CBSE Board Class X Mathematics Sample Paper 2 (Standard) – Solution

Part A

Section I

1. Let x = 0.8 (i) $\Rightarrow 10x = 8.8$ (ii) (ii) - (i) $\Rightarrow 10x - x = 8$ $\Rightarrow 9x = 8$ $\Rightarrow x = 8/9$ OR $\frac{17}{8}$ Prime factorisation of $8 = 2^3 5^0$ Since the prime factorisation of 8 is in the form of $2^n 5^m$ \Rightarrow The decimal expansion of $\frac{17}{8}$ is terminating.

2. For the two lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ to be coincident,

we must have $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$. The given equation of lines are 3x + 6y - 15 = 0 and 9x + 18y - m = 0

As
$$\frac{a_1}{a_2} = \frac{3}{9} = \frac{1}{3}$$
, $\frac{b_1}{b_2} = \frac{b}{18} = \frac{1}{3}$

Therefore, $\frac{c_1}{c_2} = \frac{1}{3} \Rightarrow \frac{-15}{-m} = \frac{1}{3} \Rightarrow m = 45$

Hence, the value of m is 45.

3. In \triangle ABC, right angled at B, AB = 12 cm and BC = 5 cm. Applying Pythagoras theorem, we have AC² = AB² + BC² = (12)² + (5)² = 144 + 25 = 169 \Rightarrow AC = $\sqrt{169}$ = 13 cm

$$\sin A = \frac{\text{side opposite to } \angle A}{\text{Hypotenuse}} = \frac{\text{BC}}{\text{AC}} = \frac{5}{13}$$

4. Given $\sin 2x = 1$

$$\Rightarrow 2x = \sin^{-1} 1 = \frac{\pi}{2}$$
$$\Rightarrow x = \frac{\pi}{4}$$
Also, $\cos y = \frac{\sqrt{3}}{2}$
$$\Rightarrow y = \cos^{-1} \frac{\sqrt{3}}{2} = \frac{\pi}{6}$$
$$\Rightarrow y = \frac{\pi}{6}$$
$$\therefore x - y = \frac{\pi}{4} - \frac{\pi}{6} = \frac{\pi}{12}$$

Hence, the value of x – y is $\frac{\pi}{12}$.

5. Let P(x, y) be the point which divides the line segment AB in the ratio 1: 3. Coordinates of point P, dividing the line segment joining A(x₁, y₁) & B(x₂, y₂)

internally in the ratio m:n is $\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)$ Therefore, $x = \frac{1(5) + 3(-3)}{1+3} = -1$ and $y = \frac{1(2) + 3(6)}{1+3} = 5$ Hence, the coordinates of P are (-1, 5)

OR

Origin is O(0, 0) and given point is P(-24, 7). Now, distance between two points (x_1, y_1) and (x_2, y_2) is given by

$$\sqrt{\left(x_{1}^{2}-x_{2}^{2}\right)^{2}+\left(y_{1}^{2}-y_{2}^{2}\right)^{2}}$$

Therefore, distance between point P and origin is

 $\sqrt{\left(0+24\right)^2+\left(0-7\right)^2} = \sqrt{24^2+7^2} = \sqrt{576+49} = 25$

Hence, the distance of (-24, 7) from the origin is 25 units.

6. Total number of outcomes = 7

From the given list, numbers which satisfy |x| < 2 are -1, 0, 1.

Number of favourable outcomes = 3

 \therefore Required probability = $\frac{3}{7}$

All possible outcomes = {Pass, Fail} \Rightarrow n(S) = 2 Possible outcomes of passing = A = {Pass} \Rightarrow n(A) = 1 \therefore Required probability = $\frac{n(A)}{n(S)} = \frac{1}{2}$

7. $p(x) = 3x^{2} + 7x - 3$ is divided by polynomial $x^{2} - 2$

$$3 = \frac{3}{3x^{2} - 2} \frac{3}{3x^{2} + 7x - 3} = \frac{3x^{2} - 6}{- + \frac{7x + 3}{7x + 3}}$$

Hence, the remainder is 7x + 3.

8. Dimensions of the resulting cuboid will be 4 cm, 4 cm, 8 cm. Surface area of the cuboid

```
= 2(lb + bh + lh)
= 2(4 × 4 + 4 × 8 + 4 × 8)
= 2(16 + 32 + 32)
= 2(16 + 64)
= 2 × 80 = 160 cm<sup>2</sup>
```

Hence, the surface area of the resulting cuboid is 160 cm

9. Let PT = x cm

Given: In Δ PQR, ST || QR

Using Basic proportionality theorem, we have

 $\frac{PS}{SQ} = \frac{PT}{TR}$ $\Rightarrow \frac{2.5}{5} = \frac{x}{6}$ $\therefore x = 3$

Hence, the length of PT is 3 cm.

10.
$$x^{2} - 3\sqrt{3}x + 6 = 0$$

$$\Rightarrow x^{2} - \sqrt{3}x - 2\sqrt{3}x + 6 = 0$$

$$\Rightarrow x (x - \sqrt{3}) - 2\sqrt{3} (x - \sqrt{3}) = 0$$

$$\Rightarrow (x - \sqrt{3}) (x - 2\sqrt{3}) = 0$$

$$\Rightarrow x - \sqrt{3} = 0 \text{ or } x - 2\sqrt{3} = 0$$

$$\Rightarrow x = \sqrt{3} \text{ or } x = 2\sqrt{3}$$

Given equation is $x^2 - 2x + 1 = 0$ Comparing with $ax^2 + bx + c = 0$ a = 1, b = -2 and c = 1Discriminant = $b^2 - 4ac = (-2)^2 - 4 = 0$

11. According to the question,

$$a - \frac{4}{5} = 2 - a$$
$$\Rightarrow 2a = 2 + \frac{4}{5}$$
$$\Rightarrow 2a = \frac{14}{5}$$
$$\Rightarrow a = \frac{7}{5}$$

OR

Given that the first and last terms of an A.P. are 1 and 11, i.e., a = 1 and l = 11. Sum of its n terms = $S_n = 36$

$$S_n = \frac{n}{2} (a + l)$$
$$\implies 36 = \frac{n}{2} (1 + 11)$$
$$\implies n = \frac{36}{6} = 6$$

Thus, the number of terms in the A.P. is 6.

- **12.** Given, AR = 5 cm, BR = 4 cm and AC = 11 cmWe know that the tangents drawn from a point outside a circle are equal in length. $\Rightarrow AR = AQ = 5 \text{ cm}$ and BR = BP = 4 cmAnd PC = QC = AC - AQ = 11 - 5 = 6 cmTherefore, BC = BP + PC = 4 cm + 6 cm = 10 cm
- **13.** Given system of equations has infinitely many solutions.

$$\Rightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$
$$\Rightarrow \frac{2}{4} = \frac{3}{k} = \frac{-5}{-10}$$
$$\Rightarrow k = \frac{4 \times 3}{2} = 6$$

Weight (in kg)	Frequency (fi)	Cumulative
		frequency
40 - 45	2	2
45 - 50	3	2 + 3 = 5
50 – 55	8	5 + 8 = 13
55 - 60	6	13 + 6 = 19
60 - 65	6	19 + 6 = 25
65 – 70	3	25 + 3 = 28
70 – 75	2	28 + 2 = 30
Total (n)	30	

14. We may find cumulative frequencies with their respective class intervals as below

Cumulative frequency just greater than $\frac{n}{2}\left(i.e.\frac{30}{2}=15\right)$ is 19,

belonging to class interval 55 - 60. Median class = 55 - 60Lower limit (l) of median class = 55Hence, the lower limit is 55.

15. Vertices of a triangle are (7, -2), (5, 1) and (3, 2) Area of a triangle with vertices (x₁, y₁), (x₂, y₂) and (x₃, y₃) is

$$= \frac{1}{2} \{ x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2) \}$$

$$\Longrightarrow Area = \frac{1}{2} \{ 7 (1 - 2) + 5 (2 - (-2)) + 3 (-2 - 1) \}$$

$$= \frac{1}{2} \{ -7 + 20 - 9 \}$$

$$= \frac{1}{2} \{ 4 \} = 2$$

Hence, the area of the triangle is 2 sq. units.

16. If r, h and *l* denote respectively the radius of base, height and slant height of a right circular cone, then total surface area is $\pi r^2 + \pi r l$.

Part B

Section II

17.

(a) Mid-point of I and H =
$$\left(\frac{9+12}{2}, \frac{16+15}{2}\right) = \left(\frac{21}{2}, \frac{31}{2}\right)$$

- (b) The distance of the point Q from the x axis is 6m.
- (c) The distance between A and D is 16m.
- (d) Coordinates of A are (1, 8) and that of B are (5, 10). Coordinates of a point dividing AB in the ratio 3: 1 is

$$\left(\frac{3\times5+1\times1}{1+3},\frac{3\times10+1\times8}{1+3}\right) = \left(4,\frac{19}{2}\right) = (4.0,9.5)$$

(e) (x, y) is equidistant from Q(9, 8) and S(17, 8). $\Rightarrow (9 - x)^2 + (8 - y)^2 = (17 - x)^2 + (8 - y)^2$ $\Rightarrow 81 - 18x = 289 - 34x$ $\Rightarrow 16x = 208$ $\Rightarrow x = 13$ $\Rightarrow x - 13 = 0$

18.

- (a) Width of the scale model = $\frac{1}{5} \times \text{width of the boat} = \frac{1}{5} \times 60 = 12 \text{ cm}$
- (b) If any two polygons are not the mirror image of one another then there similarity will effect.
- (c) We know that,

Scale factor = $\frac{\text{length in image}}{\text{corresponding length in object}}$

If two similar triangles have a scale factor of a: b then their altitudes have a ratio a: b

(d) This is an example of similarity.

$$\Rightarrow \frac{10}{4} = \frac{22.5}{\text{Shadow of a tree}}$$
$$\Rightarrow \text{Shadow of a tree} = \frac{90}{10} = 9 \text{ m}$$

(e) Here, ΔTEF and ΔTAB are similar triangles as they form the equal angles.

Therefore, the ratio of their corresponding sides is same.

As E and F are the midpoints TA and TB, so TE = 6m and TF = 6m

$$\frac{EF}{AB} = \frac{TE}{TA} = \frac{1}{2} \Rightarrow EF = 6m$$

- (a) $x^2-10x + 16 = x^2 8x 2x + 16 = x (x 8) 2 (x 8) = 0$ $\Rightarrow (x - 8)(x - 2) = 0$ $\Rightarrow x = 8 \text{ or } x = 2$
- (b) Zeroes of a polynomial can be expressed graphically. Number of zeroes of polynomial is equal to number of points where the graph of polynomial **Intersects**

x - axis.

- (c) Graph of a quadratic polynomial is a Parabola.
- (d) A highway underpass is parabolic in shape and a parabola is the graph that results from p(x)=ax²+bx+c which has two zeroes. (As it is a quadratic polynomial)

Product of zeroes = 36 and one of the zero = $6 \Rightarrow$ other zero = 6

 x^2 – (sum of zeroes)x + product of zeroes

$$= x^2 - 12x + 36$$

(e) $f(x) = (x - 3)^2 + 4 = x^2 - 6x + 13$ is a Quadratic Polynomial.

The number of zeroes that f(x) can have is 2.

20.

(a)

Time (in sec)	No. od students(f)	Х	fx
0 - 20	8	10	80
20 - 40	10	30	300
40 - 60	13	50	650
60 - 80	6	70	420
80 - 100	3	90	270
	Σ f = 40		Σ fx = 1720

Mean time taken by a student to finish the race = 1720/40 = 43 seconds

- (b) The modal class is 40 60 as it has the highest frequency i.e 13. Lower limit of the modal class = 40
- (c) The construction of cumulative frequency table is useful in determining the Median.
- (d)

Time (in sec)	No. od students(f)	Cf
0 – 20	8	8
20 - 40	10	18
40 - 60	13	31
60 - 80	6	37
80 - 100	3	40
	$N = \Sigma f = 40$	

19.

Here N/2 = 40/2 = 20, Median Class = 40 - 60, Modal Class = 40 - 60

- Sum of upper limits of median class and modal class = 60 + 60 = 120
- (e) Number of students who finished the race within 80 seconds = 8 + 10 + 13 + 6 = 37

Part B

Section III

21. Let AB be the diameter of the given circle, and let PQ and RS be the tangent lines drawn to the circle at points A and B respectively.

Since tangent at a point to a circle is perpendicular to the radius through the point of contact. Therefore, AB is perpendicular to both PQ and RS. $\Rightarrow \angle PAB = 90^{\circ} \text{ and } \angle ABS = 90^{\circ}$ $\Rightarrow \angle PAB = \angle ABS$

But, these are a pair of alternate interior angles. Therefore, PQ is parallel to RS.

22. Circumference of first circle = $C_1 = 2\pi \times 19 = 38\pi$ Circumference of second circle = $C_2 = 2\pi \times 9 = 18\pi$ $C_1 + C_2 = 56\pi$ Let R be the radius of the new circle. $\therefore 2\pi R = 56\pi$ $\therefore 2R = 56$ $\therefore R = 28 \text{ cm}$

OR

Dimension of the rectangular cardboard = $14 \text{ cm} \times 7 \text{ cm}$

Since, two circular pieces of equal radii and maximum area touching each other are cut from the rectangular card board, therefore,

the diameter of each circular piece is 14/2 = 7 cm.


```
\therefore \text{ Area of each circle} = \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} = \frac{77}{2} \text{ cm}^2
\Rightarrow \text{ Area of two circles} = 2 \times \frac{77}{2} = 77 \text{ cm}^2
Area of rectangular cardboard = 14 × 7 = 98 cm<sup>2</sup>

Thus, area of remaining cardboard

= Area of rectangular cardboard - Area of two circles

= (98 - 77) cm<sup>2</sup>

= 21 cm<sup>2</sup>
```

23. Given: Height of the cylindrical part (*h*) = 10cm

```
Radius (r) of cylindrical part = radius (r) of hemispherical part = 3.5cm
Surface area of article = CSA of cylindrical part + 2×CSA of hemispherical part
```

```
= 2 \pi r h + 2 \times 2 \pi r^{2}
= 2 \pi \times 3.5 \times 10 + 2 \times 2 \pi \times 3.5 \times 3.5
= 70 \pi + 49 \pi
= 119 \pi
= 17 \times 22 = 374 cm^{2}
Hence, the surface area of the article is 374 cm^{2}.
```

24. Let AC be the electric pole of height 4 m. Let B be a point 1.3 m below the top A of the pole AC.

Let BD be the length of ladder inclined at an angle of 60°.

$$\sin 60^{\circ} = \frac{BC}{BD}$$

$$\Rightarrow \frac{\sqrt{3}}{2} = \frac{2.7}{BD}$$

$$\Rightarrow BD = \frac{5.4}{\sqrt{3}} = 1.8\sqrt{3} \text{ or } \frac{9\sqrt{3}}{5}$$

Thus, the length of the ladder is $\frac{9\sqrt{3}}{5}$ m.

Let AB be the pole and let AC be its shadow. Let the angle of elevation of the sun be θ° .

$$\angle ACB = \theta$$
, $\angle CAB = 90^{\circ}$
AB = 10 m and AC = 10 $\sqrt{3}$ m
In $\triangle CAB$,

$$\tan \theta = \frac{AB}{AC} = \frac{10}{10\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \theta = 30$$

Hence, the angular elevation of the sun is 30° .

- **25.** The given AP is $\sqrt{2}$, $\sqrt{8}$, $\sqrt{18}$, ... or $\sqrt{2}$, $2\sqrt{2}$, $3\sqrt{2}$... Common difference d = $2\sqrt{2} - \sqrt{2} = \sqrt{2}$ Term next to $3\sqrt{2} = 3\sqrt{2} + d = 3\sqrt{2} + \sqrt{2} = 4\sqrt{2} = \sqrt{16 \times 2} = \sqrt{32}$
- 26. A die is thrown at once then S = {1, 2, 3, 4, 5, 6} \therefore n(S) = 6 Let E be the event of getting a prime number. \therefore E = {2, 3, 5} \therefore n(E) = 3 \therefore P(E) = $\frac{n(E)}{n(S)} = \frac{3}{6} = \frac{1}{2}$

Section IV

27. Suppose the line 3x + y - 9 = 0 divides the line segment joining the points A(1, 3) and B(2, 7) in the ratio k : 1 at point C.

Then, the co-ordinates of C are $\left(\frac{2k+1}{k+1}, \frac{7k+3}{k+1}\right)$ But, C lies on 3x + y - 9 = 0. Therefore, $\left[3\left(\frac{2k+1}{k+1}\right)\right] + \left[\frac{7k+3}{k+1}\right] - 9 = 0$ $\Rightarrow 6k + 3 + 7k + 3 - 9k - 9 = 0$ $\Rightarrow 4k - 3 = 0$ $\Rightarrow k = \frac{3}{4}$ So, the required ratio is 3: 4.

OR

Given, the point P divides the join of (2, 1) and (-3, 6) in the ratio 2: 3.

Co-ordinates of the point P = $\left(\frac{2 \times (-3) + 3 \times 2}{2+3}, \frac{2 \times 6 + 3 \times 1}{2+3}\right) = \left(\frac{-6+6}{5}, \frac{12+3}{5}\right) = (0,3)$ Now, the given equation is x - 5y + 15 = 0. Substituting x = 0 and y = 3 in this equation, we have L.H.S. = 0 - 5(3) + 15 = -15 + 15 = 0 = R.H.S. Hence, the point P lies on the line x - 5y + 15 = 0.

28.

- 1. Draw a line segment of AB length 7.6 cm.
- 2. Draw a ray AX making acute angle with AB and take 13 points A₁,A₂, ... A₁₃ on it at equal distances
- 3. Join A₁₃ and B. Draw line parallel to A₁₃B from A₅ meeting AB at C.
- 4. AC: CB = 5:8. Measuring the lengths, we get AC = 2.9 cm and CB = 4.7 cm.

29. Since, the highest frequency is between 35 - 45 we have l = 35, h = 10, $f_0 = 21$, $f_1 = 23$, $f_2 = 14$

Mode =
$$l + (f_1 - f_0)/(2f_1 - f_0 - f_2) \times h = 35 + (23 - 21)/(2 \times 23 - 21 - 14) \times 10 = 36.8$$

Mean
$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{2830}{80} = 35.375$$

OR

From the data given as above we may observe that maximum class frequency is 12 belonging to class interval 65 - 75. So, modal class = 65 - 75Lower class limit (l) of modal class = 65Frequency (f₁) of modal class = 12 Frequency (f₀) of class preceding the modal class = 11 Frequency (f₂) of class succeeding the modal class = 9 Class size (h) = 10

M o d e = l +
$$\left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h = 65 + \left(\frac{12 - 11}{2(12) - 11 - 9}\right) \times 10$$

= 65 + $\frac{1}{4} \times 10 = 65 + 2.5 = 67.5$

30.

The numbers of the form $\frac{p}{q}$, where p and q are integers and q \neq 0 are called rational numbers. Let x = 3.1416 \Rightarrow x = 3.141614161416...(i) Since there are four repeating digits, we multiply by 1000. \Rightarrow 10000x = 31416.14161416...(ii) Subtracting (i) from (ii), we get 9999x = 31413 \Rightarrow x = $\frac{31413}{9999}$ which is of the form $\frac{p}{q}$. So, 3.1416 is a rational number.

31. Dividend, $p(x) = x^3 - 3x^2 + x + 2$

Quotient = (x - 2)Remainder = (-2x + 4)Let g(x) be the divisor. According to the division algorithm, Dividend = Divisor × Quotient + Remainder $x^{3} - 3x^{2} + x + 2 = g(x) \times (x - 2) + (-2x + 4)$ $\Rightarrow x^{3} - 3x^{2} + x + 2 + 2x - 4 = g(x)(x - 2)$ $\Rightarrow x^{3} - 3x^{2} + 3x - 2 = g(x)(x - 2)$

Now, g(x) is the quotient when $x^3 - 3x^2 + 3x - 2$ is divided by x - 2

$$\begin{array}{r} x^{2} - x + 1 \\ x - 2 \overline{\smash{\big)} x^{3} - 3x^{2} + 3x - 2} \\ x^{3} - 2x^{2} \\ - + \\ - x^{2} + 3x - 2 \\ - x^{2} + 2x \\ + - \\ \hline x - 2 \\ x - 2 \\ - + \\ \hline 0 \\ \therefore g(x) = x^{2} - x + 1 \end{array}$$

32. Let the fraction be $\frac{x}{y}$.

```
According to the question,

x + y = 8 ....(1)

\frac{x + 3}{y + 3} = \frac{3}{4}

\Rightarrow 4x + 12 = 3y + 9

\Rightarrow 4x - 3y = -3 ....(2)

Multiplying (1) by 3, we get

3x + 3y = 24 ....(3)

Adding (2) and (3), we get

7x = 21

\Rightarrow x = 3
```

 $\Rightarrow y = 8 - x = 8 - 3 = 5$ Thus, the fraction is $\frac{3}{5}$.

33. Radius (*r*) of circle = 21 cmAngle subtended by given arc = 60°

Length of an arc of a sector of angle $\theta = \frac{\theta}{360^{\circ}} \times 2\pi r$

a. Length of arc ACB = $\frac{60^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 21$ = $\frac{1}{6} \times 2 \times 22 \times 3$ = 22 cm b. Area of sector OACB = $\frac{60^{\circ}}{360^{\circ}} \times \pi r^{2}$ = $\frac{1}{6} \times \frac{22}{7} \times 21 \times 21$ = 231 cm² c. Now in $\triangle OAB$ $\angle OAB = \angle OBA$ (as OA = OB)...(i) $\angle OAB + \angle AOB + \angle OBA = 180^{\circ}$ $\Rightarrow 2\angle OAB + 60^{\circ} = 180^{\circ}$ from(i) $\Rightarrow \angle OAB = 60^{\circ}$

So, ΔOAB is an equilateral triangle.

Area of
$$\triangle OAB = \frac{\sqrt{3}}{4} \times (side)^2$$

= $\frac{\sqrt{3}}{4} \times (21)^2 = \frac{441\sqrt{3}}{4} cm^2$

Area of segment ACB = Area of sector OACB – Area of \triangle OAB

 $= \left(2 \, 3 \, 1 - \frac{4 \, 4 \, 1 \, \sqrt{3}}{4} \right) \, c \, m^{2}$

OR

Let 0 be the centre of the circumcircle.

Join OB and draw AD \perp BC.

Then, 0 B = 42 cm and \angle 0 B D = 30 $^\circ$

In $\Delta\,O\,B\,D$,

$$\sin 30^\circ = \frac{0 \text{ D}}{0 \text{ B}}$$
$$\Rightarrow \frac{1}{2} = \frac{0 \text{ D}}{42}$$
$$\Rightarrow 0 \text{ D} = 21 \text{ cm}$$

Now, BD² = 0B² - 0D² = 42² - 21² = (42 + 21)(42 - 21) = 63 × 21
⇒ BD =
$$\sqrt{63 × 21} = \sqrt{3 × 21 × 21} = 21\sqrt{3}$$
 cm
⇒ BC = 2 × 21 $\sqrt{3} = 42\sqrt{3}$ cm
Now, area of the shaded region
= Area of the circle - Area of an equilateral $\triangle ABC$
= $\frac{22}{7} × 42 × 42 - \frac{\sqrt{3}}{4} × 42\sqrt{3} × 42\sqrt{3}$
= (5544 - 2291.5) cm²
= 3252.5 cm²

Section V

34. Let B be the window of a house AB and let CD be the other house. Then, AB = EC = h metres. Let CD = H metres. Then, ED = (H - h) mIn ΔBED, $\cot \alpha = \frac{BE}{ED}$ $BE = (H - h) \cot \alpha$... (a) In $\triangle ACB$, $\frac{AC}{AB} = \cot \beta$ AC = h. $\cot \beta$ (b) But BE = AC[From (a) and (b)] \therefore (H – h) cot α = h cot β $H = h \, \frac{(\cot \alpha + \cot \beta)}{\cot \alpha}$ $H = h(1 + \tan \alpha \cot \beta)$ Thus, the height of the opposite house is $h(1 + \tan \alpha . \cot \beta)$ metres

OR

Let AD represent the light house.

Let the points B and C denote the ships based on the opposite sides of the light house.

 $\angle ACD = \angle QAC = 30^{\circ} \text{ (interior alternate angle)}$ $\therefore \tan 45^{\circ} = \frac{AD}{BD} \Rightarrow 1 = \frac{200}{BD} \Rightarrow BD = 200 \text{ m}$ Also, $\tan 30^{\circ} = \frac{AD}{DC}$ $\Rightarrow \frac{1}{\sqrt{3}} = \frac{200}{DC} \Rightarrow DC = 200\sqrt{3} \text{ m}$ $\Rightarrow DC = 200 \times 1.732 = 346.4 \text{ m}$ $\therefore BC = BD + DC = (200 + 346.4) \Rightarrow BC = 546.4 \text{ m}$ Distance between two ships = 546.4 m

35. Statement : Ratio of the areas of two similar triangles is equal to the ration of the squares of their corresponding sides.

Given : Two triangles ABC and PQR such that $\triangle ABC \sim \triangle PQR$

To prove : $\frac{\operatorname{ar}({}^{\triangle}ABC)}{\operatorname{ar}({}^{\triangle}PQR)} = \frac{AB^{2}}{PQ^{2}} = \frac{BC^{2}}{QR^{2}} = \frac{CA^{2}}{RP^{2}}$

Proof :

For finding the areas of the two triangles, we draw altitudes AM and PN of the triangles.

Now,
$$\operatorname{ar}(^{\triangle} A B C) = \frac{1}{2}BC \times AM$$

And $\operatorname{ar}(^{\triangle} P Q R) = \frac{1}{2}QR \times PN$

So, $\frac{\operatorname{ar}({}^{\triangle} A B C)}{\operatorname{ar}({}^{\triangle} P Q R)} = \frac{\frac{1}{2} \times B C \times A M}{\frac{1}{2} \times Q R \times P N} = \frac{B C \times A M}{Q R \times P N} \dots (1)$ Now, in \triangle ABM and \triangle PQN. $\angle B = \angle Q$ (As $\triangle ABC \sim \triangle PQR$) $\angle M = \angle N$ (Each = 90°) So, $\triangle ABM \sim \triangle PQN$ (AA similarity criterion) $\frac{A M}{P N} = \frac{A B}{P O}$ Therefore,(2) Also, $\triangle ABC \sim \triangle PQR$ So, $\frac{AB}{PQ} = \frac{BC}{QR} = \frac{CA}{RP}$ (3) $\frac{\operatorname{ar}(\operatorname{ABC})}{\operatorname{ar}(\operatorname{PQR})} = \frac{\operatorname{AB}}{\operatorname{PQ}} \times \frac{\operatorname{AM}}{\operatorname{PN}}$ [from(1)and(3)] $= \frac{AB}{PO} \times \frac{AB}{PO}$ [from(2)] $=\left(\begin{array}{c} A B \\ P Q \end{array}\right)^2$

Now using (3), we get

$$\frac{\operatorname{ar}(ABC)}{\operatorname{ar}(PQR)} = \frac{AB^{2}}{PQ^{2}}$$

Similarly
$$\frac{\operatorname{ar}(ABC)}{\operatorname{ar}(PQR)} = \frac{BC^{2}}{QR^{2}} = \frac{CA^{2}}{RP^{2}}$$

36. Length of the cylinder = 24 cm

Diameter of copper wire = 4 mm = 0.4 cm

Therefore, the number of rounds required for a wire to cover the length of cylinder

= <u>Length of cylinder</u>

Thickness of wire

 $= \frac{24 \text{ cm}}{0.4 \text{ cm}}$

= 60

Now, diameter of cylinder = 20 cm

Therefore, length of the wire required to complete one round = circumference of

base of the cylinder =
$$\pi d = \frac{22}{7} \times 20 = \frac{440}{7} cm$$

Length of wire for covering the whole surface of cylinder

= length of wire in completing 60 rounds

 $= 60 \times \frac{440}{7} = 3771.428 \text{ cm}$

Radius of copper wire = $\frac{0.4}{2}$ cm = 0.2 cm

Therefore, volume of wire = $\pi r^2 h = \frac{22}{7} \times (0.2)^2 \times 3771.428 = 474.122 \text{ cm}^3$ Weight of wire = volume × density

 $= 474.122 \times 8.68 = 4115.38 \text{ g} = 4.11538 \text{ kg} \approx 4.12 \text{ kg}$