Rational Numbers

The numbers, which can be written in the form ^p/_q, where p and q are integers and q ≠ 0, are called rational numbers. Rational numbers can be positive as well as negative. Rational numbers include all integers and fractions.

For example

$$-\frac{2}{7}, \frac{41}{366}, 2 = \frac{2}{1}, \text{ etc.}$$

All the operations on rational numbers are performed as in fractions.

Example: Solve

1.
$$-\frac{3}{4} + \frac{5}{6}$$

2.
$$\frac{2}{7} - \frac{3}{5}$$

Solution:

1.
$$-\frac{3}{4} + \frac{5}{6}$$

= $\frac{-3 \times 3 + 5 \times 2}{12}$ = $\frac{-9 + 10}{12}$ = $\frac{1}{12}$
2. $\frac{2}{7} - \frac{3}{5}$

$$=\frac{2\times 5-3\times 7}{35}=\frac{10-21}{35}=-\frac{11}{35}$$

• When 0 is added to any rational number, say $\frac{p}{q}$, the same rational number is obtained. Therefore, 0 is the additive identity of rational numbers.

$$\frac{p}{q} + 0 = \frac{p}{q} = 0 + \frac{p}{q}$$

• $-\frac{p}{q}$ is the additive inverse of the rational number $\frac{p}{q}$.

Example: $-\frac{4}{7}$ is the additive inverse of the rational number $\frac{4}{7}$.

Example: Solve

1.
$$\frac{2}{9} \times \left(-\frac{4}{3}\right)$$

2. $-\frac{3}{7} \div \frac{11}{21}$

Solution:

- 1. $\frac{2}{9} \times \left(-\frac{4}{3}\right)$ = $\frac{2 \times (-4)}{9 \times 3} = -\frac{8}{27}$ 2. $-\frac{3}{7} \div \frac{11}{21}$ = $-\frac{3}{7} \times \frac{21}{11} = -\frac{9}{11}$
- Natural numbers are a collection of all positive numbers starting from 1.
- Whole numbers are a collection of all natural numbers including 0.
- Integers are the set of numbers comprising of all the natural numbers 1, 2, 3 ... and their negatives -1, -2, -3 ..., and the number 0.
- Rational numbers are the numbers that can be written in $\frac{\mathbf{r}}{q}$ form, where p and q are integers and $q \neq 0$

• Closure property

- Whole numbers are closed under addition and multiplication. However, they are **not** closed under subtraction and division.
- Integers are also closed under addition, subtraction and multiplication. However, they are **not** closed under division.
- Rational numbers:
 - 1. Rational numbers are closed under addition.

Example: $\frac{2}{5} + \frac{3}{2} = \frac{19}{10}$ is a rational number.

2. Rational numbers are closed under subtraction.

Example: $\frac{1}{5} - \frac{3}{4} = \frac{-11}{20}$ is rational number.

3. Rational numbers are closed under multiplication.

Example: $\frac{2}{3} \times \left(\frac{-3}{5}\right) = \frac{-2}{5}$ is a rational number.

4. Rational numbers are **not** closed under division.

Example: $2 \div 0$ is not defined.

• Commutativity

- Whole numbers are commutative under addition and multiplication. However, they are not commutative under subtraction and division.
- Integers are commutative under addition and multiplication. However, they are not commutative under subtraction and division.
- Rational numbers:
 - 1. Rational numbers are commutative under addition.

Example:

$$\frac{2}{3} + \left(\frac{-3}{2}\right) = \left(\frac{-3}{2}\right) + \left(\frac{2}{3}\right) = \frac{-5}{6}$$

2. Rational numbers are not commutative under subtraction.

Example :

$$\left(\frac{3}{4}\right) - \left(\frac{5}{2}\right) = \left(\frac{-7}{4}\right)_{\text{and}} \frac{5}{2} - \frac{3}{4} = \frac{7}{4}$$

 $\therefore \left(\frac{3}{4}\right) - \left(\frac{5}{2}\right) \neq \left(\frac{5}{2}\right) - \left(\frac{3}{4}\right)$

3. Rational numbers are commutative under multiplication.

Example:
$$\left(\frac{3}{4}\right) \times \left(\frac{-2}{6}\right) = \left(\frac{-2}{6}\right) \times \left(\frac{3}{4}\right) = \frac{-1}{4}$$

4. Rational numbers are not commutative under division.

$$2\div5\neq5\div2$$

• Associativity

- Whole numbers are associative under addition and multiplication. However, they are **not** associative under subtraction and division.
- Integers are associative under addition and multiplication. However, they are **not** associative under subtraction and division.
- Rational numbers:
 - 1. Rational numbers are associative under addition.

Example:
$$\left(\frac{2}{3} + \frac{1}{3}\right) + 1 = \frac{2}{3} + \left(\frac{1}{3} + 1\right) = 2$$

2. Rational numbers are **not** associative under subtraction.

Example:

$$\left(\frac{2}{3} - \frac{1}{3}\right) - 1 = \frac{-2}{3}$$

 $\frac{2}{3} - \left(\frac{1}{3} - 1\right) = \frac{4}{3}$
 $\therefore \left(\frac{2}{3} - \frac{1}{3}\right) - 1 \neq \frac{2}{3} - \left(\frac{1}{3} - 1\right)$

3. Rational numbers are associative under multiplication.

Example:

$$\left(\frac{2}{3} \times \frac{1}{3}\right) \times 1 = \frac{2}{3} \times \left(\frac{1}{3} \times 1\right) = \frac{2}{9}$$

4. Rational numbers are **not** associative under division.

Example:

$$\begin{cases} \frac{2}{7} \div \left(\frac{-1}{14}\right) \} \div \frac{3}{7} = \frac{-28}{3} \\ \frac{2}{7} \div \left\{ \left(\frac{-1}{14}\right) \div \frac{3}{7} \right\} = \frac{-12}{7} \\ \therefore \frac{2}{7} \div \left\{ \left(\frac{-1}{14}\right) \right\} \div \frac{3}{7} \neq \frac{2}{7} \div \left\{ \left(\frac{-1}{14}\right) \div \frac{3}{7} \right\} \end{cases}$$

• 0 is the additive identity of whole numbers, integers, and rational numbers.

 $\therefore 0 + a = a + 0 = a$, where *a* is a rational number

• 1 is the multiplicative identity of whole numbers, integers, and rational numbers.

 $a \times 1 = 1 \times a = a$

• Additive inverse of a number is the number, which when added to a number, gives 0. It is also called the negative of a number.

a + (-a) = (-a) + = 0
∴Additive inverse of
$$\frac{2}{5}$$
 is $\left(\frac{-2}{5}\right)$

• Reciprocal or multiplicative inverse of a number is the number, which when multiplied by the number, gives 1. Therefore, the reciprocal of *a* is $\frac{1}{a}$ $\begin{bmatrix} a \times \frac{1}{a} = 1 \end{bmatrix}$

 \therefore Reciprocal of $\frac{-2}{3}$ is $\frac{-3}{2}$

• Rational numbers are distributive over addition and subtraction.

i.e., for any rational numbers *a*, *b*, and *c*, a(b + c) = ab + ac, a(b - c) = ab - ac

• Rational numbers on number line

Rational numbers can be represented on number line in the similar manner like fractions and integers.

Negative rational numbers are marked to the left of 0 while positive rational numbers are marked to the right of 0.

Example:

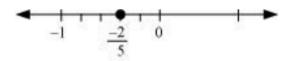
Represent $-\frac{2}{5}$ on number line.

Solution:

The given rational number is negative. Therefore, it will lie to the left of 0.

The space between -1 and 0 is divided into 5 equal parts. Therefore, each part represents $-\frac{1}{5}$.

Marking $-\frac{2}{5}$ at 2 units to the left of 0, we obtain the number line as shown below.



• To find rational numbers between any two given rational numbers, firstly we have to make their denominators same and then find the respective rational numbers.

Example:

Find some rational numbers between $\frac{1}{6} \frac{7}{8}$.

Solution:

The L.C.M. of 6 and 8 is 24.

Now, we can write

	$=\frac{1\times 4}{1\times 4}$	4
6		24
7	7×3	21
8		24

Therefore, some of the rational numbers between $\frac{4}{24} \left(\frac{1}{6}\right)_{and} \frac{21}{24} \left(\frac{7}{8}\right)_{are}$

 $\frac{5}{24}, \frac{6}{24}, \frac{7}{24}, \frac{8}{24}, \frac{9}{24}, \frac{10}{24}, \frac{11}{24}, \frac{12}{24}, \frac{13}{24}, \frac{14}{24}, \frac{15}{24}, \frac{16}{24}, \frac{17}{24}, \frac{18}{24}, \frac{19}{24}, \frac{20}{24}$