x-7}{10}\right) = 10\left(\frac{x-7}{10}\right) + 7(1)$$

$$\Rightarrow \quad fog(x) = x$$

Hence, required function $g: R \rightarrow R$ is given by

$$g(x) = \frac{x - 7}{10}$$
 (1)

30. Show that the function $f: W \to W$ defined by

$$f(n) = \begin{cases} n+1, \text{ if } n \text{ is even} \\ n-1, \text{ if } n \text{ is odd} \end{cases}$$

is a bijective function. All India 2011C

Do same as Que19.

31. If $f : R \rightarrow R$ is the function defined by $f(x) = 4x^3 + 7$, then show that f is a bijection. Delhi 2011C The given function is $f : R \rightarrow R$ such that

$$f(x) = 4x^3 + 7$$

One-one

one one	
Let $f(x_1) = f(x_2), \forall x_1, x_2 \in R$	
$\Rightarrow \qquad 4x_1^3 + 7 = 4x_2^3 + 7$	
$\Rightarrow \qquad 4x_1^3 = 4x_2^3 \Rightarrow x_1^3 - x_2^3 = 0$	
$\Rightarrow \qquad (x_1 - x_2) (x_1^2 + x_1 x_2 + x_2^2) = 0$	
$[:: a^3 - b^3 = (a - b)(a^2 + ab + b)(a^2 $	²)]
Either $x_1 - x_2 = 0$	(i)
or $x_1^2 + x_1 x_2 + x_2^2 = 0$ (ii)
But Eq. (ii) is not possible as $x_1, x_2 \in R$. (1/	2)
$\therefore \qquad x_1 - x_2 = 0 \Longrightarrow x_1 = x_2$	
Thus $f(x_1) = f(x_2)$	
$\Rightarrow \qquad x_1 = x_2, \ \forall \ x_1, \ x_2 \in R$	
Therefore, $f(x)$ is a one-one function. (1)
Onto To show that $f(x)$ is an onto function	n,
we show that	
Range of $f(x) = $ Codomain of $f(x)$	
Given, codomain of $f(x) = R$	
Now, let $y = 4x^3 + 7 \implies 4x^3 = y - 7$	
$\Rightarrow \qquad x^3 = \frac{y-7}{4}$	
$\Rightarrow \qquad x = \left(\frac{y-7}{4}\right)^{1/3} \qquad \dots \text{(iii) (1/4)}$	2)

From Eq. (iii), it is clear that for every $y \in R$, we get $x \in R$.

 $\therefore \text{ Range of } f(x) = R$ Thus, range of f(x) = codomain of f(x) $\Rightarrow f(x) \text{ is an onto function.}$ (1) Since, f(x) is both one-one and onto, so it is a bijective. (1)

32. If Z is the set of all integers and R is the relation on Z defined as $R = \{(a, b) : a, b \in Z \text{ and } a - b \text{ is divisible by 5}\}$. Prove that R is an equivalence relation.

Delhi 2010; HOTS

The given relation is $R = \{(a, b) : a, b \in \mathbb{Z} \text{ and } a - b \text{ is divisible by 5}\}$. We shall prove that R is reflexive, symmetric and transitive.

(i) **Reflexive** As for any $x \in Z$, we have x - x = 0 and 0 is divisible by 5.

$$\Rightarrow$$
 (x – x) is divisible by 5.

$$\Rightarrow (x, x) \in R, \forall x \in Z$$

Therefore, R is reflexive.

(ii) **Symmetric** As $(x, y) \in R$, where $(x, y) \in Z$

$$\Rightarrow$$
 (x - y) is divisible by 5.

[by definition of R]

$$\Rightarrow$$
 $x - y = 5A$ for some $A \in Z$

$$\Rightarrow$$
 $y - x = 5(-A)$

$$\Rightarrow$$
 (y - x) is also divisible by 5

$$\Rightarrow$$
 $(y, x) \in R$

Therefore, *R* is symmetric.

(1)

(iii) **Transitive** As $(x, y) \in R$, where $x, y \in Z$

$$\Rightarrow$$
 (x – y) is divisible by 5.

 \Rightarrow x - y = 5A for some A \in Z

Again, for
$$(y, z) \in R$$
, where $y, z \in Z$

$$\Rightarrow$$
 (y – z) is divisible by 5.

$$\Rightarrow$$
 y - z = 5B for some $B \in Z$

Now, (x - y) + (y - z) = 5A + 5B $\Rightarrow \quad x - z = 5(A + B)$ $\Rightarrow \quad (x - z)$ is divisible by 5 for some $A + B \in Z$ Therefore, *R* is transitive. (1½) Thus, *R* is reflexive, symmetric and transitive. Hence, it is an equivalence relation. (1/2)

NOTE If atleast one of the relation is not satisfied, we do not say it is an equivalence relation.

33. Show that the relation S in the set R of real

numbers defined as, $S = \{(a \ b) : a, b \in R \text{ and } a \le b^3\}$ is neither reflexive nor symmetric nor transitive. Delhi 2010; HOTS

Given relation is

 $S = \{(a, b) : a, b \in R \text{ and } a \le b^3\}$

(i) **Reflexive** As $\frac{1}{3} \le \left(\frac{1}{3}\right)^3$, where $\frac{1}{3} \in R$ is not

true.

 \Rightarrow

$$\left(\frac{1}{3},\frac{1}{3}\right) \notin S$$

Therefore, *S* is not reflexive. (1)

(ii) Symmetric $As -2 \le (3)^3$, where $-2, 3 \in R$ is true but $3 \le (-2)^3$ is not true. i.e. $(-2, 3) \in S$ but $(3, -2) \notin S$

Therefore, *S* is not symmetric. (1)

(iii) **Transitive** As $3 \le \left(\frac{3}{2}\right)^3$ and $\frac{3}{2} \le \left(\frac{4}{3}\right)^3$, where $3, \frac{3}{2}, \frac{4}{3} \in R$ are true but $3 \le \left(\frac{4}{3}\right)^3$ is

not true.

$$\Rightarrow \qquad \left(3,\frac{3}{2}\right) \in S \text{ and } \left(\frac{3}{2},\frac{4}{3}\right) \in S$$

but
$$\left(3,\frac{4}{3}\right) \notin S \qquad (1\frac{1}{2})$$

Therefore, *S* is not transitive.

Hence, S is none of these, i.e. not reflexive, not symmetric and not transitive. (1/2)

NOTE There are certain ordered pairs like (1, 1) for which the relation is reflexive, so it is important to pick example suitably.

34. Show that the relation S in set

 $A = \{x \in Z : 0 \le x \le 12\}$ given by $S = \{(a, b) : a, b \in Z, |a - b| \text{ is divisible by 4} \}$ is anequivalence relation. Find the set of allelements related to A.All India 2010

The given relation is $S = \{(a, b) : |a - b| \text{ is} divisible by 4, where <math>a, b \in Z\}$ and $A = \{x : x \in Z \text{ and } 0 \le x \le 12\}$ Now, A can be written as

$$A = \{0, 1, 2, 3, \dots, 12\}$$
 (1/2)

- (i) **Reflexive** As for any $x \in A$, we get |x x| = 0, which is divisible by 4. $\Rightarrow (x, x) \in S, \forall x \in A$
 - Therefore, *S* is reflexive. (1)
- (ii) **Symmetric** As for any $(x, y) \in S$, we get |x y| is divisible by 4.

[by using definition of given relation]

$$\Rightarrow |x - y| = 4\lambda, \text{ for some } \lambda \in Z$$

$$\Rightarrow |y - x| = 4\lambda, \text{ for some } \lambda \in Z$$

$$\Rightarrow (y, x) \in S$$

Thus, $(x, y) \in S \Rightarrow (y, x) \in S, \forall x, y \in Z$
Therefore, S is symmetric. (1)

(iii) **Transitive** For any $(x, y) \in S$ and $(y, z) \in S$, we get |x - y| is divisible by 4 and |y - z| is divisible by 4.

[by using definition of given relation] $|x-y| = 4\lambda$ and $|y-z| = 4\mu$, \Rightarrow for some $\lambda, \mu \in Z$ Now, x - z = (x - y) + (y - z) $=\pm 4\lambda \pm 4\mu = \pm 4(\lambda + \mu)$ \Rightarrow |x - z| is divisible by 4. $(x, z) \in S$ \Rightarrow Thus, $(x, y) \in S$ and $(y, z) \in S$ $(x, z) \in S, \forall x, y, z \in Z$ \Rightarrow Therefore, S is transitive. (1)Since, S is reflexive, symmetric and transitive, so it is an equivalence relation. Now, set of all elements related to $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$ (1/2)

35. Show that the relation S defined on set $N \times N$ by $(a, b) S (c, d) \Rightarrow a + d = b + c$ is an equivalence relation. All India 2010

Do same as Que 23.

36. Consider
$$f : R_+ \to [-5, \infty)$$
 given by
 $f(x) = 9x^2 + 6x - 5$, show that f is invertible
with $f^{-1}(y) = \left(\frac{\sqrt{y+6}-1}{3}\right)$. Foreign 2010

Given function is
$$f : R_+ \rightarrow [-5, \infty)$$
, such that
 $f(x) = 9x^2 + 6x - 5$

We shall show that it is both one-one and onto.

One-one

Let
$$f(x_1) = f(x_2), x, x_2 \in R_+$$

 $\Rightarrow 9x_1^2 + 6x_1 - 5 = 9x_2^2 + 6x_2 - 5$
 $\Rightarrow 9x_1^2 - 9x_2^2 + 6x_1 - 6x_2 = 0$
 $\Rightarrow 9(x_1^2 - x_2^2) + 6(x_1 - x_2) = 0$
 $\Rightarrow 9(x_1 - x_2)(x_1 + x_2) + 6(x_1 - x_2) = 0$
 $\Rightarrow (x_1 - x_2)[9x_1 + 9x_2 + 6] = 0$
Now, either $x_1 - x_2 = 0$
or $9x_1 + 9x_2 + 6 = 0$

But $9x_1 + 9x_2 + 6 = 0$ is not possible because $x_1, x_2 \in R_+$.

$$\therefore x_1 - x_2 = 0 \implies x_1 = x_2$$

Therefore, $f(x)$ is a one-one function. (1)
Onto

Let $y = 9x^2 + 6x - 5$ $\Rightarrow \qquad 9x^2 + 6x = y + 5$ (x - 6x)

 $\Rightarrow \qquad 9\left(x^2 + \frac{6x}{9}\right) = y + 5$

$$\Rightarrow 9\left(x^{2} + \frac{2x}{3} + \frac{1}{9} - \frac{1}{9}\right) = y + 5$$

$$\Rightarrow 9\left(x + \frac{1}{3}\right)^{2} - 1 = y + 5$$

$$\Rightarrow 9\left(x + \frac{1}{3}\right)^{2} = y + 6$$

$$\Rightarrow \left(x + \frac{1}{3}\right)^{2} = \frac{y + 6}{9} \Rightarrow x + \frac{1}{3} = \frac{\sqrt{y + 6}}{3}$$

[taking positive sign as $x \in R_{+}$]

$$\Rightarrow \qquad x = \frac{\sqrt{y + 6} - 1}{3}$$
 (1)

From above equation, we get that for every $y \in [-5, \infty)$, we have $x \in R_+$.

 \therefore Range of $f(x) = [-5, \infty)$

Given, codomain of $f(x) = [-5, \infty)$

Thus, range of f(x) =Codomain of f(x)

Therefore, f(x) is an onto function. (1) Since, f(x) is both one-one and onto, so it is an invertible function with

$$f^{-1}(y) = \frac{\sqrt{y+6} - 1}{3}$$
(1)

37. If f: X → Y is a function. Define a relation R on X given by R = {(a, b): f(a) = f(b)}. Show that R is an equivalence relation on X.
All India 2010C

The given relation is $R = \{(a, b) : f(a) = f(b)\}, f : X \rightarrow Y$ (i) **Reflexive** Since, for every $x \in X$, we have f(x) = f(x)[by using definition of R, i.e. f(a) = f(b), $\forall a, b \in X$ $(x, x) \in R, \forall x \in X$ \Rightarrow Therefore, R is reflexive. (1) (ii) **Symmetric** Let $(x, y) \in R, \forall x, y \in X$ Then, $f(x) = f(y) \implies f(y) = f(x)$ $(x, y) \in R, \forall x, y \in R$ *.*.. $(y, x) \in R, \forall x, y \in X$ \Rightarrow Therefore, R is symmetric. (1)(iii) **Transitive** Let $x, y, z \in X$ Then $(x, y) \in R$ and $(y, z) \in R$ $f(x) = f(y), \forall x, y \in X$ \Rightarrow ...(i) $f(y) = f(z), \forall y, z \in X$ and ...(ii) From Eqs. (i) and (ii), we get $f(x) = f(z), \forall x, z \in X$ $(x, z) \in R, \forall x, z \in X$ \Rightarrow Thus, $(x, y) \in R$ and $(y, z) \in R$ $(x, z) \in R, \forall x, y, z \in X$ \Rightarrow Therefore, R is transitive. $(1\frac{1}{2})$ Since, R is reflexive, symmetric and transitive. So, it is an equivalence relation. (1/2)**38.** Show that a function $f : R \rightarrow R$ given by $f(x) = ax + b, a, b \in R, a \neq 0$ is a bijective. Delhi 2010C The given function is

f(x) = ax + b; $f : R \rightarrow R$, $a, b \in R$, $a \neq 0$ To show that f(x) is a bijective, we show that f(x) is both one-one and onto.

(i) One-one Let $f(x_1) = f(x_2), \forall x_1, x_2 \in R$ $\Rightarrow \qquad ax_1 + b = ax_2 + b$ $\Rightarrow \qquad ax_1 = ax_2 \Rightarrow x_1 = x_2$ Thus, $f(x_1) = f(x_2), \forall x_1, x_2 \in R$ $\Rightarrow \qquad x_1 = x_2$ (11/2)

Therefore, f(x) is a one-one function.

(ii) **Onto** Let y = ax + b $\Rightarrow \qquad x = \frac{y - b}{a}$...(i)

From Eq. (i), it is observed that for every $y \in R$, $x \in R$.

 \therefore Range of f(x) = R

Also, given codomain = R

Thus, range of f(x) =Codomain of f(x)

Therefore, f(x) is an onto function. (1½) As f(x) is both one-one and onto, so it is a bijective function. (1)

39. Prove that the relation R in set $A = \{1, 2, 3, 4, 5\}$ given by $R = \{(a, b) : |a - b| \text{ is even}\}$ is an equivalence relation. Delhi 2009

The given relation is $R = \{(a, b) : |a - b| \text{ is }$ even} defined on set $A = \{1, 2, 3, 4, 5\}$. (i) **Reflexive** As |x - x| = 0 is even, $\forall x \in A$. $(x, x) \in R, \forall x \in A$ \Rightarrow Therefore, *R* is reflexive. (1) (ii) Symmetric As $(x, y) \in R \implies |x - y|$ is even [by the definition of given relation] |y - x| is also even \Rightarrow $[:: |a| = |-a|, \forall a \in R]$ $(y, x) \in R, \forall x, y \in A$ \Rightarrow $(x, y) \in R$ Thus, $(y, x) \in R, \forall x, y \in A$ ⇒ Therefore, R is symmetric. (1) (iii) **Transitive** As $(x, y) \in R$ and $(y, z) \in R$ |x - y| is even and |y - z| is even. ⇒ [by using definition of given relation]

Now, |x-y| is even \Rightarrow x and y both are even or odd and |y - x| is even \Rightarrow y and x both are even or odd. Then two cases arises: **Case I** When y is even. Now, $(x, y) \in R$ and $(y, z) \in R$. \Rightarrow |x-y| is even and |y-z| is even \Rightarrow x is even and z is even |x - z| is even \Rightarrow [:: difference of two even numbers is also even] (1/2) $(x, z) \in R$ ⇒ Case II When y is odd. Now, $(x, y) \in R$ and $(y, z) \in R$ \Rightarrow |x - y| is even and |y - z| is even \Rightarrow x is odd and z is odd \Rightarrow |x - z | is even [:: difference of two odd numbers is even] $(x, z) \in R$ (1/2) \Rightarrow Thus, $(x, y) \in R$ and $(y, z) \in R$ $(x, z) \in R, \forall x, y, z \in A$ \Rightarrow Therefore, R is transitive. (1/2)Since, R is reflexive, symmetric and transitive. So, it is an equivalence relation. (1/2) **40.** If $f: N \to N$ is defined by $f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{for all } n \in N. \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$

Find whether the function f is bijective.

All India 2009

The given function is $f : N \rightarrow N$ such that

$$f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$$

(i) **One-one** Let

$$f(1) = \frac{1+1}{2} = \frac{2}{2} = 1 \quad \left[\text{put } n = 1 \text{ in } f(n) = \frac{n+1}{2} \right]$$

and $f(2) = \frac{2}{2} = 1 \quad \left[\text{put } n = 2 \text{ in } f(n) = \frac{n}{2} \right]$

f(n) is not a one-one function because at two distinct values of domain (N), f(n) has same image. (1½)

(ii) **Onto** If *n* is an odd natural number, then 2n - 1 is also an odd natural number.

Now,
$$f(2n-1) = \frac{2n-1+1}{2} = n$$
 ...(i)

Again, if *n* is an even natural number, then 2*n* is also an even natural number. Then,

$$f(2n) = \frac{2n}{2} = n$$
 ...(ii)

From Eqs. (i) and (ii), we observe that for each n (whether even or odd) there exists its pre-image in N.

Therefore, *f* is onto.

 $(1\frac{1}{2})$

Hence, f(x) is not one-one but it is onto. So, it is not a bijective function. (1)

41. Show that relation R in the set of real numbers, defined as $R = \{(a, b) : a \le b^2\}$ is neither reflexive, nor symmetric nor transitive. Foreign 2009

Do same as Que 33.

42. If the function $f : R \rightarrow R$ is given by $f(x) = x^2 + 3x + 1$ and $g : R \rightarrow R$ is given by g(x) = 2x - 3, then find (i) fog and (ii) gof. All India 2009, 2008C

Given, $f : R \rightarrow R$ such that $f(x) = x^2 + 3x + 1$ and $g: R \rightarrow R$ such that g(x) = 2x - 3. (i) (fog)(x) = f[g(x)] = f(2x - 3) $= (2x - 3)^2 + 3(2x - 3) + 1$ $f: f(x) = x^2 + 3x + 1$, so replace x by 2x - 3 in f(x)] $= 4x^{2} + 9 - 12x + 6x - 9 + 1$ $=4x^{2}-6x+1$ (2) (ii) $(gof)(x) = g[f(x)] = g(x^2 + 3x + 1)$ $= [2(x^{2} + 3x + 1)] - 3$ [:: g(x) = 2x - 3, so replace x by $x^{2} + 3x + 1$ in g(x)] $=2x^{2}+6x+2-3$ $= 2x^{2} + 6x - 1$ (2)**43.** If the function $f : R \rightarrow R$ is given by $f(x) = \frac{x+3}{2}$ and $g: R \to R$ is given by g(x) = 2x - 3, then find (ii) gof. Is $f^{-1} = g$? (i) fog and Delhi 2009C; HOTS Given $f: R \to R$ such that $f(x) = \frac{x+3}{2}$ and $g: R \rightarrow R$ such that g(x) = 2x - 3. (i) $(fog)(x) = f[g(x)] = f(2x - 3) = \frac{(2x - 3) + 3}{2}$ [:: $f(x) = \frac{x+3}{2}$, so replace x by 2x - 3 in f(x)] \Rightarrow (fog) (x) = $\frac{2x}{2}$. $(1\frac{1}{2})$ (ii) (gof)(x) = g[f(x)] $=g\left(\frac{x+3}{3}\right)=\left[2\left(\frac{x+3}{3}\right)\right]-3$ [:: g(x) = 2x - 3, so replace x by $\frac{x+3}{2}$ in g(x) $=\frac{2x+6}{3}-3=\frac{2x+6-9}{3}$ \Rightarrow (gof) (x) = $\frac{2x-3}{2}$ $(1\frac{1}{2})$ Now, we find f^{-1} . For that, let $y = \frac{x+3}{3}$. $\Rightarrow \qquad 3y = x + 3 \Rightarrow x = 3y - 3$ $\therefore \qquad f^{-1}(y) = 3y - 3 \qquad [\because x = f^{-1}(y)]$ $f^{-1}(x) = 3x - 3$ or But g(x) = 2x - 3. $f^{-1} \neq g$ (1)... **NOTE** $f^{-1} = g$ exists, only if $gof = I_R$ and $fog = I_R$.

BinaryOperations

1 Mark Questions

1. Let $*: R \times R \rightarrow R$ given by $(a,b) \rightarrow a + 4b^2$ be a binary operation. Compute (-5)*(2*0). All India 2014C

 $(-5) * (2 * 0) = (-5) * (2 + 4(0)^2)$ $[\because (ab) \rightarrow a + 4b^2]$ $= (-5) * (2) = -5 + 4 (2)^2 = -5 + 16 = 11$ (1)

2. Let * is a binary operation on the set of all non-zero real numbers, given by $a * b = \frac{ab}{5}$

for all $a, b \in R - \{0\}$. Find the value of x, given that 2 * (x * 5) = 10. Delhi 2014

Given,
$$a * b = \frac{ab}{5}, \forall a, b \in R - \{0\}$$
 ...(i)

Also given, 2 * (x * 5) = 10 $\Rightarrow 2 * \left(\frac{x \cdot 5}{5}\right) = 10$ [from Eq. (i)]

$$\Rightarrow \qquad 2^* x = 10 \Rightarrow \frac{2x}{5} = 10 \Rightarrow x = 25 \quad (1)$$

3. Let * is a binary operation on N given by

a*b = LCM(a, b) for all $a, b \in N$. Find 5*7. Delhi 2012; Foreign 2008

Given, $a * b = LCM (a, b), \forall a, b \in N$

$$\therefore$$
 5 * 7 = LCM (5, 7) = 35

4. Let *: $R \times R \rightarrow R$ is defined as a * b = 2a + b. Find (2 * 3) * 4. All India 2012 Given, $*: R \times R \rightarrow R$ such that a * b = 2a + b. On putting a = 2 and b = 3, we get (2 * 3) = 2(2) + 3 = 4 + 3 = 7

 $\therefore (2 * 3) * 4 = 7 * 4 = 2 (7) + 4 = 14 + 4 = 18(1)$

5. If the binary operation * on the set of integers Z, is defined by $a * b = a + 3b^2$, then find the value of 8 * 3. All India 2012C

Given, $a * b = a + 3b^2$, $\forall a, b \in z$

On putting a = 8 and b = 3, we get

 $8 * 3 = 8 + 3 \cdot 3^2 = 8 + 27 = 35$

6. Let * is a binary operation on set of integers / defined by a * b = 3a + 4b - 2, then find the value of 4 * 5. All India 2011C

Given, a * b = 3a + 4b - 2

On putting a = 4 and b = 5, we get 4 * 5 = 3(4) + 4(5) - 2= 12 + 20 - 2 = 30

7. Let * is a binary operation on set of integers *l*, defined by a * b = 2a + b - 3. Find value of 3 * 4. Delhi 2011C; All India 2008 Given, a * b = 2a + b - 3On putting a = 3 and b = 4, we get 3 * 4 = 2(3) + 4 - 3= 6 + 4 - 3 = 7

8. If the binary operation * on set of integers Z is defined by $a * b = a + 3b^2$, then find the value of 2*4. Delhi 2009

Do same as Que 5.

[Ans. 50]

9. Let * is the binary operation on N given by a * b = HCF(a, b) where, $a, b \in N$. Write the value of 22*4. All India 2009 Given, a * b = HCF of a and b, where a and $b \in N$. Now, 22 * 4 = HCF of 22 and 4 = HCF of (2 × 11) and (2 × 2) = 2 22 * 4 = 2(1) ... **10.** If the binary operation *, defined on Q, is defined as a * b = 2a + b - ab, for all as $b \in Q$. Find the value of 3* 4. Foreign 2009 Given, a * b = 2a + b - ab, $\forall a, b \in Q$. On putting a = 3 and b = 4, we get $3*4 = 2 \cdot 3 + 4 - 3 \cdot 4$ = 6 + 4 - 12 = -211. If * is a binary operation on set Q of rational numbers defined as $a * b = \frac{ab}{E}$. Write the

identity for *, if any. All India 2009C; HOTS

Given, binary operation is $a * b = \frac{ab}{5}$.

Let e be the identity element of * on Q.

Then, $a * e = a, \forall a \in Q$ [by definition of identity element]

12. If S is the set of all rational numbers except 1 and * be defined on S by a * b = a + b - ab, for all $a, b \in s$.

Prove that

- (i) * is a binary operation on S.
- (ii) * is commutative as well as associative.

Delhi 2014C

(i) We know that, addition of two rational numbers is a rational number. Also, multiplication of two rational numbers is also a rational number.

Here, a and b are rational numbers other than 1. So, a + b - ab is also a rational number [since difference of two rational numbers is rational number]. So, * is a binary operation on set *S*. (1)

(ii) Commutative

 $a^* b = a + b - ab = b + a - ba$ $\Rightarrow a^* b = b^* a$ Hence, * is commutative. (1)
Associative $(a^* b)^* c$ $= (a + b - ab)^* c$ = a + b - ab + c - (a + b - ab)c = a + b + c - ab - bc - ac + abc ...(i) (1)and $a^* (b^* c) = a^* (b + c - bc)$ = a + b + c - ab - bc - (ac + abc) ...(ii)From Eqs. (i) and (ii), we get $(a^* b)^* c = a^* (a^* c)$ Hence, * is associative. (1)

13. Consider the binary operations $*: R \times R \rightarrow R$ and $o: R \times R \rightarrow R$ defined as a * b = |a - b|and a o b = a. For all $a, b \in R$. Show that * is commutative but not associative, 'o' is associative but not commutative.

All India 2012

Given $*: R \times R \rightarrow R$ such that a * b = |a - b|and $a \circ b = a, \forall a, b \in R$.

We have to show that, * is commutative but not associative.

(i) Commutative

$$a * b = |a - b|, \forall a, b \in R \quad [given]$$

and
$$b * a = |b - a| \forall a, b \in R$$
$$= |-(a - b)|$$
$$= |a - b| [\because |-x| = |x|, \forall x \in R]$$
Thus,
$$a * b = b * a, \forall a, b \in R$$
Hence, * is commutative. (1)

14. Consider the binary operation * on the set {1, 2, 3, 4, 5} defined by a * b = min {a, b}. Write operation table of operation *.

Delhi 2011

Given, binary operation is $a * b = \min \{a, b\}$ defined on the set {1, 2, 3, 4, 5}. (1/2) The operation table for operation * is given as

follows:

*	1	2	3	4	5
1	1	1	1	1	1
2	1	2	2	2	2
3	1	2	3	3	3
4 .	1	2	3	4	4
5	1	2	3	4	5

 $[:: 1*1 = \min\{1, 1\} = 1, 1*2 = \min\{1, 2\} = 1$... 5 * 4 = min{5, 4} = 4, 5 * 5 = min{5, 5} = 5] (3¹/₂) **15.** A binary operation * on the set {0, 1, 2, 3, 4, 5} is defined as $a * b = \begin{cases} a + b, & \text{if } a + b < 6 \\ a + b - 6, & \text{if } a + b \ge 6 \end{cases}$

Show that zero is the identity for this operation and each element 'a' of the set is invertible with 6 - a, being the inverse of 'a'. All India 2011; HOTS

Given
$$a * b = \begin{cases} a+b, & \text{if } a+b < 6 \\ a+b-6, & \text{if } a+b \ge 6 \end{cases}$$

The operation table for * is as follows:

*	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

(2)

 $[:: 0 + 0 < 6 \Rightarrow 0 + 0 = 0; 0 + 1 < 6]$ $\Rightarrow 0 + 1 = 1; ... 1 + 4 < 6 \Rightarrow 1 + 4 = 5; 1 + 5 \ge 6]$ $\Rightarrow 1 + 5 - 6 = 0; ...]$

From table, we note that

- (i) a * 0 = 0 * a = a. Hence, 0 is the identity for an operation. (1)
- (ii) 1*5=0, 2*4=0, 3*3=0, 4*2=0, 5*1=0

Hence, inverse of 1 is 5, i.e. for element a, 6 – a is its inverse. (1)

 16. If * is a binary operation on Q, defined by a*b = 3ab / 5. Show that * is commutative as well as associative. Also, find its identity, if it exists. Delhi 2010

Given, binary operation is $a^*b = \frac{3ab}{5}$, $a, b \in Q$ (i) Commutative $a^*b = \frac{3ab}{5}$ [given] and $b^*a = \frac{3ba}{5}$ [by using definition of *] $\therefore \qquad \frac{3ab}{5} = \frac{3ba}{5}$, $\forall a, b \in Q$ is true $\therefore \qquad a^*b = b^*a$, $\forall a, b \in Q$ Therefore, * is commutative. (1) (ii) Associative $a^*(b^*c) = a^*\left(\frac{3bc}{5}\right)\left[using a^*b = \frac{3ab}{5}\right]$ $3a\left(\frac{3bc}{5}\right)$ 9abc

and
$$(a * b) * c = \left(\frac{3ab}{5}\right) * c$$

$$\left[\because a * b = \frac{3ab}{5}, \forall a, b \in Q \right]$$

$$=\frac{3\left(\frac{3ab}{5}\right)(c)}{5}=\frac{9abc}{25}$$
Clearly, $a^*(b^*c) = (a^*b)^*c$,
 $\forall a, b, c \in Q$
Therefore, * is associative. (2)

(iii) **Existence of identity** Let e be the identity element of * on Q. Then, by definition of identity element, we must have

 $a^* e = e^* a = a, \forall a \in Q$ Let $a^* e = a, \forall a \in Q$ $\Rightarrow \qquad \frac{3ae}{5} = a \qquad \left[\because a^* b = \frac{3ab}{5}\right]$ $\Rightarrow \qquad e = \frac{5}{3} \in Q$ $\therefore e = \frac{5}{3} \text{ is the identity element of }^*$ defined on Q.
(1)

17. If $A = N \times N$ and * is a binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Show that * is commutative and associative. Also, find identity element for * on A, if any. Foreign 2010 The given binary operation is

(a, b) * (c, d) = (a + c, b + d)

defined on $A = N \times N$, we have to show that * is commutative and associative.

(i) Commutative

(a, b) * (c, d) = (a + c, b + d), \forall (a, b) (c, d) $\in N \times N$ [given]...(i) Also, (c, d) * (a, b) = (c + a, d + b) \forall (a, b), (c, d) $\in N \times N$ · ... (ii) $a + c = c + a, \forall a, c \in N$ Since, $b + d = d + b, \forall b, d \in N$ and From Eqs. (i) and (ii), we get (a + c, b + d) = (c + a, b + d), $\forall a, b, c, d \in N$ (a, b) * (c, d) = (c, d) * (a, b), \Rightarrow \forall (a, b) (c, d) $\in N \times N$ Therefore, * is commutative. (1)(ii) **Associative** (a, b) * [(c, d) * (e, f)]= (a, b) * (c + e, d + f)[using given definition of *] = (a + c + e, b + d + f)...(i) Also, [(a, b) * (c, d)] * (e, f)= (a + c, b + d) * (e, f)[using definition of *] = (a + c + e, b + d + f)...(ii)

From Eqs. (i) and (ii), we get (a, b) * [(c, d) * (e, f)] = [(a, b) * (c, d)] * (e, f) $\forall (a, b), (c, d), (e, f) \in N \times N$ (2) Therefore * is associative.

(iii) Now, we check the existence of identity of the given operation *.

Let if possible (*s*, *t*) be the identity element of the operation *. Then, by definition of identity, we must have

 $(a, b) * (s, t) = (a, b), \forall (a, b), (s, t) \in N \times N$ $\Rightarrow (a + s, b + t) = (a, b)$

[:: (a, b) * (c, d) = (a + c, b + d) is given] On equating corresponding elements, we get

$$a + s = a$$
 ...(i)

and

Eqs. (i) and (ii) are true, when s = 0 and t = 0

 $\therefore (s, t) = (0, 0)$ But $(0, 0) \notin N \times N$

b+t

 \Rightarrow Identity of the above operation * does not exist as there does not exist any $(s, t) \in N \times N$ such that

$$(a, b)^* (s, t) = (a, b), \forall (a, b) \in N \times N$$
 (1)

18. If * is the binary operation on N given by a * b = LCM of a and b. Find 20 * 16. Is *
(i) commutative and (ii) associative?
All India 2008C

Given a * b = LCM of a and b LCM of 20 and 16 = 80 $\therefore 20 * 16 = 80$ (1)

(i) Commutative

a * b = LCM of a and b[given] b * a = LCM of b and aand = LCM of (b and a), $\forall a, b \in Q$ $a * b = b * a, \forall a, b \in Q$ and Therefore, * is commutative. $(1\frac{1}{2})$ (ii) Associative a * (b * c) = a * (LCM of b)and c) [:: a * b = LCM of a and b] \Rightarrow a * (b * c) = LCM of (a, b and c) ...(i) and (a * b) * c = (LCM of a and b) * c \Rightarrow (a * b) * c = LCM of (a, b and c) ...(ii) From Eqs. (i) and (ii), we get $a^{*}(b^{*}c) = (a^{*}b)^{*}c, \forall a, b, c, \in Q$ Therefore, * is associative. $(1\frac{1}{2})$

19. If * is a binary operation on set Q of rational numbers such that $a * b = (2a - b)^2$, $a, b \in Q$. Find 3* 5, 5 * 3. Is 3* 5 = 5*3? **Delhi 2008C**

The given binary operation is $a^* b = (2a - b)^2$, $a, b \in Q$ $\therefore \quad 3^* 5 = [2(3) - 5]^2$ [put a = 3 and b = 5 in $a^* b = (2a - b)^2$] $= (6 - 5)^2 = (1)^2 = 1$ (1½) Also, $5^* 3 = [2(5) - 3]^2$ [put a = 5 and b = 3 in $a^* b = (2a - b)^2$] $= (10 - 3)^2 = (7)^2 = 49$ (1½)

Clearly, from above $3*5 \neq 5*3$ (1)