The Spirit of Akron is an airship that is
more than 60 m long. When it is parked
at an airport, one person can easily sup-
port it overhead using a single hand.
Nonetheless, it is impossible for even a
very strong adult to move the ship
abruptly. What property of this huge air-
ship makes it very difficult to cause any
sudden changes in its motion?  (Cour-
tesy of Edward E. Ogden)

web)

For more information about the airship,

visit http://www.goodyear.com/us/blimp/
index.html
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5.1 The Concept of Force

n Chapters 2 and 4, we described motion in terms of displacement, velocity,

and acceleration without considering what might cause that motion. What

might cause one particle to remain at rest and another particle to accelerate? In
this chapter, we investigate what causes changes in motion. The two main factors
we need to consider are the forces acting on an object and the mass of the object.
We discuss the three basic laws of motion, which deal with forces and masses and
were formulated more than three centuries ago by Isaac Newton. Once we under-
stand these laws, we can answer such questions as “What mechanism changes mo-
tion?” and “Why do some objects accelerate more than others?”

5.1 _~ THE CONCEPT OF FORCE

Everyone has a basic understanding of the concept of force from everyday experi-
ence. When you push your empty dinner plate away, you exert a force on it. Simi-
larly, you exert a force on a ball when you throw or kick it. In these examples, the
word forceis associated with muscular activity and some change in the velocity of an
object. Forces do not always cause motion, however. For example, as you sit read-
ing this book, the force of gravity acts on your body and yet you remain stationary.
As a second example, you can push (in other words, exert a force) on a large boul-
der and not be able to move it.

What force (if any) causes the Moon to orbit the Earth? Newton answered this
and related questions by stating that forces are what cause any change in the veloc-
ity of an object. Therefore, if an object moves with uniform motion (constant ve-
locity), no force is required for the motion to be maintained. The Moon’s velocity
is not constant because it moves in a nearly circular orbit around the Earth. We
now know that this change in velocity is caused by the force exerted on the Moon
by the Earth. Because only a force can cause a change in velocity, we can think of
force as that which causes a body to accelerate. In this chapter, we are concerned with
the relationship between the force exerted on an object and the acceleration of
that object.

What happens when several forces act simultaneously on an object? In this
case, the object accelerates only if the net force acting on it is not equal to zero.
The net force acting on an object is defined as the vector sum of all forces acting
on the object. (We sometimes refer to the net force as the total force, the resultant
Jorce, or the unbalanced force.) If the net force exerted on an object is zero, then
the acceleration of the object is zero and its velocity remains constant. That
is, if the net force acting on the object is zero, then the object either remains at
rest or continues to move with constant velocity. When the velocity of an object is
constant (including the case in which the object remains at rest), the object is said
to be in equilibrium.

When a coiled spring is pulled, as in Figure 5.1a, the spring stretches. When a
stationary cart is pulled sufficently hard that friction is overcome, as in Figure 5.1b,
the cart moves. When a football is kicked, as in Figure 5.1c, it is both deformed
and set in motion. These situations are all examples of a class of forces called con-
tact forces. That is, they involve physical contact between two objects. Other exam-
ples of contact forces are the force exerted by gas molecules on the walls of a con-
tainer and the force exerted by your feet on the floor.

Another class of forces, known as field forces, do not involve physical contact be-
tween two objects but instead act through empty space. The force of gravitational
attraction between two objects, illustrated in Figure 5.1d, is an example of this
class of force. This gravitational force keeps objects bound to the Earth. The plan-
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A body accelerates because of an
external force

Definition of equilibrium
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Contact forces Field forces
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Figure 5.1 Some examples of applied forces. In each case a force is exerted on the object
within the boxed area. Some agent in the environment external to the boxed area exerts a force
on the object.

ets of our Solar System are bound to the Sun by the action of gravitational forces.
Another common example of a field force is the electric force that one electric
charge exerts on another, as shown in Figure 5.1e. These charges might be those
of the electron and proton that form a hydrogen atom. A third example of a field
force is the force a bar magnet exerts on a piece of iron, as shown in Figure 5.1f.
The forces holding an atomic nucleus together also are field forces but are very
short in range. They are the dominating interaction for particle separations of the
order of 1071 m.

Early scientists, including Newton, were uneasy with the idea that a force can
act between two disconnected objects. To overcome this conceptual problem,
Michael Faraday (1791-1867) introduced the concept of a field. According to this
approach, when object 1 is placed at some point Pnear object 2, we say that object
1 interacts with object 2 by virtue of the gravitational field that exists at P. The
gravitational field at Pis created by object 2. Likewise, a gravitational field created
by object 1 exists at the position of object 2. In fact, all objects create a gravita-
tional field in the space around themselves.

The distinction between contact forces and field forces is not as sharp as you
may have been led to believe by the previous discussion. When examined at the
atomic level, all the forces we classify as contact forces turn out to be caused by



5.1 The Concept of Force

electric (field) forces of the type illustrated in Figure 5.1e. Nevertheless, in devel-
oping models for macroscopic phenomena, it is convenient to use both classifica-
tions of forces. The only known fundamental forces in nature are all field forces:
(1) gravitational forces between objects, (2) electromagnetic forces between elec-
tric charges, (3) strong nuclear forces between subatomic particles, and (4) weak
nuclear forces that arise in certain radioactive decay processes. In classical physics,
we are concerned only with gravitational and electromagnetic forces.

Measuring the Strength of a Force

It is convenient to use the deformation of a spring to measure force. Suppose we
apply a vertical force to a spring scale that has a fixed upper end, as shown in Fig-
ure 5.2a. The spring elongates when the force is applied, and a pointer on the
scale reads the value of the applied force. We can calibrate the spring by defining
the unit force F; as the force that produces a pointer reading of 1.00 cm. (Because
force is a vector quantity, we use the bold-faced symbol F.) If we now apply a differ-
ent downward force Fy whose magnitude is 2 units, as seen in Figure 5.2b, the
pointer moves to 2.00 cm. Figure 5.2c shows that the combined effect of the two
collinear forces is the sum of the effects of the individual forces.

Now suppose the two forces are applied simultaneously with F; downward and
Fy horizontal, as illustrated in Figure 5.2d. In this case, the pointer reads
V5 cm? = 2.24 cm. The single force F that would produce this same reading is the
sum of the two vectors F; and Fy, as described in Figure 5.2d. That is,
|F| = VF%2 + Fo? = 2.24 units, and its direction is 6 = tan~!(— 0.500) = — 26.6°.
Because forces are vector quantities, you must use the rules of vector addi-
tion to obtain the net force acting on an object.

F, F,
(a) (b) (c) (d)

Figure 5.2 The vector nature of a force is tested with a spring scale. (a) A downward force Fy
elongates the spring 1 cm. (b) A downward force Fy elongates the spring 2 cm. (c) When F; and
Fy are applied simultaneously, the spring elongates by 3 cm. (d) When F, is downward and Fy is

horizontal, the combination of the two forces elongates the spring V12 + 22 cm = \/g cm.
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QuickLab —~

Find a tennis ball, two drinking
straws, and a friend. Place the ball on
a table. You and your friend can each
apply a force to the ball by blowing
through the straws (held horizontally
a few centimeters above the table) so
that the air rushing out strikes the
ball. Try a variety of configurations:
Blow in opposite directions against
the ball, blow in the same direction,
blow at right angles to each other,
and so forth. Can you verify the vec-
tor nature of the forces?
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5.2 _~ NEWTON’S FIRST LAW AND INERTIAL FRAMES

() Before we state Newton’s first law, consider the following simple experiment. Sup-
42 pose a book is lying on a table. Obviously, the book remains at rest. Now imagine
that you push the book with a horizontal force great enough to overcome the
force of friction between book and table. (This force you exert, the force of fric-
tion, and any other forces exerted on the book by other objects are referred to as
external forces.) You can keep the book in motion with constant velocity by applying
a force that is just equal in magnitude to the force of friction and acts in the oppo-
site direction. If you then push harder so that the magnitude of your applied force
exceeds the magnitude of the force of friction, the book accelerates. If you stop
pushing, the book stops after moving a short distance because the force of friction
retards its motion. Suppose you now push the book across a smooth, highly waxed
floor. The book again comes to rest after you stop pushing but not as quickly as be-
OuickLab > fore. Now imagine a ﬂoor so highly po}lsh'ed that friction is absent; in this case, the
book, once set in motion, moves until it hits a wall.
" ] Before about 1600, scientists felt that the natural state of matter was the state
strong, short-duration burst of air . . .
e L ) ) of rest. Galileo was the first to take a different approach to motion and the natural
against a tennis ball as it rolls along a . . R .
tabletop. Make the force perpendicu- state of matter. He devised thought experiments, such as the one we just discussed
lar to the ball’s path. What happens for a book on a frictionless surface, and concluded that it is not the nature of an
to the ball's motion? What is different object to stop once set in motion: rather, it is its nature to resist changes in its motion.
if you apply a continuous force (con- In his words, “Any velocity once imparted to a moving body will be rigidly main-
stant magnitude and direction) that . . "
o ) L tained as long as the external causes of retardation are removed.
is directed along the direction of mo- ) . . .
tion? This new approach to motion was later formalized by Newton in a form that
has come to be known as Newton’s first law of motion:

Use a drinking straw to impart a

In the absence of external forces, an object at rest remains at rest and an object
Newton’s first law in motion continues in motion with a constant velocity (that is, with a constant
speed in a straight line).

In simpler terms, we can say that when no force acts on an object, the accelera-
tion of the object is zero. If nothing acts to change the object’s motion, then its
velocity does not change. From the first law, we conclude that any isolated object
(one that does not interact with its environment) is either at rest or moving with
constant velocity. The tendency of an object to resist any attempt to change its ve-

Definition of inertia locity is called the inertia of the object. Figure 5.3 shows one dramatic example of
a consequence of Newton’s first law.

Another example of uniform (constantvelocity) motion on a nearly frictionless
surface is the motion of a light disk on a film of air (the lubricant), as shown in Fig-
ure 5.4. If the disk is given an initial velocity, it coasts a great distance before stopping.

Finally, consider a spaceship traveling in space and far removed from any plan-
ets or other matter. The spaceship requires some propulsion system to change its
velocity. However, if the propulsion system is turned off when the spaceship
reaches a velocity v, the ship coasts at that constant velocity and the astronauts get
a free ride (that is, no propulsion system is required to keep them moving at the
velocity v).

Inertial Frames

As we saw in Section 4.6, a moving object can be observed from any number of ref-
erence frames. Newton’s first law, sometimes called the law of inertia, defines a spe-
Definition of inertial frame cial set of reference frames called inertial frames. An inertial frame of reference



5.2 Newton’s First Law and Inertial Frames

Figure 5.3 Unless a net ex-
ternal force acts on it, an ob-
ject at rest remains at rest and
an object in motion continues
in motion with constant veloc-
ity. In this case, the wall of the
building did not exert a force
on the moving train that was
large enough to stop it.

is one that is not accelerating. Because Newton’s first law deals only with objects
that are not accelerating, it holds only in inertial frames. Any reference frame that
moves with constant velocity relative to an inertial frame is itself an inertial frame.
(The Galilean transformations given by Equations 4.20 and 4.21 relate positions
and velocities between two inertial frames.)

A reference frame that moves with constant velocity relative to the distant stars
is the best approximation of an inertial frame, and for our purposes we can con-
sider planet Earth as being such a frame. The Earth is not really an inertial frame
because of its orbital motion around the Sun and its rotational motion about its
own axis. As the Earth travels in its nearly circular orbit around the Sun, it experi-
ences an acceleration of about 4.4 X 1073 m/s? directed toward the Sun. In addi-
tion, because the Earth rotates about its own axis once every 24 h, a point on the
equator experiences an additional acceleration of 3.37 X 1072 m/s? directed to-
ward the center of the Earth. However, these accelerations are small compared
with gand can often be neglected. For this reason, we assume that the Earth is an
inertial frame, as is any other frame attached to it.

If an object is moving with constant velocity, an observer in one inertial frame
(say, one at rest relative to the object) claims that the acceleration of the object
and the resultant force acting on it are zero. An observer in any other inertial frame
also finds that a = 0 and XF = 0 for the object. According to the first law, a body
at rest and one moving with constant velocity are equivalent. A passenger in a car
moving along a straight road at a constant speed of 100 km/h can easily pour cof-
fee into a cup. But if the driver steps on the gas or brake pedal or turns the steer-
ing wheel while the coffee is being poured, the car accelerates and it is no longer
an inertial frame. The laws of motion do not work as expected, and the coffee
ends up in the passenger’s lap!
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Isaac Newton English physicist
and mathematician (1642—1727)
Isaac Newton was one of the most
brilliant scientists in history. Before
the age of 30, he formulated the basic
concepts and laws of mechanics, dis-
covered the law of universal gravita-
tion, and invented the mathematical
methods of calculus. As a conse-
quence of his theories, Newton was
able to explain the motions of the
planets, the ebb and flow of the tides,
and many special features of the mo-
tions of the Moon and the Earth. He
also interpreted many fundamental
observations concerning the nature
of light. His contributions to physical
theories dominated scientific thought
for two centuries and remain impor-
tanttoday. (Giraudon/Art Resource)

Vv = constant
—

—_—

i 1 e Y e s e s s
Air flow

Electric blower

Figure 5.4 Air hockey takes ad-
vantage of Newton’s first law to
make the game more exciting.
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| Quick Quiz 5.1 g

True or false: (a) It is possible to have motion in the absence of a force. (b) It is possible to
have force in the absence of motion.

5.3 _~ MASS

(@’ Imagine playing catch with either a basketball or a bowling ball. Which ball is

43 more likely to keep moving when you try to catch it? Which ball has the greater
tendency to remain motionless when you try to throw it? Because the bowling ball
is more resistant to changes in its velocity, we say it has greater inertia than the bas-
ketball. As noted in the preceding section, inertia is a measure of how an object re-
sponds to an external force.

Definition of mass Mass is that property of an object that specifies how much inertia the object
has, and as we learned in Section 1.1, the SI unit of mass is the kilogram. The
greater the mass of an object, the less that object accelerates under the action of
an applied force. For example, if a given force acting on a 3-kg mass produces an
acceleration of 4 m/s?, then the same force applied to a 6-kg mass produces an ac-
celeration of 2 m/s2.

To describe mass quantitatively, we begin by comparing the accelerations a
given force produces on different objects. Suppose a force acting on an object of
mass m; produces an acceleration a;, and the same force acting on an object of mass
mg produces an acceleration ag. The ratio of the two masses is defined as the in-
verse ratio of the magnitudes of the accelerations produced by the force:

R (5.1)
mo ay

If one object has a known mass, the mass of the other object can be obtained from

acceleration measurements.

Mass is an inherent property of an object and is independent of the ob-
ject’s surroundings and of the method used to measure it. Also, mass is a
scalar quantity and thus obeys the rules of ordinary arithmetic. That is, several
masses can be combined in simple numerical fashion. For example, if you com-
bine a 3-kg mass with a 5-kg mass, their total mass is 8 kg. We can verify this result
experimentally by comparing the acceleration that a known force gives to several
objects separately with the acceleration that the same force gives to the same ob-
jects combined as one unit.

Mass and weight are different Mass should not be confused with weight. Mass and weight are two different
quantities quantities. As we see later in this chapter, the weight of an object is equal to the mag-

nitude of the gravitational force exerted on the object and varies with location. For
example, a person who weighs 180 1b on the Earth weighs only about 30 1b on the
Moon. On the other hand, the mass of a body is the same everywhere: an object hav-
ing a mass of 2 kg on the Earth also has a mass of 2 kg on the Moon.

9.4 _~ NEWTON’S SECOND LAW

(¢’ Newton’s first law explains what happens to an object when no forces act on it. It

44 either remains at rest or moves in a straight line with constant speed. Newton’s sec-

ond law answers the question of what happens to an object that has a nonzero re-
sultant force acting on it.



5.4 Newton’s Second Law

Imagine pushing a block of ice across a frictionless horizontal surface. When
you exert some horizontal force F, the block moves with some acceleration a. If
you apply a force twice as great, the acceleration doubles. If you increase the ap-
plied force to 3F, the acceleration triples, and so on. From such observations, we
conclude that the acceleration of an object is directly proportional to the re-
sultant force acting on it.

The acceleration of an object also depends on its mass, as stated in the preced-
ing section. We can understand this by considering the following experiment. If
you apply a force F to a block of ice on a frictionless surface, then the block un-
dergoes some acceleration a. If the mass of the block is doubled, then the same
applied force produces an acceleration a/2. If the mass is tripled, then the same
applied force produces an acceleration a/3, and so on. According to this observa-
tion, we conclude that the magnitude of the acceleration of an object is in-
versely proportional to its mass.

These observations are summarized in Newton’s second law:

The acceleration of an object is directly proportional to the net force acting on
it and inversely proportional to its mass.

Thus, we can relate mass and force through the following mathematical statement
of Newton’s second law:!

SF=ma (5.2)

Note that this equation is a vector expression and hence is equivalent to three
component equations:

EF,C = ma, EFy = ma, EFZ = ma, (5.3)

| Quick Quiz 5.2 4

Is there any relationship between the net force acting on an object and the direction in
which the object moves?

Unit of Force

The SI unit of force is the newton, which is defined as the force that, when acting
on a 1-kg mass, produces an acceleration of 1 m/s% From this definition and New-
ton’s second law, we see that the newton can be expressed in terms of the follow-
ing fundamental units of mass, length, and time:

IN=1kg m/s? (5.4)

In the British engineering system, the unit of force is the pound, which is

defined as the force that, when acting on a 1-slug mass,? produces an acceleration
of 1 ft/s?:

1lb=1 slug-ft/s2 (5.5)

A convenient approximation is that 1 N = % Ib.

1 Equation 5.2 is valid only when the speed of the object is much less than the speed of light. We treat
the relativistic situation in Chapter 39.

2 The slug is the unit of mass in the British engineering system and is that system’s counterpart of the
SI unit the kilogram. Because most of the calculations in our study of classical mechanics are in SI units,
the slug is seldom used in this text.

Newton’s second law

Newton’s second law—
component form

Definition of newton
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The Laws of Motion

TABLE 5.1 Units of Force, Mass, and Acceleration?

System of Units Mass Acceleration Force
SI kg m/s? N = kg-m/s?
British engineering slug ft/s? b = slug-ft/s?

21N = 0.2251b.

The units of force, mass, and acceleration are summarized in Table 5.1.

-

S We can now understand how a single person can hold up an airship but is not
able to change its motion abruptly, as stated at the beginning of the chapter. The

mass of the blimp is greater than 6 800 kg. In order to make this large mass accel-
erate appreciably, a very large force is required —certainly one much greater than

a human can provide.

EXAMPLE 5.1 An Accelerating Hockey Puck

A hockey puck having a mass of 0.30 kg slides on the hori-
zontal, frictionless surface of an ice rink. Two forces act on
the puck, as shown in Figure 5.5. The force F; has a magni-
tude of 5.0 N, and the force Fy has a magnitude of 8.0 N. De-
termine both the magnitude and the direction of the puck’s
acceleration.

Solution The resultant force in the x direction is

EFX = Iy + Fo, = Fy cos(—20°) + Fy cos 60°
= (5.0 N)(0.940) + (8.0 N)(0.500) = 8.7 N

Figure 5.5 A hockey puck moving on a frictionless surface acceler-
ates in the direction of the resultant force F; + Fy.

The resultant force in the y direction is

S F, = Fy, + Fyy = Fysin(—20°) + Fysin 60°

= (b.0N)(—0.342) + (8.0N)(0.866) = 5.2 N

Now we use Newton’s second law in component form to find
the x and y components of acceleration:

F 8.7N .
ax:2 L= ———— =99 m/s?
m 0.30 kg
2 F, 52N
a, = J 27: 17 m/s?

T T 030kg

The acceleration has a magnitude of
a=\(©292 + (17)2m/s2 = 34m/s2

and its direction relative to the positive x axis is

a, 17
0= tan"! (7)) = tan! <§> = 30°
Ay

We can graphically add the vectors in Figure 5.5 to check the
reasonableness of our answer. Because the acceleration vec-
tor is along the direction of the resultant force, a drawing
showing the resultant force helps us check the validity of the
answer.

Exercise Determine the components of a third force that,
when applied to the puck, causes it to have zero acceleration.

Answer [, = —87N, I3, = —52N.




5.5 The Force of Gravity and Weight

5.5 _~ THE FORCE OF GRAVITY AND WEIGHT

We are well aware that all objects are attracted to the Earth. The attractive force
exerted by the Earth on an object is called the force of gravity F,. This force is
directed toward the center of the Earth,® and its magnitude is called the weight
of the object.

We saw in Section 2.6 that a freely falling object experiences an acceleration g
acting toward the center of the Earth. Applying Newton’s second law %F = ma to a
freely falling object of mass m, with a = g and XF = F,, we obtain

F, = mg (5.6)

Thus, the weight of an object, being defined as the magnitude of F, is mg. (You
should not confuse the italicized symbol g for gravitational acceleration with the
nonitalicized symbol g used as the abbreviation for “gram.”)

Because it depends on g weight varies with geographic location. Hence,
weight, unlike mass, is not an inherent property of an object. Because g decreases
with increasing distance from the center of the Earth, bodies weigh less at higher
altitudes than at sea level. For example, a 1000-kg palette of bricks used in the
construction of the Empire State Building in New York City weighed about 1 N less
by the time it was lifted from sidewalk level to the top of the building. As another
example, suppose an object has a mass of 70.0 kg. Its weight in a location where
g=9.80 m/s%is F, = mg = 686 N (about 150 Ib). At the top of a mountain, how-
ever, where g = 9.77 m/s?, its weight is only 684 N. Therefore, if you want to lose
weight without going on a diet, climb a mountain or weigh yourself at 30 000 ft
during an airplane flight!

Because weight = F, = mg, we can compare the masses of two objects by mea-
suring their weights on a spring scale. At a given location, the ratio of the weights
of two objects equals the ratio of their masses.

The life-support unit strapped to the back
of astronaut Edwin Aldrin weighed 300 1b
on the Earth. During his training, a 50-Ib
mock-up was used. Although this effectively
simulated the reduced weight the unit
would have on the Moon, it did not cor-
rectly mimic the unchanging mass. It was
just as difficult to accelerate the unit (per-
haps by jumping or twisting suddenly) on
the Moon as on the Earth.

3 This statement ignores the fact that the mass distribution of the Earth is not perfectly spherical.
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Definition of weight

QuickLab >~

Drop a pen and your textbook simul-
taneously from the same height and
watch as they fall. How can they have
the same acceleration when their
weights are so different?
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CONCEPTUAL EXAMPLE 5.2

You have most likely had the experience of standing in an el-
evator that accelerates upward as it moves toward a higher
floor. In this case, you feel heavier. In fact, if you are standing
on a bathroom scale at the time, the scale measures a force
magnitude that is greater than your weight. Thus, you have
tactile and measured evidence that leads you to believe you
are heavier in this situation. Areyou heavier?

The Laws of Motion

How Much Do You Weigh in an Elevator?

Solution No, your weight is unchanged. To provide the
acceleration upward, the floor or scale must exert on your
feet an upward force that is greater in magnitude than your
weight. It is this greater force that you feel, which you inter-
pret as feeling heavier. The scale reads this upward force, not
your weight, and so its reading increases.

| Quick Quiz 5.3 4

A baseball of mass m is thrown upward with some initial speed. If air resistance is neglected,
what forces are acting on the ball when it reaches (a) half its maximum height and (b) its

maximum height?

9.6 _~ NEWTON’S THIRD LAW

(@’ If you press against a corner of this textbook with your fingertip, the book pushes

45 back and makes a small dent in your skin. If you push harder, the book does the
same and the dent in your skin gets a little larger. This simple experiment illus-
trates a general principle of critical importance known as Newton’s third law:

If two objects interact, the force Fyy exerted by object 1 on object 2 is equal in
magnitude to and opposite in direction to the force Fo; exerted by object 2 on

object 1:

Newton’s third law

F12 = _F21 (5.7)

This law, which is illustrated in Figure 5.6a, states that a force that affects the mo-
tion of an object must come from a second, external, object. The external object, in
turn, is subject to an equal-magnitude but oppositely directed force exerted on it.

(b)

Figure 5.6 Newton’s third law. (a) The force Fyy exerted by object 1 on object 2 is equal in
magnitude to and opposite in direction to the force Fy; exerted by object 2 on object 1. (b) The
force Fy,,, exerted by the hammer on the nail is equal to and opposite the force F,;, exerted by

the nail on the hammer.



5.6 Newton’s Third Law

This is equivalent to stating that a single isolated force cannot exist. The force
that object 1 exerts on object 2 is sometimes called the action force, while the force
object 2 exerts on object 1 is called the reaction force. In reality, either force can be
labeled the action or the reaction force. The action force is equal in magnitude
to the reaction force and opposite in direction. In all cases, the action and
reaction forces act on different objects. For example, the force acting on a
freely falling projectile is F, = mg, which is the force of gravity exerted by the
Earth on the projectile. The reaction to this force is the force exerted by the pro-
jectile on the Earth, F, = —F,. The reaction force F, accelerates the Earth toward
the projectile just as the action force F, accelerates the projectile toward the Earth.
However, because the Earth has such a great mass, its acceleration due to this reac-
tion force is negligibly small.

Another example of Newton’s third law is shown in Figure 5.6b. The force ex-
erted by the hammer on the nail (the action force Fy,;) is equal in magnitude and
opposite in direction to the force exerted by the nail on the hammer (the reaction
force F;,). It is this latter force that causes the hammer to stop its rapid forward
motion when it strikes the nail.

You experience Newton’s third law directly whenever you slam your fist against
a wall or kick a football. You should be able to identify the action and reaction
forces in these cases.

A person steps from a boat toward a dock. Unfortunately, he forgot to tie the boat to the
dock, and the boat scoots away as he steps from it. Analyze this situation in terms of New-
ton’s third law.

The force of gravity F, was defined as the attractive force the Earth exerts on
an object. If the object is a TV at rest on a table, as shown in Figure 5.7a, why does
the TV not accelerate in the direction of F,? The TV does not accelerate because
the table holds it up. What is happening is that the table exerts on the TV an up-
ward force n called the normal force.* The normal force is a contact force that
prevents the TV from falling through the table and can have any magnitude
needed to balance the downward force Fg, up to the point of breaking the table. If
someone stacks books on the TV, the normal force exerted by the table on the TV
increases. If someone lifts up on the TV, the normal force exerted by the table on
the TV decreases. (The normal force becomes zero if the TV is raised off the table.)

The two forces in an action-reaction pair always act on different objects.
For the hammer-and-nail situation shown in Figure 5.6b, one force of the pair acts
on the hammer and the other acts on the nail. For the unfortunate person step-
ping out of the boat in Quick Quiz 5.4, one force of the pair acts on the person,
and the other acts on the boat.

For the TV in Figure 5.7, the force of gravity Fg and the normal force n are not
an action—reaction pair because they act on the same body—the TV. The two re-
action forces in this situation—F, and n’ —are exerted on objects other than the
TV. Because the reaction to F, is the force F, exerted by the TV on the Earth and
the reaction to n is the force n’ exerted by the TV on the table, we conclude that

Fg=—Fé and n=-—-n

4 Normalin this context means perpendicular.
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Compression of a football as the
force exerted by a player’s foot sets
the ball in motion.

Definition of normal force
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(a) (b)

Figure 5.7 When a TV is at rest on a table, the forces acting on the TV are the normal force n
and the force of gravity F,, as illustrated in part (b). The reaction to n is the force n’ exerted by
the TV on the table. The reaction to F, is the force F;exerted by the TV on the Earth.

The forces n and n’ have the same magnitude, which is the same as that of Fg until
the table breaks. From the second law, we see that, because the TV is in equilib-
rium (a = 0), it follows® that Fy=n=mg

| Quick Quiz 5.5 4

If a fly collides with the windshield of a fast-moving bus, (a) which experiences the greater im-
pact force: the fly or the bus, or is the same force experienced by both? (b) Which experiences
the greater acceleration: the fly or the bus, or is the same acceleration experienced by both?

CONCEPTUAL EXAMPLE 5.3

A large man and a small boy stand facing each other on fric-
tionless ice. They put their hands together and push against
each other so that they move apart. (a) Who moves away with
the higher speed?

Solution This situation is similar to what we saw in Quick
Quiz 5.5. According to Newton’s third law, the force exerted
by the man on the boy and the force exerted by the boy on
the man are an action—reaction pair, and so they must be
equal in magnitude. (A bathroom scale placed between their
hands would read the same, regardless of which way it faced.)

You Push Me and I'll Push You

Therefore, the boy, having the lesser mass, experiences the
greater acceleration. Both individuals accelerate for the same
amount of time, but the greater acceleration of the boy over
this time interval results in his moving away from the interac-
tion with the higher speed.

(b) Who moves farther while their hands are in contact?
Solution Because the boy has the greater acceleration, he

moves farther during the interval in which the hands are in
contact.

5 Technically, we should write this equation in the component form Fy, = ny = mg,. This component
notation is cumbersome, however, and so in situations in which a vector is parallel to a coordinate axis,

we usually do not include the subscript for that axis because there is no other component.
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5.7 _~ SOME APPLICATIONS OF NEWTON’S LAWS

2) In this section we apply Newton’s laws to objects that are either in equilibrium
46 (a = 0) or accelerating along a straight line under the action of constant external
forces. We assume that the objects behave as particles so that we need not worry
about rotational motion. We also neglect the effects of friction in those problems
involving motion; this is equivalent to stating that the surfaces are frictionless. Fi-
nally, we usually neglect the mass of any ropes involved. In this approximation, the
magnitude of the force exerted at any point along a rope is the same at all points
along the rope. In problem statements, the synonymous terms light, lightweight, and
of negligible mass are used to indicate that a mass is to be ignored when you work
the problems.

When we apply Newton’s laws to an object, we are interested only in ex-
ternal forces that act on the object. For example, in Figure 5.7 the only external
forces acting on the TV are n and Fg. The reactions to these forces, n’ and F/,, act
on the table and on the Earth, respectively, and therefore do not appear in New-
ton’s second law applied to the TV.

When a rope attached to an object is pulling on the object, the rope exerts a
force T on the object, and the magnitude of that force is called the tension in the
rope. Because it is the magnitude of a vector quantity, tension is a scalar quantity.

Consider a crate being pulled to the right on a frictionless, horizontal surface,
as shown in Figure 5.8a. Suppose you are asked to find the acceleration of the
crate and the force the floor exerts on it. First, note that the horizontal force be-
ing applied to the crate acts through the rope. Use the symbol T to denote the
force exerted by the rope on the crate. The magnitude of T is equal to the tension
in the rope. A dotted circle is drawn around the crate in Figure 5.8a to remind you
that you are interested only in the forces acting on the crate. These are illustrated
in Figure 5.8b. In addition to the force T, this force diagram for the crate includes
the force of gravity F, and the normal force n exerted by the floor on the crate.
Such a force diagram, referred to as a free-body diagram, shows all external
forces acting on the object. The construction of a correct free-body diagram is an
important step in applying Newton’s laws. The reactions to the forces we have
listed —namely, the force exerted by the crate on the rope, the force exerted by
the crate on the Earth, and the force exerted by the crate on the floor—are not in-
cluded in the free-body diagram because they act on other bodies and not on the
crate.

We can now apply Newton’s second law in component form to the crate. The
only force acting in the x direction is T. Applying 2F, = ma, to the horizontal mo-
tion gives

2 F,=T= ma, or

ay = —
m
No acceleration occurs in the y direction. Applying 2F, = ma, with a, =0
yields

n=F

n + (—Fg) =0 or P

That is, the normal force has the same magnitude as the force of gravity but is in
the opposite direction.

If T is a constant force, then the acceleration a, = T/m also is constant.
Hence, the constant-acceleration equations of kinematics from Chapter 2 can be
used to obtain the crate’s displacement Ax and velocity v, as functions of time. Be-
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Tension

(b)

Figure 5.8 (a) A crate being
pulled to the right on a frictionless
surface. (b) The free-body diagram
representing the external forces
acting on the crate.
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Figure 5.9 When one object
pushes downward on another ob-
ject with a force F, the normal
force n is greater than the force of
gravity: n = F, + F.

T =T

Figure 5.10 (a) A lamp sus-
pended from a ceiling by a chain of
negligible mass. (b) The forces act-
ing on the lamp are the force of
gravity F,and the force exerted by
the chain T. (c) The forces acting
on the chain are the force exerted
by the lamp T’ and the force ex-
erted by the ceiling T".

CHAPTER 5 The Laws of Motion

cause a, = T/m = constant, Equations 2.8 and 2.11 can be written as

T
Uyr = Uy + ; t

T

1

Ax = vt + 2<—>t2
m

In the situation just described, the magnitude of the normal force n is equal to
the magnitude of F,, but this is not always the case. For example, suppose a book
is lying on a table and you push down on the book with a force F, as shown in Fig-
ure 5.9. Because the book is at rest and therefore not accelerating, EFJ, = 0, which
gives n — F, — F= 0, or n= F, + F. Other examples in which n # F, are pre-
sented later.

Consider a lamp suspended from a light chain fastened to the ceiling, as in
Figure 5.10a. The free-body diagram for the lamp (Figure 5.10b) shows that the
forces acting on the lamp are the downward force of gravity F, and the upward
force T exerted by the chain. If we apply the second law to the lamp, noting that
a = 0, we see that because there are no forces in the x direction, 3F, = 0 provides
no helpful information. The condition %F, = ma, = 0 gives

SFE=T-F,=0 o T=F,
Again, note that T and F, are not an action—reaction pair because they act on the
same object—the lamp. The reaction force to T is T', the downward force exerted
by the lamp on the chain, as shown in Figure 5.10c. The ceiling exerts on the
chain a force T” that is equal in magnitude to the magnitude of T’ and points in
the opposite direction.

Problem-Solving Hints
Applying Newton's Laws

The following procedure is recommended when dealing with problems involv-
ing Newton’s laws:

® Draw a simple, neat diagram of the system.

¢ Isolate the object whose motion is being analyzed. Draw a free-body diagram
for this object. For systems containing more than one object, draw separate
free-body diagrams for each object. Do not include in the free-body diagram
forces exerted by the object on its surroundings. Establish convenient coor-
dinate axes for each object and find the components of the forces along
these axes.

* Apply Newton’s second law, 2F = ma, in component form. Check your di-
mensions to make sure that all terms have units of force.

® Solve the component equations for the unknowns. Remember that you must
have as many independent equations as you have unknowns to obtain a
complete solution.

® Make sure your results are consistent with the free-body diagram. Also check
the predictions of your solutions for extreme values of the variables. By do-
ing so, you can often detect errors in your results.
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EXAMPLE 5.4 A Traffic Light at Rest

A traffic light weighing 125 N hangs from a cable tied to two
other cables fastened to a support. The upper cables make
angles of 37.0° and 53.0° with the horizontal. Find the ten-
sion in the three cables.

Solution Figure 5.11a shows the type of drawing we might
make of this situation. We then construct two free-body dia-
grams—one for the traffic light, shown in Figure 5.11b, and
one for the knot that holds the three cables together, as seen
in Figure 5.11c. This knot is a convenient object to choose be-
cause all the forces we are interested in act through it. Be-
cause the acceleration of the system is zero, we know that the
net force on the light and the net force on the knot are both
zero.

In Figure 5.11b the force Tj exerted by the vertical cable

supports the light, and so T3 = F,= 125N. Next, we

choose the coordinate axes shown in Figure 5.11c and resolve
the forces acting on the knot into their components:

Force x Component y Component
T, — Ty cos 87.0° T, sin 37.0°
Ty Ty cos 53.0° Ty sin 53.0°
Ts 0 —125N

Knowing that the knot is in equilibrium (a = 0) allows us to
write

Figure 5.11

125

(1) X F,=—T cos37.0° + Tycos53.0° = 0

(2) X F,= Tysin37.0° + Tysin 53.0°
+ (125 N) = 0

From (1) we see that the horizontal components of T} and Ty
must be equal in magnitude, and from (2) we see that the
sum of the vertical components of T; and Ty must balance
the weight of the light. We solve (1) for 75 in terms of 7; to
obtain

T = T(cos?>7.0°> — 1337
2 \ cos 53.0° ' !

This value for 7 is substituted into (2) to yield

Ty sin 37.0° + (1.3377) (sin 53.0°) — 125N =0

T,= 751N

Ty 99.9 N

1887, =

This problem is important because it combines what we have
learned about vectors with the new topic of forces. The gen-
eral approach taken here is very powerful, and we will repeat
it many times.

Exercise In what situation does T} = Ty?

Answer When the two cables attached to the support make
equal angles with the horizontal.

37.09

(b) (©)

(a) A traffic light suspended by cables. (b) Free-body diagram for the traf-

fic light. (c) Free-body diagram for the knot where the three cables are joined.
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CONCEPTUAL EXAMPLE 5.5

In a train, the cars are connected by couplers, which are under
tension as the locomotive pulls the train. As you move down
the train from locomotive to caboose, does the tension in the
couplers increase, decrease, or stay the same as the train
speeds up? When the engineer applies the brakes, the cou-
plers are under compression. How does this compression
force vary from locomotive to caboose? (Assume that only the
brakes on the wheels of the engine are applied.)

Solution As the train speeds up, the tension decreases
from the front of the train to the back. The coupler between

The Laws of Motion

Forces Between Cars in a Train

the locomotive and the first car must apply enough force to
accelerate all of the remaining cars. As you move back along
the train, each coupler is accelerating less mass behind it.
The last coupler has to accelerate only the caboose, and so it
is under the least tension.

When the brakes are applied, the force again decreases
from front to back. The coupler connecting the locomotive
to the first car must apply a large force to slow down all the
remaining cars. The final coupler must apply a force large
enough to slow down only the caboose.

EXAMPLE 5.6 Crate on a Frictionless Incline

A crate of mass m is placed on a frictionless inclined plane of
angle 0. (a) Determine the acceleration of the crate after it is
released.

Solution Because we know the forces acting on the crate,
we can use Newton’s second law to determine its accelera-
tion. (In other words, we have classified the problem; this
gives us a hint as to the approach to take.) We make a sketch
as in Figure 5.12a and then construct the free-body diagram
for the crate, as shown in Figure 5.12b. The only forces acting
on the crate are the normal force n exerted by the inclined
plane, which acts perpendicular to the plane, and the force
of gravity F, = mg, which acts vertically downward. For prob-
lems involving inclined planes, it is convenient to choose the
coordinate axes with x downward along the incline and y per-
pendicular to it, as shown in Figure 5.12b. (It is possible to
solve the problem with “standard” horizontal and vertical
axes. You may want to try this, just for practice.) Then, we re-

mg cos 0

0\7/ mg

~
/ ~
~

(a) (b)

Figure 5.12 (a) A crate of mass m sliding down a frictionless in-
cline. (b) The free-body diagram for the crate. Note that its accelera-
tion along the incline is gsin 6.

place the force of gravity by a component of magnitude
mg sin 0 along the positive x axis and by one of magnitude
mg cos 0 along the negative y axis.

Now we apply Newton’s second law in component form,
noting that a, = 0:

(1) EF,C= mgsin 0 = ma,
(2) EFy= n — mgcos 6 =0

Solving (1) for a,, we see that the acceleration along the incline
is caused by the component of Fy directed down the incline:

(3) a, = gsin 0

Note that this acceleration component is independent of the
mass of the crate! It depends only on the angle of inclination
and on g.

From (2) we conclude that the component of F, perpendic-
ular to the incline is balanced by the normal force; that is, n =
mg cos 6. This is one example of a situation in which the nor-
mal force is not equal in magnitude to the weight of the object.

Special Cases Looking over our results, we see that in the
extreme case of 6 = 90°, a, = g and n = 0. This condition
corresponds to the crate’s being in free fall. When 6 = 0,
a, = 0 and n = mg (its maximum value); in this case, the
crate is sitting on a horizontal surface.

(b) Suppose the crate is released from rest at the top of
the incline, and the distance from the front edge of the crate
to the bottom is d. How long does it take the front edge to
reach the bottom, and what is its speed just as it gets there?

Solution Because a, = constant, we can apply Equation
211, xp— x; = vyt + %axtg, to analyze the crate’s motion.
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With the displacement x; — x; = d and v,; = 0, we obtain

d= %axt2

O
Ay gsin 6

Using Equation 2.12, vfo =uv,2+ 2a(x;— x;), with v,; = 0,
we find that

vfo = 2a,d
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(5)  uy="2a,d= \2gdsin 6

We see from equations (4) and (5) that the time ¢ needed to
reach the bottom and the speed vy, like acceleration, are in-
dependent of the crate’s mass. This suggests a simple method
you can use to measure g, using an inclined air track: Mea-
sure the angle of inclination, some distance traveled by a cart
along the incline, and the time needed to travel that dis-
tance. The value of gcan then be calculated from (4).

EXAMPLE 5.7 One Block Pushes Another

Two blocks of masses m; and mg are placed in contact with
each other on a frictionless horizontal surface. A constant
horizontal force F is applied to the block of mass m;. (a) De-
termine the magnitude of the acceleration of the two-block
system.

Solution Common sense tells us that both blocks must ex-
perience the same acceleration because they remain in con-
tact with each other. Just as in the preceding example, we
make a labeled sketch and free-body diagrams, which are
shown in Figure 5.13. In Figure 5.13a the dashed line indi-
cates that we treat the two blocks together as a system. Be-
cause F is the only external horizontal force acting on the sys-
tem (the two blocks), we have

EFx(system) =F= (m + mo)a,

F
(1) Uy = """
my + mo
F /// \\\
—— M m2| )
(a)
m
Dy
y
F P’ P
— —
X
my Mo
mg 28

(b) (c)
Figure 5.13

Treating the two blocks together as a system simplifies the
solution but does not provide information about internal
forces.

(b) Determine the magnitude of the contact force be-
tween the two blocks.

Solution To solve this part of the problem, we must treat
each block separately with its own free-body diagram, as in
Figures 5.13b and 5.13c. We denote the contact force by P.
From Figure 5.13c, we see that the only horizontal force act-
ing on block 2 is the contact force P (the force exerted by
block 1 on block 2), which is directed to the right. Applying
Newton’s second law to block 2 gives

@) Y F.=P=mga,

Substituting into (2) the value of a, given by (1), we obtain

my
(3) P=moa, = |—2—|F
my A mo

From this result, we see that the contact force P exerted by
block 1 on block 2 is less than the applied force F. This is con-
sistent with the fact that the force required to accelerate
block 2 alone must be less than the force required to pro-
duce the same acceleration for the two-block system.

It is instructive to check this expression for P by consider-
ing the forces acting on block 1, shown in Figure 5.13b. The
horizontal forces acting on this block are the applied force F
to the right and the contact force P’ to the left (the force ex-
erted by block 2 on block 1). From Newton’s third law, P’ is
the reaction to P, so that |P’| = |P|. Applying Newton’s sec-
ond law to block 1 produces

(4)  YF,=F-P =F—P=ma,
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Substituting into (4) the value of a, from (1), we obtain

mlF mo
P=F—ma,=F— . r
m1+m2 m1+m2

This agrees with (3), as it must.

The Laws of Motion

Exercise 1If m; = 4.00 kg, mo = 3.00 kg, and F= 9.00 N,
find the magnitude of the acceleration of the system and the
magnitude of the contact force.

Answer a,= 129 m/s% P= 3.86 N.

EXAMPLE 5.8  Weighing a Fish in an Elevator

A person weighs a fish of mass m on a spring scale attached to
the ceiling of an elevator, as illustrated in Figure 5.14. Show
that if the elevator accelerates either upward or downward,
the spring scale gives a reading that is different from the
weight of the fish.

Solution The external forces acting on the fish are the
downward force of gravity F, = mg and the force T exerted
by the scale. By Newton’s third law, the tension 7 is also the
reading of the scale. If the elevator is either at rest or moving
at constant velocity, the fish is not accelerating, and so
3Fy=T— mg=0or T'= mg (remember that the scalar mg

is the weight of the fish).

(a)

/7,

If the elevator moves upward with an acceleration a rela-
tive to an observer standing outside the elevator in an inertial
frame (see Fig. 5.14a), Newton’s second law applied to the
fish gives the net force on the fish:

(1) EF), =T~ mg= ma,

where we have chosen upward as the positive direction. Thus,
we conclude from (1) that the scale reading 7 is greater than
the weight mg if a is upward, so that a, is positive, and that
the reading is less than mg if a is downward, so that a, is
negative.

For example, if the weight of the fish is 40.0 N and a is up-

ward, so that ay = +2.00 m/s?, the scale reading from (1) is

(b)

Observer in
inertial frame

Figure 5.14 Apparent weight versus true weight. (a) When the elevator accelerates upward, the
spring scale reads a value greater than the weight of the fish. (b) When the elevator accelerates down-
ward, the spring scale reads a value less than the weight of the fish.
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a,
(2)  T=may+ mg= mg(i-i-l)
g

2.00 m/s? )
= 400N) | —~
( ) ( 9.80 m/s2

= 482N
If a is downward so that a, = —2.00 m/s2, then (2) gives us
a, —2.00 m/s?
T= —2 4+1)= (400N <7 >
me < ) ( '\ 980 m/s?

&E

= 318N
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Hence, if you buy a fish by weight in an elevator, make
sure the fish is weighed while the elevator is either at rest or
accelerating downward! Furthermore, note that from the in-
formation given here one cannot determine the direction of
motion of the elevator.

Special Cases If the elevator cable breaks, the elevator
falls freely and a; = —g. We see from (2) that the scale read-
ing T'is zero in this case; that is, the fish appears to be weight-
less. If the elevator accelerates downward with an accelera-
tion greater than g the fish (along with the person in the
elevator) eventually hits the ceiling because the acceleration
of fish and person is still that of a freely falling object relative
to an outside observer.

EXAMPLE 5.9 Atwood's Machine

When two objects of unequal mass are hung vertically over a
frictionless pulley of negligible mass, as shown in Figure
5.15a, the arrangement is called an Atwood machine. The de-

T
T
‘/ 1y \\w
\ 4
d
mg

mog
(b)
Figure 5.15 Atwood’s machine. (a) Two objects (mg > m;) con-

nected by a cord of negligible mass strung over a frictionless pulley.
(b) Free-body diagrams for the two objects.

vice is sometimes used in the laboratory to measure the free-
fall acceleration. Determine the magnitude of the accelera-
tion of the two objects and the tension in the lightweight
cord.

Solution If we were to define our system as being made
up of both objects, as we did in Example 5.7, we would have
to determine an internal force (tension in the cord). We must
define two systems here—one for each object—and apply
Newton’s second law to each. The free-body diagrams for the
two objects are shown in Figure 5.15b. Two forces act on each
object: the upward force T exerted by the cord and the down-
ward force of gravity.

We need to be very careful with signs in problems such as
this, in which a string or rope passes over a pulley or some
other structure that causes the string or rope to bend. In Fig-
ure 5.15a, notice that if object 1 accelerates upward, then ob-
ject 2 accelerates downward. Thus, for consistency with signs,
if we define the upward direction as positive for object 1, we
must define the downward direction as positive for object 2.
With this sign convention, both objects accelerate in the
same direction as defined by the choice of sign. With this sign
convention applied to the forces, the y component of the net
force exerted on object 1is T"— m; g, and the y component of
the net force exerted on object 2 is mog — T. Because the ob-
jects are connected by a cord, their accelerations must be
equal in magnitude. (Otherwise the cord would stretch or
break as the distance between the objects increased.) If we as-
sume mg > my, then object 1 must accelerate upward and ob-
ject 2 downward.

When Newton’s second law is applied to object 1, we
obtain

1) XF=T-mg
Similarly, for object 2 we find

@) X F, = mog— T = moa,

my Lly
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When (2) is added to (1), T drops out and we get

—myg + meg = mya, + Mmody

@) %:(@;li%

m1+m2

When (3) is substituted into (1), we obtain

2m1m2 )
4 T=|—"2
( ) <m1 aF mQ g

The result for the acceleration in (3) can be interpreted as

The Laws of Motion

the ratio of the unbalanced force on the system (mog — m;g)
to the total mass of the system (m; + mog), as expected from
Newton’s second law.

Special Cases When m; = mg, then ¢, = 0 and T = mg,
as we would expect for this balanced case. If mg >> m;, then
a, = g (a freely falling body) and T'= 2m; g.

Exercise Find the magnitude of the acceleration and the
string tension for an Atwood machine in which m; = 2.00 kg
and mg = 4.00 kg.

a, = 3.27m/s?, T=26.1 N.

Answer a,

*

EXAMPLE 5.10

A ball of mass m; and a block of mass my are attached by a
lightweight cord that passes over a frictionless pulley of negli-
gible mass, as shown in Figure 5.16a. The block lies on a fric-
tionless incline of angle 6. Find the magnitude of the acceler-
ation of the two objects and the tension in the cord.

Solution Because the objects are connected by a cord
(which we assume does not stretch), their accelerations have
the same magnitude. The free-body diagrams are shown in
Figures 5.16b and 5.16c. Applying Newton’s second law in
component form to the ball, with the choice of the upward
direction as positive, yields

1) =0
(2) EFy =T— mg= ma, = ma

Note that in order for the ball to accelerate upward, it is nec-
essary that 7> myg In (2) we have replaced a, with a be-
cause the acceleration has only a y component.

For the block it is convenient to choose the positive x" axis
along the incline, as shown in Figure 5.16c. Here we choose
the positive direction to be down the incline, in the + x" di-

T

p

[ my /%x

\\7 > 4
17”1 g

(a) (b)

mgg cos @

Acceleration of Two Objects Connected by a Cord

rection. Applying Newton’s second law in component form to
the block gives

(3) X Fy = mygsin 0 — T = myay = mea
(4) X Fy=mn— mygcos =0

In (3) we have replaced a, with a because that is the accelera-
tion’s only component. In other words, the two objects have ac-
celerations of the same magnitude a, which is what we are trying
to find. Equations (1) and (4) provide no information regard-
ing the acceleration. However, if we solve (2) for 7 and then
substitute this value for T'into (3) and solve for a, we obtain

mogsin 6 — m g

(5) a=

my aF mo
When this value for a is substituted into (2), we find

mymog(sin 6 + 1)

(6) T=

m1+m2

Figure 5.16 (a) Two objects
connected by a lightweight cord
strung over a frictionless pulley.
(b) Free-body diagram for the
ball. (c) Free-body diagram for
the block. (The incline is friction-
less.)
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Note that the block accelerates down the incline only if  Exercise If m; = 10.0 kg, my = 5.00 kg, and 6 = 45.0°, find
mgy sin 6 > my (that is, if a is in the direction we assumed). If  the acceleration of each object.
my > my sin 6, then the acceleration is up the incline for the
block and downward for the ball. Also note that the result for
the acceleration (5) can be interpreted as the resultant force ~Answer a = —4.22 m/s?, where the negative sign indicates
acting on the system divided by the total mass of the system; this  that the block accelerates up the incline and the ball acceler-
is consistent with Newton’s second law. Finally, if 6 = 90°, then  ates downward.
the results for ¢ and T are identical to those of Example 5.9.

5.8 ~ FORCES OF FRICTION

When a body is in motion either on a surface or in a viscous medium such as air or
water, there is resistance to the motion because the body interacts with its sur-
roundings. We call such resistance a force of friction. Forces of friction are very
important in our everyday lives. They allow us to walk or run and are necessary for
the motion of wheeled vehicles.

Have you ever tried to move a heavy desk across a rough floor? You push
harder and harder until all of a sudden the desk seems to “break free” and subse-
quently moves relatively easily. It takes a greater force to start the desk moving
than it does to keep it going once it has started sliding. To understand why this
happens, consider a book on a table, as shown in Figure 5.17a. If we apply an ex-
ternal horizontal force F to the book, acting to the right, the book remains station-
ary if F is not too great. The force that counteracts F and keeps the book from
moving acts to the left and is called the frictional force f.

As long as the book is not moving, /= F. Because the book is stationary, we
call this frictional force the force of static friction f;. Experiments show that this Force of static friction
force arises from contacting points that protrude beyond the general level of the
surfaces in contact, even for surfaces that are apparently very smooth, as shown in
the magnified view in Figure 5.17a. (If the surfaces are clean and smooth at the
atomic level, they are likely to weld together when contact is made.) The frictional
force arises in part from one peak’s physically blocking the motion of a peak from
the opposing surface, and in part from chemical bonding of opposing points as
they come into contact. If the surfaces are rough, bouncing is likely to occur, fur-
ther complicating the analysis. Although the details of friction are quite complex
at the atomic level, this force ultimately involves an electrical interaction between
atoms or molecules.

If we increase the magnitude of F, as shown in Figure 5.17b, the magnitude of
f; increases along with it, keeping the book in place. The force f; cannot increase
indefinitely, however. Eventually the surfaces in contact can no longer supply suffi-
cient frictional force to counteract F, and the book accelerates. When it is on the
verge of moving, f; is a maximum, as shown in Figure 5.17c. When F exceeds f; .,
the book accelerates to the right. Once the book is in motion, the retarding fric-
tional force becomes less than f .« (see Fig. 5.17c¢). When the book is in motion,
we call the retarding force the force of kinetic friction f,. If /"= f;, then the Force of kinetic friction
book moves to the right with constant speed. If > f;, then there is an unbalanced
force F — f;, in the positive x direction, and this force accelerates the book to the
right. If the applied force F is removed, then the frictional force f;, acting to the
left accelerates the book in the negative x direction and eventually brings it to rest.

Experimentally, we find that, to a good approximation, both f . and f; are
proportional to the normal force acting on the book. The following empirical laws
of friction summarize the experimental observations:
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Figure 5.17 The direction of the force of friction f between a book and a rough surface is op-
posite the direction of the applied force F. Because the two surfaces are both rough, contact is
made only at a few points, as illustrated in the “magnified” view. (a) The magnitude of the force
of static friction equals the magnitude of the applied force. (b) When the magnitude of the ap-
plied force exceeds the magnitude of the force of kinetic friction, the book accelerates to the
right. (c) A graph of frictional force versus applied force. Note that f .« > f;.

¢ The direction of the force of static friction between any two surfaces in contact with
each other is opposite the direction of relative motion and can have values

fs = mn (5.8)

where the dimensionless constant w, is called the coefficient of static friction
and = is the magnitude of the normal force. The equality in Equation 5.8 holds
when one object is on the verge of moving, that is, when f; = f .« = usn. The
inequality holds when the applied force is less than wn.
¢ The direction of the force of kinetic friction acting on an object is opposite the
direction of the object’s sliding motion relative to the surface applying the fric-
tional force and is given by
Je = pn (5.9)

where u, is the coefficient of kinetic friction.

¢ The values of u; and u, depend on the nature of the surfaces, but w; is generally
less than w,. Typical values range from around 0.03 to 1.0. Table 5.2 lists some
reported values.
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TABLE 5.2 Coefficients of Friction?

Ms Mk
Steel on steel 0.74 0.57
Aluminum on steel 0.61 0.47
Copper on steel 0.53 0.36
Rubber on concrete 1.0 0.8
Wood on wood 0.25-0.5 0.2
Glass on glass 0.94 0.4
Waxed wood on wet snow 0.14 0.1
Waxed wood on dry snow — 0.04
Metal on metal (lubricated) 0.15 0.06
Ice on ice 0.1 0.03
Teflon on Teflon 0.04 0.04
Synovial joints in humans 0.01 0.003

% All values are approximate. In some cases, the coefficient of fric-
tion can exceed 1.0.

e The coefficients of friction are nearly independent of the area of contact be-
tween the surfaces. To understand why, we must examine the difference be-
tween the apparent contact area, which is the area we see with our eyes, and the
real contact area, represented by two irregular surfaces touching, as shown in the
magnified view in Figure 5.17a. It seems that increasing the apparent contact
area does not increase the real contact area. When we increase the apparent
area (without changing anything else), there is less force per unit area driving
the jagged points together. This decrease in force counteracts the effect of hav-
ing more points involved.

Although the coefficient of kinetic friction can vary with speed, we shall usu-
ally neglect any such variations in this text. We can easily demonstrate the approxi-
mate nature of the equations by trying to get a block to slip down an incline at
constant speed. Especially at low speeds, the motion is likely to be characterized by
alternate episodes of sticking and movement.

=] Ouick Quiz 5.5 8

A crate is sitting in the center of a flatbed truck. The truck accelerates to the right, and the
crate moves with it, not sliding at all. What is the direction of the frictional force exerted by
the truck on the crate? (a) To the left. (b) To the right. (c) No frictional force because the
crate is not sliding.

CONCEPTUAL EXAMPLE 5.11 Why Does the Sled Accelerate?

Solution
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If you would like to learn more
about this subject, read the article
“Friction at the Atomic Scale” by J.
Krim in the October 1996 issue of
Scientific American.

QuickLab ~

Can you apply the ideas of Example
5.12 to determine the coefficients of
static and kinetic friction between the
cover of your book and a quarter?
What should happen to those coeffi-
cients if you make the measurements
between your book and {wo quarters
taped one on top of the other?

A horse pulls a sled along a level, snow-covered road, causing
the sled to accelerate, as shown in Figure 5.18a. Newton’s
third law states that the sled exerts an equal and opposite
force on the horse. In view of this, how can the sled acceler-
ate? Under what condition does the system (horse plus sled)
move with constant velocity?

It is important to remember that the forces de-
scribed in Newton’s third law act on different objects—the
horse exerts a force on the sled, and the sled exerts an equal-
magnitude and oppositely directed force on the horse. Be-
cause we are interested only in the motion of the sled, we do
not consider the forces it exerts on the horse. When deter-
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Figure 5.18

mining the motion of an object, you must add only the forces
on that object. The horizontal forces exerted on the sled are
the forward force T exerted by the horse and the backward
force of friction f.q between sled and snow (see Fig. 5.18b).
When the forward force exceeds the backward force, the sled
accelerates to the right.

The force that accelerates the system (horse plus sled) is
the frictional force fj,,s exerted by the Earth on the horse’s
feet. The horizontal forces exerted on the horse are the for-
ward force £, exerted by the Earth and the backward ten-
sion force T exerted by the sled (Fig. 5.18c). The resultant of

these two forces causes the horse to accelerate. When fi,g .
balances f;j.q, the system moves with constant velocity.

Exercise Are the normal force exerted by the snow on the
horse and the gravitational force exerted by the Earth on the
horse a third-law pair?

Answer No, because they act on the same object. Third-law
force pairs are equal in magnitude and opposite in direction,
and the forces act on different objects.

ExXAMPLE 5.12

The following is a simple method of measuring coefficients of
friction: Suppose a block is placed on a rough surface in-
clined relative to the horizontal, as shown in Figure 5.19. The
incline angle is increased until the block starts to move. Let
us show that by measuring the critical angle 6, at which this
slipping just occurs, we can obtain ;.

Solution The only forces acting on the block are the force
of gravity mg, the normal force n, and the force of static fric-
tion f;. These forces balance when the block is on the verge

Figure 5.19 The external forces exerted on a block lying on a
rough incline are the force of gravity mg, the normal force n, and
the force of friction f. For convenience, the force of gravity is re-
solved into a component along the incline mgsin 6 and a component
perpendicular to the incline mg cos 6.

Experimental Determination of ugand

of slipping but has not yet moved. When we take x to be par-
allel to the plane and y perpendicular to it, Newton’s second
law applied to the block for this balanced situation gives

Static case: (1) EFx = mgsin 0 — f; = ma, =0
(2) 2Fy= n — mgcos 0 = ma, =0

We can eliminate mg by substituting mg = n/cos 6 from
(2) into (1) to get

(3) ﬁ.=mgsin0=< )sin0=ntan9

cos 0
When the incline is at the critical angle 6,, we know that f =
Jsmax = M7, and so at this angle, (3) becomes

M = ntan 6,

Static case: Mg = tan 6,

For example, if the block just slips at 6, = 20°, then we find
that p, = tan 20° = 0.364.

Once the block starts to move at 6 = 6., it accelerates
down the incline and the force of friction is f, = u;n. How-
ever, if 6 is reduced to a value less than 6,, it may be possible
to find an angle 6 such that the block moves down the in-
cline with constant speed (a, = 0). In this case, using (1) and

(2) with f replaced by f, gives
Kinetic case: Wi = tan 6,

where 6, < 6,.
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EXAMPLE 5.13  The Sliding Hockey Puck

A hockey puck on a frozen pond is given an initial speed of
20.0 m/s. If the puck always remains on the ice and slides
115 m before coming to rest, determine the coefficient of ki-
netic friction between the puck and ice.

Solution The forces acting on the puck after it is in mo-
tion are shown in Figure 5.20. If we assume that the force of
kinetic friction f, remains constant, then this force produces
a uniform acceleration of the puck in the direction opposite
its velocity, causing the puck to slow down. First, we find this
acceleration in terms of the coefficient of kinetic friction, us-
ing Newton’s second law. Knowing the acceleration of the
puck and the distance it travels, we can then use the equa-
tions of kinematics to find the coefficient of kinetic friction.

n
b ‘I

mg

Motion

Figure §.20 Afier the puck is given an initial velocity to the right,
the only external forces acting on it are the force of gravity mg, the
normal force n, and the force of kinetic friction f,.

5.8 Forces of Friction 135

Defining rightward and upward as our positive directions,
we apply Newton’s second law in component form to the
puck and obtain

() XF =~/ = ma,
(2) EFy=n—mg=O

But f;, = u;n, and from (2) we see that n = mg. Therefore,
(1) becomes

(ay = 0)

T M = T Mgmg = My
ay = — Mg
The negative sign means the acceleration is to the left; this
means that the puck is slowing down. The acceleration is in-
dependent of the mass of the puck and is constant because
we assume that u;, remains constant.

Because the acceleration is constant, we can use Equation
2.12, v,cf2 =v2+ 2a,(xp— x;),with x; = 0 and v, = 0:

v+ anf: v — Qngxf: 0
2

_ Ui
M, 2%,
(20.0 m/s)?
= = 01
M= 080m/D sm L7

Note that u;, is dimensionless.

EXAMPLE 5.14

A block of mass m; on a rough, horizontal surface is con-
nected to a ball of mass mg by a lightweight cord over a light-
weight, frictionless pulley, as shown in Figure 5.21a. A force
of magnitude Fat an angle 6 with the horizontal is applied to
the block as shown. The coefficient of kinetic friction be-
tween the block and surface is w;. Determine the magnitude
of the acceleration of the two objects.

Solution We start by drawing free-body diagrams for the
two objects, as shown in Figures 5.21b and 5.21c. (Are you be-
ginning to see the similarities in all these examples?) Next,
we apply Newton’s second law in component form to each
object and use Equation 5.9, f, = wxn. Then we can solve for
the acceleration in terms of the parameters given.

The applied force F has x and y components F cos 6 and
Fsin 6, respectively. Applying Newton’s second law to both
objects and assuming the motion of the block is to the right,
we obtain

Acceleration of Two Connected Objects When Friction Is Present

Motion of block: (1) EF,C =Fcos 0 — f, — T= ma,
= mpa
(2) EF},= n+ Fsin 6 — mg

=ma,=0

EF,C = moa, = 0

(3) EF}, =T~ mog = mga, = moa

Motion of ball:

Note that because the two objects are connected, we can
equate the magnitudes of the x component of the accelera-
tion of the block and the y component of the acceleration of
the ball. From Equation 5.9 we know that f; = u;n, and from
(2) we know that n = m; g — Fsin 0 (note that in this case n is
not equal to m g); therefore,

@) Ji = m(mg — Fsin 6)

That is, the frictional force is reduced because of the positive
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y component of F. Substituting (4) and the value of T from
(3) into (1) gives

Fcos 0 — uy(myg — Fsin 0) — mg(a + g) = mja

Solving for a, we obtain

F(cos 0 + wsin 0) — g(mo + upm)

(5)

a=

m1+m2

Figure 5.21

The Laws of Motion

Note that the acceleration of the block can be either to
the right or to the left,® depending on the sign of the numer-
ator in (5). If the motion is to the left, then we must reverse
the sign of f; in (1) because the force of kinetic friction must
oppose the motion. In this case, the value of a is the same as
in (5), with w; replaced by — ;.

Fsin 0
L " !
X

T 6

T
D Fcos 0
fk
-
| m2 )
mog mig

(b) (c)

(a) The external force F applied as shown can cause the block to accelerate to the right.

(b) and (c) The free-body diagrams, under the assumption that the block accelerates to the right and the
ball accelerates upward. The magnitude of the force of kinetic friction in this case is given by

fi = mgn = wp(myg — Fsin 6).

APPLICATION ~ Automobile Antilock Braking Systems (ABS)

If an automobile tire is rolling and not slipping on a road sur-
face, then the maximum frictional force that the road can ex-
ert on the tire is the force of static friction w,n. One must use
static friction in this situation because at the point of contact
between the tire and the road, no sliding of one surface over
the other occurs if the tire is not skidding. However, if the
tire starts to skid, the frictional force exerted on it is reduced
to the force of kinetic friction u;n. Thus, to maximize the
frictional force and minimize stopping distance, the wheels
must maintain pure rolling motion and not skid. An addi-
tional benefit of maintaining wheel rotation is that direc-
tional control is not lost as it is in skidding.

Unfortunately, in emergency situations drivers typically
press down as hard as they can on the brake pedal, “locking
the brakes.” This stops the wheels from rotating, ensuring a
skid and reducing the frictional force from the static to the
kinetic case. To address this problem, automotive engineers

have developed antilock braking systems (ABS) that very
briefly release the brakes when a wheel is just about to stop
turning. This maintains rolling contact between the tire and
the pavement. When the brakes are released momentarily,
the stopping distance is greater than it would be if the brakes
were being applied continuously. However, through the use
of computer control, the “brake-off” time is kept to a mini-
mum. As a result, the stopping distance is much less than
what it would be if the wheels were to skid.

Let us model the stopping of a car by examining real data.
In a recent issue of AutoWeek,” the braking performance for a
Toyota Corolla was measured. These data correspond to the
braking force acquired by a highly trained, professional dri-
ver. We begin by assuming constant acceleration. (Why do we
need to make this assumption?) The magazine provided the
initial speed and stopping distance in non-SI units. After con-
verting these values to SI we use vxf2 = v, + 2a,x to deter-

6 Equation 5 shows that when u;m; > my, there is a range of values of Ffor which no motion occurs at

a given angle 6.

7 AutoWeek magazine, 48:22—23, 1998.
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mine the acceleration at different speeds. These do not vary Initial Speed Stopping Distance Stopping distance
greatly, and so our assumption of constant acceleration is rea- (mi/h) no skid (m) skidding (m)
sonable.

30 10.4 13.9
60 43.6 55.5
Initial Speed Stopping Distance Acceleration 80 76.5 98.9
(mi/h) (m/s) (ft) (m) (m/s?)
30 13.4 34 10.4 —8.67 ) )
60 26.8 143 45.6 —8.95 An ABS keeps the wheels rotating, with the result that the
80 35.8 951 76.5 —8.36 higher coefficient of static friction is maintained between the

We take an average value of acceleration of —8.4 m/ 2,
which is approximately 0.86g. We then calculate the coeffi-
cient of friction from 3F = u,mg = ma; this gives u, = 0.86 for
the Toyota. This is lower than the rubber-to-concrete value
given in Table 5.2. Can you think of any reasons for this?

Let us now estimate the stopping distance of the car if the
wheels were skidding. Examining Table 5.2 again, we see that
the difference between the coefficients of static and kinetic
friction for rubber against concrete is about 0.2. Let us there-
fore assume that our coefficients differ by the same amount,
so that u;, = 0.66. This allows us to calculate estimated stop-
ping distances for the case in which the wheels are locked
and the car skids across the pavement. The results illustrate
the advantage of not allowing the wheels to skid.

Speed (m/s)

tires and road. This approximates the technique of a profes-
sional driver who is able to maintain the wheels at the point
of maximum frictional force. Let us estimate the ABS perfor-
mance by assuming that the magnitude of the acceleration is
not quite as good as that achieved by the professional driver
but instead is reduced by 5%.

We now plot in Figure 5.22 vehicle speed versus distance
from where the brakes were applied (at an initial speed of
80 mi/h = 37.5 m/s) for the three cases of amateur driver,
professional driver, and estimated ABS performance (ama-
teur driver). We find that a markedly shorter distance is nec-
essary for stopping without locking the wheels and skidding
and a satisfactory value of stopping distance when the ABS
computer maintains tire rotation.

The purpose of the ABS is to help typical drivers (whose ten-
dency is to lock the wheels in an emergency) to better maintain
control of their automobiles and minimize stopping distance.

40 —
Amateur driver
Professional driver
20 = ABS, amateur driver
Figure 5.22 This plot of vehicle speed versus distance
0 \ | from where the brakes were applied shows that an antilock
0 50 100 Distance from point braking system (ABS) approaches the performance of a
of application of brakes (m) trained professional driver.
SUMMARY

Newton’s first law states that, in the absence of an external force, a body at rest
remains at rest and a body in uniform motion in a straight line maintains that mo-
tion. An inertial frame is one that is not accelerating.

Newton’s second law states that the acceleration of an object is directly pro-
portional to the net force acting on it and inversely proportional to its mass. The
net force acting on an object equals the product of its mass and its acceleration:
3>F = ma. You should be able to apply the x and y component forms of this equa-
tion to describe the acceleration of any object acting under the influence of speci-
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A block pulled to the right on a
rough horizontal surface

A block pulled up a rough incline

Two blocks in contact, pushed to the
right on a frictionless surface

Two masses connected by a light cord. The
surface is rough, and the pulley is frictionless.

n
F
f
F,
F
n
f
F,
n; ny
m
F_ ,
— = P P mgy
Foo
Fy &
Note: P = —P’ because they are an action—reaction pair
AT
n
T
my "2
f
Fgl / Fg2

Figure 5.23 Various systems (left) and the corresponding free-body diagrams (right).
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fied forces. If the object is either stationary or moving with constant velocity, then
the forces must vectorially cancel each other.

The force of gravity exerted on an object is equal to the product of its mass
(a scalar quantity) and the freefall acceleration: F, = mg. The weight of an ob-
ject is the magnitude of the force of gravity acting on the object.

Newton’s third law states that if two objects interact, then the force exerted by
object 1 on object 2 is equal in magnitude and opposite in direction to the force ex-
erted by object 2 on object 1. Thus, an isolated force cannot exist in nature. Make
sure you can identify third-law pairs and the two objects upon which they act.

The maximum force of static friction f,, ., between an object and a surface
is proportional to the normal force acting on the object. In general, f; = u,n,
where u,is the coefficient of static friction and # is the magnitude of the normal
force. When an object slides over a surface, the direction of the force of kinetic
friction f is opposite the direction of sliding motion and is also proportional to
the magnitude of the normal force. The magnitude of this force is given by f, =
iy, where uy, is the coefficient of kinetic friction.

More on Free-Body Diagrams

To be successful in applying Newton’s second law to a system, you must be able to
recognize all the forces acting on the system. That is, you must be able to construct
the correct free-body diagram. The importance of constructing the free-body dia-
gram cannot be overemphasized. In Figure 5.23 a number of systems are pre-
sented together with their free-body diagrams. You should examine these carefully
and then construct free-body diagrams for other systems described in the end-of-
chapter problems. When a system contains more than one element, it is important
that you construct a separate free-body diagram for each element.

As usual, F denotes some applied force, F, = mg is the force of gravity, n de-
notes a normal force, f is the force of friction, and T is the force whose magnitude
is the tension exerted on an object.

QUESTIONS
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1. A passenger sitting in the rear of a bus claims that he was tions: a man takes a step; a snowball hits a woman in the

injured when the driver slammed on the brakes, causing back; a baseball player catches a ball; a gust of wind

a suitcase to come flying toward the passenger from the strikes a window.

front of the bus. If you were the judge in this case, what
disposition would you make? Why?
2. A space explorer is in a spaceship moving through space

far from any planet or star. She notices a large rock, taken

as a specimen from an alien planet, floating around the

cabin of the spaceship. Should she push it gently toward a
storage compartment or kick it toward the compartment?

Why?

3. A massive metal object on a rough metal surface may un-
dergo contact welding to that surface. Discuss how this af-

fects the frictional force between object and surface.
4. The observer in the elevator of Example 5.8 would claim
that the weight of the fish is 7, the scale reading. This

claim is obviously wrong. Why does this observation differ

from that of a person in an inertial frame outside the
elevator?
Identify the action—reaction pairs in the following situa-

. A ball is held in a person’s hand. (a) Identify all the exter-

nal forces acting on the ball and the reaction to each.
(b) If the ball is dropped, what force is exerted on it
while it is falling? Identify the reaction force in this case.
(Neglect air resistance.)

. If a car is traveling westward with a constant speed of

20 m/s, what is the resultant force acting on it?

. “When the locomotive in Figure 5.3 broke through the

wall of the train station, the force exerted by the locomo-
tive on the wall was greater than the force the wall could
exert on the locomotive.” Is this statement true or in
need of correction? Explain your answer.

A rubber ball is dropped onto the floor. What force

causes the ball to bounce?

10. What is wrong with the statement, “Because the car is at

rest, no forces are acting on it”? How would you correct
this statement?
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11.

12.

13.

14.

15.

16.
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Suppose you are driving a car along a highway at a high
speed. Why should you avoid slamming on your brakes if
you want to stop in the shortest distance? That is, why
should you keep the wheels turning as you brake?

If you have ever taken a ride in an elevator of a high-rise
building, you may have experienced a nauseating sensa-
tion of “heaviness” and “lightness” depending on the di-
rection of the acceleration. Explain these sensations. Are
we truly weightless in free-fall?

The driver of a speeding empty truck slams on the brakes
and skids to a stop through a distance d. (a) If the truck
carried a heavy load such that its mass were doubled,
what would be its skidding distance? (b) If the initial
speed of the truck is halved, what would be its skidding
distance?

In an attempt to define Newton’s third law, a student states
that the action and reaction forces are equal in magnitude
and opposite in direction to each other. If this is the case,
how can there ever be a net force on an object?

What force causes (a) a propeller-driven airplane to
move? (b) arocket? (c) a person walking?

Suppose a large and spirited Freshman team is beating
the Sophomores in a tug-of-war contest. The center of the

PROBLEMS

1, 2, 3 = straightforward, intermediate, challenging |:| = full solution available in the Student Solutions Manual and Study Guide

The Laws of Motion

17.

rope being tugged is gradually accelerating toward the
Freshman team. State the relationship between the
strengths of these two forces: First, the force the Fresh-
men exert on the Sophomores; and second, the force the
Sophomores exert on the Freshmen.

If you push on a heavy box that is at rest, you must exert
some force to start its motion. However, once the box is
sliding, you can apply a smaller force to maintain that
motion. Why?

18.| A weight lifter stands on a bathroom scale. He pumps a

19.

barbell up and down. What happens to the reading on
the scale as this is done? Suppose he is strong enough to
actually throw the barbell upward. How does the reading
on the scale vary now?

As arocket is fired from a launching pad, its speed and
acceleration increase with time as its engines continue to
operate. Explain why this occurs even though the force of
the engines exerted on the rocket remains constant.

20.| In the motion picture It Happened One Night (Columbia

Pictures, 1934), Clark Gable is standing inside a station-
ary bus in front of Claudette Colbert, who is seated. The
bus suddenly starts moving forward, and Clark falls into
Claudette’s lap. Why did this happen?

WeB = solution posted at http://www.saunderscollege.com/physics/ [ ] = Computer useful in solving problem "F-j- = Interactive Physics

[ ] = paired numerical/symbolic problems

Sections 5.1 through 5.6

1. A force F applied to an object of mass m; produces an
acceleration of 3.00 m/s?. The same force applied to a
second object of mass my produces an acceleration of
1.00 m/s% (a) What is the value of the ratio m; /mo?
(b) If m; and mo are combined, find their acceleration
under the action of the force F.

2. A force of 10.0 N acts on a body of mass 2.00 kg. What

are (a) the body’s acceleration, (b) its weight in new-
tons, and (c) its acceleration if the force is doubled?

A 3.00-kg mass undergoes an acceleration given by a =

(2.00i + 5.00§) m/s Find the resultant force 3F and
its magnitude.

4. A heavy freight train has a mass of 15 000 metric tons.

If the locomotive can pull with a force of 750 000 N,
how long does it take to increase the speed from 0 to
80.0 km/h?

5. A 5.00-g bullet leaves the muzzle of a rifle with a speed

of 320 m/s. The expanding gases behind it exert what
force on the bullet while it is traveling down the barrel
of the rifle, 0.820 m long? Assume constant acceleration
and negligible friction.

6. After uniformly accelerating his arm for 0.0900 s, a

pitcher releases a baseball of weight 1.40 N with a veloc-

ity of 32.0 m/s horizontally forward. If the ball starts
from rest, (a) through what distance does the ball accel-
erate before its release? (b) What force does the pitcher
exert on the ball?

7. After uniformly accelerating his arm for a time ¢, a
pitcher releases a baseball of weight — F, j with a veloc-
ity vi. If the ball starts from rest, (a) through what dis-
tance does the ball accelerate before its release?

(b) What force does the pitcher exert on the ball?

8. Define one pound as the weight of an object of mass
0.453 592 37 kg at a location where the acceleration
due to gravity is 32.174 0 ft/s?. Express the pound as
one quantity with one SI unit.

wes |9.] A 4.00-kg object has a velocity of 3.00i m/s at one in-

stant. Eight seconds later, its velocity has increased to
(8.00i + 10.0j) m/s. Assuming the object was subject to
a constant total force, find (a) the components of the
force and (b) its magnitude.

10. The average speed of a nitrogen molecule in air is

about 6.70 X 102 m/s, and its mass is 4.68 X 10726 kg.
(a) If it takes 3.00 X 1073 s for a nitrogen molecule to
hit a wall and rebound with the same speed but moving
in the opposite direction, what is the average accelera-
tion of the molecule during this time interval? (b) What
average force does the molecule exert on the wall?



11.] An electron of mass 9.11 X 1073! kg has an initial speed
of 3.00 X 10° m/s. It travels in a straight line, and its
speed increases to 7.00 X 10° m/s in a distance of
5.00 cm. Assuming its acceleration is constant, (a) de-
termine the force exerted on the electron and (b) com-
pare this force with the weight of the electron, which we
neglected.

12. A woman weighs 120 lb. Determine (a) her weight in
newtons and (b) her mass in kilograms.

13. If a man weighs 900 N on the Earth, what would he
weigh on Jupiter, where the acceleration due to gravity
is 25.9 m/s??

14. The distinction between mass and weight was discov-
ered after Jean Richer transported pendulum clocks
from Paris to French Guiana in 1671. He found that
they ran slower there quite systematically. The effect was
reversed when the clocks returned to Paris. How much
weight would you personally lose in traveling from
Paris, where g = 9.809 5 m/s% to Cayenne, where g =
9.780 8 m/s%? (We shall consider how the free-fall accel-
eration influences the period of a pendulum in Section
13.4.)

[,:" Two forces F; and Fy act on a 5.00-kg mass. If I{ =

20.0 N and F; = 15.0 N, find the accelerations in
(a) and (b) of Figure P5.15.

Fy
Fy

90.0°

j’m\—»Fl { m‘j—»]«‘l

(@) \ (b)
Figure P5.15

16. Besides its weight, a 2.80-kg object is subjected to one
other constant force. The object starts from rest and in
1.20 s experiences a displacement of (4.20 m)i —

(3.30 m)j, where the direction of j is the upward vertical
direction. Determine the other force.

17. You stand on the seat of a chair and then hop off.

(a) During the time you are in flight down to the floor,
the Earth is lurching up toward you with an accelera-
tion of what order of magnitude? In your solution ex-
plain your logic. Visualize the Earth as a perfectly solid
object. (b) The Earth moves up through a distance of
what order of magnitude?

18. Forces of 10.0 N north, 20.0 N east, and 15.0 N south
are simultaneously applied to a 4.00-kg mass as it rests
on an air table. Obtain the object’s acceleration.

19. A boat moves through the water with two horizontal
forces acting on it. One is a 2000-N forward push
caused by the motor; the other is a constant 1800-N re-
sistive force caused by the water. (a) What is the acceler-
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ation of the 1 000-kg boat? (b) If it starts from rest, how
far will it move in 10.0 s? (c) What will be its speed at
the end of this time?

20. Three forces, given by F; = (—2.00i + 2.00j) N, Fy =
(5.00i — 3.00§) N, and F3 = (—45.0i) N, act on an ob-
ject to give it an acceleration of magnitude 3.75 m/s.
(a) What is the direction of the acceleration? (b) What
is the mass of the object? (c) If the object is initially at
rest, what is its speed after 10.0 s? (d) What are the ve-
locity components of the object after 10.0 s?

21. A 15.0-1b block rests on the floor. (a) What force does
the floor exert on the block? (b) If a rope is tied to the
block and run vertically over a pulley, and the other end
is attached to a free-hanging 10.0-1b weight, what is the
force exerted by the floor on the 15.0-1b block? (c) If we
replace the 10.0-1b weight in part (b) with a 20.0-Ib
weight, what is the force exerted by the floor on the
15.0-Ib block?

Section 5.7 Some Applications of Newton's Laws

22. A 3.00-kg mass is moving in a plane, with its x and y co-
ordinates given by x = 5¢/2 — 1 and y = 31> + 2, where
xand y are in meters and ¢is in seconds. Find the mag-
nitude of the net force acting on this mass at ¢ = 2.00 s.

23. The distance between two telephone poles is 50.0 m.
When a 1.00-kg bird lands on the telephone wire mid-
way between the poles, the wire sags 0.200 m. Draw a
free-body diagram of the bird. How much tension does
the bird produce in the wire? Ignore the weight of the
wire.

24. A bag of cement of weight 325 N hangs from three
wires as shown in Figure P5.24. Two of the wires make
angles 0; = 60.0° and 0y = 25.0° with the horizontal. If
the system is in equilibrium, find the tensions 7}, T,
and T3 in the wires.

Figure P5.24 Problems 24 and 25.
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A bag of cement of weight F;, hangs from three wires as

shown in Figure P5.24. Two of the wires make angles 6,
and 6y with the horizontal. If the system is in equilib-
rium, show that the tension in the left-hand wire is

Ty = Fycos by/sin(6; + 6y)

26. You are a judge in a children’s kite-flying contest, and

27.

28.

two children will win prizes for the kites that pull most
strongly and least strongly on their strings. To measure
string tensions, you borrow a weight hanger, some slot-
ted weights, and a protractor from your physics teacher
and use the following protocol, illustrated in Figure
P5.26: Wait for a child to get her kite well-controlled,
hook the hanger onto the kite string about 30 cm from
her hand, pile on weights until that section of string is
horizontal, record the mass required, and record the
angle between the horizontal and the string running up
to the kite. (a) Explain how this method works. As you
construct your explanation, imagine that the children’s
parents ask you about your method, that they might
make false assumptions about your ability without con-
crete evidence, and that your explanation is an opportu-
nity to give them confidence in your evaluation tech-
nique. (b) Find the string tension if the mass required
to make the string horizontal is 132 g and the angle of
the kite string is 46.3°.

Figure P5.26

The systems shown in Figure P5.27 are in equilibrium.
If the spring scales are calibrated in newtons, what do
they read? (Neglect the masses of the pulleys and
strings, and assume the incline is frictionless.)

A fire helicopter carries a 620-kg bucket of water at the
end of a cable 20.0 m long. As the aircraft flies back
from a fire at a constant speed of 40.0 m/s, the cable
makes an angle of 40.0° with respect to the vertical.

(a) Determine the force of air resistance on the bucket.
(b) After filling the bucket with sea water, the pilot re-
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5.00 kg

5.00 kg

\30.0°

5.00 kg _J _J 5.00 kg
(b)

Figure P5.27

turns to the fire at the same speed with the bucket now
making an angle of 7.00° with the vertical. What is the
mass of the water in the bucket?

WeB A 1.00-kg mass is observed to accelerate at 10.0 m/s? in

a direction 30.0° north of east (Fig. P5.29). The force
Fy acting on the mass has a magnitude of 5.00 N and is
directed north. Determine the magnitude and direction
of the force F; acting on the mass.

A
F, Q(ol%
A
07 \30.00

LO0kg | ————>
1
Figure P5.29

30. A simple accelerometer is constructed by suspending a

mass m from a string of length L that is tied to the top
of a cart. As the cart is accelerated the string-mass sys-
tem makes a constant angle 6 with the vertical.

(a) Assuming that the string mass is negligible com-
pared with m, derive an expression for the cart’s acceler-
ation in terms of 6 and show that it is independent of



31.

32.

the mass m and the length L. (b) Determine the accel-
eration of the cart when 6 = 23.0°.

Two people pull as hard as they can on ropes attached
to a boat that has a mass of 200 kg. If they pull in the
same direction, the boat has an acceleration of

1.52 m/s? to the right. If they pull in opposite direc-
tions, the boat has an acceleration of 0.518 m/s? to the
left. What is the force exerted by each person on the
boat? (Disregard any other forces on the boat.)

Draw a free-body diagram for a block that slides down a
frictionless plane having an inclination of 6 = 15.0°
(Fig. P5.32). If the block starts from rest at the top and
the length of the incline is 2.00 m, find (a) the accelera-
tion of the block and (b) its speed when it reaches the
bottom of the incline.

(4

Figure P5.32

wWeB A block is given an initial velocity of 5.00 m/s up a fric-

P34

tionless 20.0° incline. How far up the incline does the
block slide before coming to rest?

Two masses are connected by a light string that passes
over a frictionless pulley, as in Figure P5.34. If the in-
cline is frictionless and if m; = 2.00 kg, me = 6.00 kg,
and 6 = 55.0°, find (a) the accelerations of the masses,
(b) the tension in the string, and (c) the speed of each
mass 2.00 s after being released from rest.

Figure P5.34

i35

36.
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Two masses m; and mo situated on a frictionless, hori-
zontal surface are connected by a light string. A force F
is exerted on one of the masses to the right (Fig.
P5.35). Determine the acceleration of the system and
the tension T'in the string.

mllT LON s

Figure P5.35 Problems 35 and 51.

Two masses of 3.00 kg and 5.00 kg are connected by a
light string that passes over a frictionless pulley, as was
shown in Figure 5.15a. Determine (a) the tension in the
string, (b) the acceleration of each mass, and (c) the
distance each mass will move in the first second of mo-
tion if they start from rest.

["3 In the system shown in Figure P5.37, a horizontal force

38.

I, acts on the 8.00-kg mass. The horizontal surface is
frictionless. (a) For what values of F, does the 2.00-kg
mass accelerate upward? (b) For what values of F, is the
tension in the cord zero? (c) Plot the acceleration of
the 8.00-kg mass versus F,. Include values of I, from
—100 N to + 100 N.

ax
—
8.00
Q kg F,
2.00
kg
Figure P5.37

Mass m; on a frictionless horizontal table is connected
to mass mg by means of a very light pulley P; and a light
fixed pulley Py as shown in Figure P5.38. (a) If ¢; and ay

Figure P5.38



144

CHAPTER §

are the accelerations of m; and my, respectively, what is
the relationship between these accelerations? Express
(b) the tensions in the strings and (c) the accelerations
a; and ay in terms of the masses m; and mg and g

A 72.0-kg man stands on a spring scale in an elevator.

Starting from rest, the elevator ascends, attaining its
maximum speed of 1.20 m/s in 0.800 s. It travels with
this constant speed for the next 5.00 s. The elevator
then undergoes a uniform acceleration in the negative
ydirection for 1.50 s and comes to rest. What does the
spring scale register (a) before the elevator starts to
move? (b) during the first 0.800 s? (c) while the eleva-
tor is traveling at constant speed? (d) during the time it
is slowing down?

Section 5.8 Forces of Friction

40.

41.

42.

43.

44.

The coefficient of static friction is 0.800 between the
soles of a sprinter’s running shoes and the level track
surface on which she is running. Determine the maxi-
mum acceleration she can achieve. Do you need to
know that her mass is 60.0 kg?

A 25.0-kg block is initially at rest on a horizontal sur-
face. A horizontal force of 75.0 N is required to set the
block in motion. After it is in motion, a horizontal force
of 60.0 N is required to keep the block moving with
constant speed. Find the coefficients of static and ki-
netic friction from this information.

A racing car accelerates uniformly from 0 to 80.0 mi/h
in 8.00 s. The external force that accelerates the car is
the frictional force between the tires and the road. If
the tires do not slip, determine the minimum coeffi-
cient of friction between the tires and the road.

A car is traveling at 50.0 mi/h on a horizontal highway.
(a) If the coefficient of friction between road and tires
on a rainy day is 0.100, what is the minimum distance in
which the car will stop? (b) What is the stopping dis-
tance when the surface is dry and u,; = 0.600?

A woman at an airport is towing her 20.0-kg suitcase at
constant speed by pulling on a strap at an angle of 6
above the horizontal (Fig. P5.44). She pulls on the strap
with a 35.0-N force, and the frictional force on the suit-
case is 20.0 N. Draw a free-body diagram for the suit-
case. (a) What angle does the strap make with the hori-
zontal? (b) What normal force does the ground exert
on the suitcase?

wWeB A 3.00-kg block starts from rest at the top of a 30.0° in-

46.

cline and slides a distance of 2.00 m down the incline in
1.50 s. Find (a) the magnitude of the acceleration of
the block, (b) the coefficient of kinetic friction between
block and plane, (c) the frictional force acting on the
block, and (d) the speed of the block after it has slid
2.00 m.

To determine the coefficients of friction between rub-
ber and various surfaces, a student uses a rubber eraser
and an incline. In one experiment the eraser begins to
slip down the incline when the angle of inclination is
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Figure P5.44

36.0° and then moves down the incline with constant
speed when the angle is reduced to 30.0°. From these
data, determine the coefficients of static and kinetic
friction for this experiment.

A boy drags his 60.0-N sled at constant speed up a 15.0°
hill. He does so by pulling with a 25.0-N force on a rope
attached to the sled. If the rope is inclined at 35.0° to
the horizontal, (a) what is the coefficient of kinetic fric-
tion between sled and snow? (b) At the top of the hill,
he jumps on the sled and slides down the hill. What is
the magnitude of his acceleration down the slope?
Determine the stopping distance for a skier moving
down a slope with friction with an initial speed of

20.0 m/s (Fig. P5.48). Assume w;, = 0.180 and 6 = 5.00°.

(Wao.

50.

Figure P5.48

A 9.00-kg hanging weight is connected by a string over a
pulley to a 5.00-kg block that is sliding on a flat table
(Fig. P5.49). If the coefficient of kinetic friction is
0.200, find the tension in the string.

Three blocks are connected on a table as shown in Fig-
ure P5.50. The table is rough and has a coefficient of ki-
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5.00 kg
9.00 kg
Figure P5.49
1.00 kg
4.00 kg 2.00 kg
Figure P5.50

netic friction of 0.350. The three masses are 4.00 kg,
1.00 kg, and 2.00 kg, and the pulleys are frictionless.
Draw a free-body diagram for each block. (a) Deter-
mine the magnitude and direction of the acceleration
of each block. (b) Determine the tensions in the two
cords.

Two blocks connected by a rope of negligible mass are
being dragged by a horizontal force F (see Fig. P5.35).
Suppose that F'= 68.0 N, m; = 12.0 kg, my = 18.0 kg,
and the coefficient of kinetic friction between each
block and the surface is 0.100. (a) Draw a free-body dia-
gram for each block. (b) Determine the tension 7"and
the magnitude of the acceleration of the system.

A block of mass 2.20 kg is accelerated across a rough
surface by a rope passing over a pulley, as shown in Fig-
ure P5.52. The tension in the rope is 10.0 N, and the
pulley is 10.0 cm above the top of the block. The coeffi-
cient of kinetic friction is 0.400. (a) Determine the ac-
celeration of the block when x = 0.400 m. (b) Find the
value of x at which the acceleration becomes zero.

A block of mass 3.00 kg is pushed up against a wall by a
force P that makes a 50.0° angle with the horizontal as
shown in Figure P5.53. The coefficient of static friction
between the block and the wall is 0.250. Determine the
possible values for the magnitude of P that allow the
block to remain stationary.

56.
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Figure P5.52

Figure P5.53

ADDITIONAL PROBLEMS
54.

A time-dependent force F = (8.001 — 4.00¢j) N (where
tis in seconds) is applied to a 2.00-kg object initially at
rest. (a) At what time will the object be moving with a
speed of 15.0 m/s? (b) How far is the object from its
initial position when its speed is 15.0 m/s? (c) What is
the object’s displacement at the time calculated in (a)?

An inventive child named Pat wants to reach an apple

in a tree without climbing the tree. Sitting in a chair
connected to a rope that passes over a frictionless pulley
(Fig. P5.55), Pat pulls on the loose end of the rope with
such a force that the spring scale reads 250 N. Pat’s
weight is 320 N, and the chair weighs 160 N. (a) Draw
free-body diagrams for Pat and the chair considered as
separate systems, and draw another diagram for Pat and
the chair considered as one system. (b) Show that the
acceleration of the system is upward and find its magni-
tude. (c) Find the force Pat exerts on the chair.

Three blocks are in contact with each other on a fric-
tionless, horizontal surface, as in Figure P5.56. A hori-
zontal force F is applied to my . If m; = 2.00 kg, me =
3.00 kg, mg = 4.00 kg, and F= 18.0 N, draw a separate
free-body diagram for each block and find (a) the accel-
eration of the blocks, (b) the resultant force on each
block, and (c) the magnitudes of the contact forces be-
tween the blocks.
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the system is in equilibrium, find (e) the minimum

- value of Mand (f) the maximum value of M. (g) Com-

; pare the values of 7o when M has its minimum and
maximum values.

wes A mass M is held in place by an applied force F and a
pulley system as shown in Figure P5.59. The pulleys are
massless and frictionless. Find (a) the tension in each
section of rope, Ty, Ty, T, T4, and T5 and (b) the mag-
nitude of F. (Hint: Draw a free-body diagram for each
pulley.)

Figure P5.55

] ]

Figure P5.56

57. A high diver of mass 70.0 kg jumps off a board 10.0 m
above the water. If his downward motion is stopped
2.00 s after he enters the water, what average upward
force did the water exert on him?

58. Consider the three connected objects shown in Figure
P5.58. If the inclined plane is frictionless and the
system is in equilibrium, find (in terms of m, g, and 0)
(a) the mass M and (b) the tensions 77 and T5. If the .
value of M is double the value found in part (a), find Figure P5.59
(c) the acceleration of each object, and (d) the ten-
sions 77 and T;. If the coefficient of static friction
between m and 2m and the inclined plane is u,, and 60. Two forces, given by F; = (= 6.00i — 4.00j) Nand Fy =

(—3.00i + 7.00§) N, act on a particle of mass 2.00 kg that

is initially at rest at coordinates (— 2.00 m, +4.00 m).

(a) What are the components of the particle’s velocity at

Ty

0 ¢ =10.0 s? (b) In what direction is the particle moving at
¢ = 10.0 s? (c) What displacement does the particle un-
T @ dergo during the first 10.0 s? (d) What are the coordi-
1

nates of the particle at ¢ = 10.0 s?
61. A crate of weight F,is pushed by a force P on a horizon-
2m tal floor. (a) If the coefficient of static friction is u; and
P is directed at an angle 6 below the horizontal, show
that the minimum value of P that will move the crate is
\9 given by

P = p,Fysec 6(1 — ptan 6!

Figure P5.58 (b) Find the minimum value of P that can produce mo-
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tion when wu, = 0.400, Fg = 100 N, and 6 = 0°, 15.0°,
30.0°, 45.0°, and 60.0°.

Review Problem. A block of mass m = 2.00 kg is re-
leased from rest 2 = 0.500 m from the surface of a
table, at the top of a § = 30.0° incline as shown in Fig-
ure P5.62. The frictionless incline is fixed on a table of
height H = 2.00 m. (a) Determine the acceleration of
the block as it slides down the incline. (b) What is the
velocity of the block as it leaves the incline? (c¢) How far
from the table will the block hit the floor? (d) How
much time has elapsed between when the block is re-
leased and when it hits the floor? (e) Does the mass of
the block affect any of the above calculations?

Figure P5.62

A 1.30-kg toaster is not plugged in. The coefficient of
static friction between the toaster and a horizontal
countertop is 0.350. To make the toaster start moving,
you carelessly pull on its electric cord. (a) For the cord
tension to be as small as possible, you should pull at
what angle above the horizontal? (b) With this angle,
how large must the tension be?

A 2.00-kg aluminum block and a 6.00-kg copper block
are connected by a light string over a frictionless pulley.
They sit on a steel surface, as shown in Figure P5.64,
and 6 = 30.0°. Do they start to move once any holding
mechanism is released? If so, determine (a) their accel-
eration and (b) the tension in the string. If not, deter-
mine the sum of the magnitudes of the forces of friction
acting on the blocks.

Aluminum

m Copper

Figure P5.64
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A block of mass m = 2.00 kg rests on the left edge of a
block of larger mass M = 8.00 kg. The coefficient of ki-
netic friction between the two blocks is 0.300, and the
surface on which the 8.00-kg block rests is frictionless. A
constant horizontal force of magnitude = 10.0 N is ap-
plied to the 2.00-kg block, setting it in motion as shown
in Figure P5.65a. If the length L that the leading edge of
the smaller block travels on the larger block is 3.00 m,
(a) how long will it take before this block makes it to the
right side of the 8.00-kg block, as shown in Figure
P5.65b? (Note: Both blocks are set in motion when F is
applied.) (b) How far does the 8.00-kg block move in
the process?

(b)
Figure P5.65

A student is asked to measure the acceleration of a cart
on a “frictionless” inclined plane as seen in Figure
P5.32, using an air track, a stopwatch, and a meter stick.
The height of the incline is measured to be 1.774 cm,
and the total length of the incline is measured to be

d = 127.1 cm. Hence, the angle of inclination 6 is deter-
mined from the relation sin 8 = 1.774/127.1. The cart
is released from rest at the top of the incline, and its dis-
placement x along the incline is measured versus time,
where x = 0 refers to the initial position of the cart. For
xvalues of 10.0 cm, 20.0 cm, 35.0 cm, 50.0 cm, 75.0 cm,
and 100 cm, the measured times to undergo these dis-
placements (averaged over five runs) are 1.02s, 1.53 s,
2.01s,2.64 s, 3.30 s, and 3.75 s, respectively. Construct a
graph of xversus 2, and perform a linear leastsquares
fit to the data. Determine the acceleration of the cart
from the slope of this graph, and compare it with the
value you would get using @’ = gsin 6, where g =

9.80 m/s2.

A 2.00-kg block is placed on top of a 5.00-kg block as in
Figure P5.67. The coefficient of kinetic friction between
the 5.00-kg block and the surface is 0.200. A horizontal
force F is applied to the 5.00-kg block. (a) Draw a free-
body diagram for each block. What force accelerates
the 2.00-kg block? (b) Calculate the magnitude of the
force necessary to pull both blocks to the right with an
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2.00
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5.00 kg .
Figure P5.67

acceleration of 3.00 m/s2. (c) Find the minimum coeffi-
cient of static friction between the blocks such that the
2.00-kg block does not slip under an acceleration of
3.00 m/s>.

A 5.00-kg block is placed on top of a 10.0-kg block (Fig.
P5.68). A horizontal force of 45.0 N is applied to the
10.0-kg block, and the 5.00-kg block is tied to the wall.
The coefficient of kinetic friction between all surfaces is
0.200. (a) Draw a free-body diagram for each block and
identify the action—reaction forces between the blocks.
(b) Determine the tension in the string and the magni-
tude of the acceleration of the 10.0-kg block.

o 5.00 kg
10.0 kg > F-450N
Figure P5.68

What horizontal force must be applied to the cart
shown in Figure P5.69 so that the blocks remain station-
ary relative to the cart? Assume all surfaces, wheels, and
pulley are frictionless. (Hint: Note that the force ex-
erted by the string accelerates m; .)

]

F M

Figure P5.69 Problems 69 and 70.
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Initially the system of masses shown in Figure P5.69 is
held motionless. All surfaces, pulley, and wheels are fric-
tionless. Let the force F be zero and assume that ms can
move only vertically. At the instant after the system of
masses is released, find (a) the tension 7'in the string,
(b) the acceleration of mo, (c) the acceleration of M,
and (d) the acceleration of m,; . (Note: The pulley accel-
erates along with the cart.)

A block of mass 5.00 kg sits on top of a second block of
mass 15.0 kg, which in turn sits on a horizontal table.
The coefficients of friction between the two blocks are
ns = 0.300 and u;, = 0.100. The coefficients of friction
between the lower block and the rough table are u, =
0.500 and u; = 0.400. You apply a constant horizontal
force to the lower block, just large enough to make this
block start sliding out from between the upper block
and the table. (a) Draw a free-body diagram of each
block, naming the forces acting on each. (b) Determine
the magnitude of each force on each block at the in-
stant when you have started pushing but motion has not
yet started. (c) Determine the acceleration you measure
for each block.

Two blocks of mass 3.50 kg and 8.00 kg are connected
by a string of negligible mass that passes over a friction-
less pulley (Fig. P5.72). The inclines are frictionless.
Find (a) the magnitude of the acceleration of each
block and (b) the tension in the string.

Figure P5.72 Problems 72 and 73.

The system shown in Figure P5.72 has an acceleration
of magnitude 1.50 m/s2. Assume the coefficients of ki-
netic friction between block and incline are the same
for both inclines. Find (a) the coefficient of kinetic fric-
tion and (b) the tension in the string.

In Figure P5.74, a 500-kg horse pulls a sledge of mass
100 kg. The system (horse plus sledge) has a forward
acceleration of 1.00 m/s% when the frictional force ex-
erted on the sledge is 500 N. Find (a) the tension in the
connecting rope and (b) the magnitude and direction
of the force of friction exerted on the horse. (c) Verify
that the total forces of friction the ground exerts on the
system will give the system an acceleration of 1.00 m/s?.

A van accelerates down a hill (Fig. P5.75), going from

rest to 30.0 m/s in 6.00 s. During the acceleration, a toy
(m = 0.100 kg) hangs by a string from the van’s ceiling.
The acceleration is such that the string remains perpen-
dicular to the ceiling. Determine (a) the angle 6 and
(b) the tension in the string.



Figure P5.74

\0

Figure P5.75

76. A mobile is formed by supporting four metal butterflies

of equal mass m from a string of length L. The points of
support are evenly spaced a distance € apart as shown in
Figure P5.76. The string forms an angle ) with the ceil-
ing at each end point. The center section of string is
horizontal. (a) Find the tension in each section of
string in terms of 6y, m, and g. (b) Find the angle 6, in

Figure P5.76

ANSWERS TO QUICK QUIZZES

5.1 (a) True. Newton’s first law tells us that motion requires

no force: An object in motion continues to move at con-

stant velocity in the absence of external forces. (b) True.

A stationary object can have several forces acting on it,
but if the vector sum of all these external forces is zero,

Answers to Quick Quizzes

77.

o 7s.

149

terms of 0;, that the sections of string between the out-
side butterflies and the inside butterflies form with the
horizontal. (c) Show that the distance D between the
end points of the string is

L (1
D=? 2 cos 6 + 2 cos| tan ;tanel +1

Before 1960 it was believed that the maximum attain-
able coefficient of static friction for an automobile tire
was less than 1. Then about 1962, three companies in-
dependently developed racing tires with coefficients of
1.6. Since then, tires have improved, as illustrated in
this problem. According to the 1990 Guinness Book of
Records, the fastest time in which a piston-engine car
initially at rest has covered a distance of one-quarter
mile is 4.96 s. This record was set by Shirley Muldowney
in September 1989 (Fig. P5.77). (a) Assuming that the
rear wheels nearly lifted the front wheels off the pave-
ment, what minimum value of uis necessary to achieve
the record time? (b) Suppose Muldowney were able to
double her engine power, keeping other things equal.
How would this change affect the elapsed time?

Figure P5.77

An 8.40-kg mass slides down a fixed, frictionless in-
clined plane. Use a computer to determine and tabu-
late the normal force exerted on the mass and its accel-
eration for a series of incline angles (measured from
the horizontal) ranging from 0 to 90° in 5° increments.
Plot a graph of the normal force and the acceleration as
functions of the incline angle. In the limiting cases of 0
and 90°, are your results consistent with the known be-
havior?

there is no net force and the object remains stationary.
It also is possible to have a net force and no motion, but
only for an instant. A ball tossed vertically upward stops
at the peak of its path for an infinitesimally short time,
but the force of gravity is still acting on it. Thus, al-
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CHAPTER §

though v = 0 at the peak, the net force acting on the
ball is not zero.

No. Direction of motion is part of an object’s velocity,
and force determines the direction of acceleration, not
that of velocity.

(a) Force of gravity. (b) Force of gravity. The only exter-
nal force acting on the ball at all points in its trajectory
is the downward force of gravity.

As the person steps out of the boat, he pushes against it
with his foot, expecting the boat to push back on him so
that he accelerates toward the dock. However, because
the boat is untied, the force exerted by the foot causes
the boat to scoot away from the dock. As a result, the
person is not able to exert a very large force on the boat
before it moves out of reach. Therefore, the boat does
not exert a very large reaction force on him, and he

Calvin and Hobbes

The Laws of Motion

ends up not being accelerated sufficiently to make it to
the dock. Consequently, he falls into the water instead.
If a small dog were to jump from the untied boat toward

the dock, the force exerted by the boat on the dog

would probably be enough to ensure the dog’s success-

ful landing because of the dog’s small mass.

5.5 (a) The same force is experienced by both. The fly and
bus experience forces that are equal in magnitude but
opposite in direction. (b) The fly. Because the fly has
such a small mass, it undergoes a very large acceleration.
The huge mass of the bus means that it more effectively

resists any change in its motion.

5.6 (b) The crate accelerates to the right. Because the only
horizontal force acting on it is the force of static friction
between its bottom surface and the truck bed, that force

must also be directed to the right.

by Bill Watterson
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