9.12 Line Integral

1117.

Scalar functions: F(x,y,z), F(x,y), f(x)
Scalar potential: u(x,y,z)

Curves: C, C,, C,

Limits of integrations: a, b, a, f3
Parameters: t, s

Polar coordinates: r, 0

Vector field: F (P,Q,R)

Position vector: T(s)

Unit vectors: }, ik, 7

Area of region: S

Length of a curve: L

Mass of a wire: m

Density: p(x,y,z), p(x,y)
Coordinates of center of mass: X, y, Z

First moments: M MYZ » M,
1

Moments of inertia: I_, I,]1,
Volume of a solid: V
Work: W

Magnetic field: B
Current: I
Electromotive force: ¢
Magnetic flux: y

Line Integral of a Scalar Function
Let a curve C be given by the vector function ¥ =T(s),

0<s<S, and a scalar function F is defined over the curve C.
Then

JF ds—J'F ,y,z)ds-des,

where dsis the arc length dlfferential.
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Figure 203.

1119. If the smooth curve C is parametrized by ¥ =¥(t),
a<t<f3, then

[E(xy.2)ds = TF(x(t),y(t),z(t))\/ ((OF +(y'(©)) +(/(t)) de.

1120. If C is a smooth curve in the xy-plane given by the equation
y=f(x), a<x<b, then

b
J.F(X,y)ds = J-F(x,f(x) 1+ (f'(x)) dx.
C a

1121. Line Integral of Scalar Function in Polar Coordinates

IF X y)ds—jF (rcos®,rsin@),|r +(j;j de,

where the curve C is defined by the polar function r(0).

1122. Line Integral of Vector Field
Let a curve C be defined by the vector function ¥ =%(s),
0<s<S.Then
dr

ds

is the unit vector of the tangent line to this curve.

=T= (cos o, cos 3, cos y)
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Let a vector field F(P,Q,R) is defined over the curve C.

Then the line integral of the vector field F along the curve
Cis
S

J.de+Qdy+RdZ = I(Pcosoc+QcosB+Rcosy)ds .
C

0

1123. Properties of Line Integrals of Vector Fields

[(E-de)=—[(E-dz),
;s(/:here -C deilote the curve with the opposite orientation.

[(-ag)= [(F-ae)=[(F-aF)+ [(F-a),
C C,UC, G G,
where C is the union of the curves C, and C,.

1124. If the curve C is parameterized by (t)= <x(t),y(t),z(t)> ,
a<t<f, then

[Pdx+Qdy +Rdz=
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1128.
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If C lies in the xy-plane and given by the equation y =f(x),
then

lpdx +Qdy = I(P(x,f(x))+ Q(x,f(x)) :f jdx

. Green’s Theorem

P
H(a—Q —a—]dxdyz fpdx +Qdy,
R aX ay C
where F=P(x,y)§+Q(x,y)} is a continuous vector func-
tion with continuous first partial derivatives a—P, 2—Q ina
X

some domain R, which is bounded by a closed, piecewise
smooth curve C.

Area of a Region R Bounded by the Curve C
1
S = || dxdy =—¢xdy — ydx

Path Independence of Line Integrals
The line integral of a vector function F=Pi+Qj+RKk is

said to be path independent, if and only if P, Q, and R are
continuous in a domain D, and if there exists some scalar
function u:u(x,y,z) (a scalar potential) in D such that

- ou
radu,or —=P, —= ,__
=8 o =Q

5}’
Then

[E(7)- dF = [ Pdx + Qdy + Rdz = u(B) - u(A).
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Test for a Conservative Field

A vector field of the form F=grad u is called a conservative

field. The line integral of a vector function F =Pi +Qj +Rk
is path independent if and only if
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If the line integral is taken in xy-plane so that
J.de +Qdy =u(B)-u(A),
C

then the test for determining if a vector field is conservative
can be written in the form

®_oQ
oy ox’
Length of a Curve

B

e T A e R

o

where C ia a piecewise smooth curve described by the posi-
tion vector T(t), a <t<p.

If the curve C is two-dimensional, then

L=£ds :?%(t){dwi\/(j—ﬂz +(j—zj2 dt.

o o

If the curve C is the graph of a function y =f(x) in the xy-
plane (a <x<b), then

b av )2
L=I 1+ &Y dx.
g dx
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Length of a Curve in Polar Coordinates
) drY’
L= I (—J +r* do,
> \\dé
where the curve C is given by the equation r=r(0),

a <0 <P in polar coordinates.

Mass of a Wire
m= jp(x,y,z)ds ,
C

where p(x, y,z) is the mass per unit length of the wire.
If Cis a curve parametrized by the vector function

f(t)=<x(t), y(t), Z(t)>, then the mass can be computed by
the formula

m:fp(x(t),y(t),z(t))\/(%f {%} {%} dt.

If C is a curve in xy-plane, then the mass of the wire is given
by

m = [ p(x,y)ds,
C

or

m:fp(x(t),y(t))J( dsz {ﬂf dt (in parametric form).

dt dt

Center of Mass of a Wire
M M Mxy

yZ pa— —
» Y= >, z= ’
m m m
where

M, = jxp(x,y,z)ds R
C

X =



M,, = [yp(x,y,z)ds,
C
M, = Izp(x,y,z)ds .
C
1134. Moments of Inertia

The moments of inertia about the x-axis, y-axis, and z-axis
are given by the formulas

I = J.(y2 +z° )p(x,y,z)ds ,

C

1135. Area of a Region Bounded by a Closed Curve
S= ffxdy = —§ydx = lﬁxdy —ydx.
C C 2 C

y

Figure 205.

If the closed curve C is given in parametric form
F(t)= <x(t),y(t)> , then the area can be calculated by the for-

mula



L \dy oodx ., 1} dy dx
S=[x(t)=Ldt=—[y(t)—dt=— —~ —y(t)= |dt.
P3G = [ <O 2O o

1136. Volume of a Solid Formed by Rotating a Closed Curve
about the x-axis

V= —niﬁyzdx = —2nj;xydy = —§§2xydy +y’dx
C C C

y
I
AARE )\
[ JOSRAS \‘.
|III IIr II| II|I 1'| |IIr ! II',
R | !.-f\,|
i X
0 | | ||| ;|| | ‘ Y
L .
||‘| I||IIIII:I‘I Illlll‘ .IIIII |‘| /,'
QLY
5 e
Figure 206.

1137. Work

Work done by a force F on an object moving along a curve
C is given by the line integral

W=jif-df,
C

where F is the vector force field acting on the object, dr is
the unit tangent vector.



Figure 207.

If the object is moved along a curve C in the xy-plane, then
W= [F-df = [Pdx+Qdy,
C C

If a path C is specified by a parameter t (t often means
time), the formula for calculating work becomes

W P ) G QO I b e o

dt dt
where t goes from o to f3.

If a vector field F is conservative and u(x,y,z) is a scalar

potential of the field, then the work on an object moving
from A to B can be found by the formula
W=u(B)-u(A).

1138. Ampere’s Law
§I§~df =p,l.
C

The line integral of a magnetic field B around a closed path
C is equal to the total current I flowing through the area
bounded by the path.



Figure 208.

1139. Faraday’s Law

s=§>E-df=—d—W
2 dt

The electromotive force (emf) & induced around a closed
loop C is equal to the rate of the change of magnetic flux y

passing through the loop.
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Figure 209.



