PRACTICE PAPER

(d) none of the above

Гim	ime allowed: 45 minutes Maximum Marks: 200					
Gene	eral Instructions: Se	ame as Practice Paper-1.				
Choo	se the correct optio	on in the following question	s.		C	
1.	What is the value o	of minimum force (in N)acti	ng between two charges pla	ced at 1 m apart from each other?	0	
	$(a) ke^2$	(b) ke	(c) <u>ke</u> 4	(d) $\frac{ke^2}{2}$	9	
2.	A glass rod acquire	es charge by rubbing it with	silk cloth. The charge on g	lass rod is due to		
	(a) friction	(b) conduction	(c) induction	(d) radiation		
3.	In the process of c	harging, the mass of the neg	atively charged body			
	(a) increases		(b) decreases			

- 4. Charge on a body is integral multiple of $\pm e$. It is given by the law of (a) conservation of charge (b) conservation of mass
 - (c) conservation of energy (d) quantisation of charge
- 5. The Coulomb field at a point is
 - (a) always continuous

(c) remains constant

- (b) continuous if there is no charge at that point
- (c) discontinuous only if there is a negative charge at that point
- (d) continuous if there is a charge at that point
- 6. Two point charges A and B, having charges +q and -q respectively, are placed at certain distance apart and force acting between them is F. If 25% charge of A is transferred to B, then force between the charges becomes:
 - (c) $\frac{16F}{3}$ $(d) \frac{4F}{3}$ (a) F
- 7. A parallel-plate capacitor has a plate area of 2 m 2 and a plate separation of 10 cm. It carries a charge of 8.85×10^{-10} C. The electric field is
 - (a) zero between the plates
 - (b) zero outside the plates
 - (c) different at different points between the plates
 - (d) 25 NC⁻¹ between the plates
- 8. Drift velocity v_d varies with the intensity of electric field as per the relation
 - (b) $v_d \propto \frac{1}{E}$ (c) $v_d = \text{constant}$ (d) $v_d \propto E^2$ (a) $v_d \propto E$

9.	Two wires of same mat of their specific resista		nd 2L and cross-sectional a	reas 4A and A respectively. The ratio			
	(a) 1:2	(b) 8:1	(c) 1:8	(d) 1:1			
10.	Two bulbs each marked by the combination wil		**	220 V supply. The power consumed			
	(a) 200 W	(b) 100 W	(c) 50 W	(d) zero			
11.			ar cross-section of 1cm ×	$\frac{1}{2}$ cm is connected to a battery across			
	opposite faces. The res	sistance will be					
			across 1 cm $\times \frac{1}{2}$ cm faces.				
			across 10 cm × 1 cm faces.				
	(c) maximum when the	battery is connected a	across 10 cm $\times \frac{1}{9}$ cm faces				
	(d) same irrespective of		4				
12.	A constant voltage is a	applied between the to	wo ends of a uniform meta	llic wire, heat 'H' is developed in it.			
	and the state of t	same material, double		ength as compared to original wire is			
	(a) H/2		(b) H				
	(c) 2H		(d) 4H				
13.	A 100 turns coil show	in the figure carries	a current of 2 A in a mag	netic field of 0.2 Wb-m ⁻² . The torque			
	acting on the coil is			1			
			→ 8 cm +				
		N-Pole	A 10 cm D O O				
	(a) 0.32 N-m tending to rotate the side AC out of the page						
	(b) 0.32 N-m tending to		* · · · · · · · · · · · · · · · · · · ·				
	(c) 0.64 N-m tending to						
	(d) 0.64 N-m tending to	rotate the side AC in	to the page				
14.	. Currents of 10 A and 2 A are flowing in opposite directions through two parallel wires A and B respectively. If the wire A is infinitely long and wire B is 2 m long, then force on wire B which is situated at 10 cm from						
	A, is (a) 4×10^{-5} N		(b) $8 \times 10^{-5} \text{ N}$				
	(a) $4 \times 10^{-5} \text{ N}$ (c) $6 \times 10^{-5} \text{ N}$		(b) $8 \times 10^{-5} \text{ N}$ (d) $2 \times 10^{-5} \text{ N}$				
15		d with uniform voles		cont comming long coloneid. Which of			
15.	An electron is projected with uniform velocity along the axis of a current carrying long solenoid. Which of the following is true?						
(a) The electron will be accelerated along the axis (b) The electron path will be circular about the axis							
				uto a halical noth			
(c) The electron will experience a force at 45° to the axis and hence execute a helical path (d) The electron will continue to move with uniform velocity along the axis of the solenoid							
			, ,				
16.	A sensitive magnetic in box of	istrument can be shi	elded very effectively from	n outside fields by placing it inside a			
	(a) teak wood		(b) plastic materi	al			
	(c) soft iron of high per	meability	(d) a metal of hig				
	, per		(-) "	,			

17.	Whenever the flux linked with a circuit changes, there is an induced emf in the circuit. This emf in the circuit lasts						
	(a) for a very short duration (b) for a	long duration					
	(c) forever (d) as lo	ng as the magnetic flux in the circuit changes.	н				
18.	Self inductance of a coil delays		• •				
	(a) the growth of current through it.						
	(b) the decay of current through it.		Υ				
	(c) both the growth and decay of current through it.		•				
	(d) neither the growth nor the decay of current through it.		_				
19.	Magnetic flux through a coil changes from 0.7 Wb to 0.2 Wb the coil is	in 0.1 second. The induced emf developed in	5				
	(a) 7 V (b) 5 V (c) 20 V	(d) 2 V	100				
20.	An alternating current generator has an internal resistance R_g	and an internal reactance X_a . It is used to supply	1				
	power to a passive load consisting of a resistance R_g and a rea	o o					
	from the generator to the load, the value of X_L is equal to		C				
	(a) zero (b) X_g (c) $-X_g$	(d) R_{σ}	U				
21.	8 8	8					
	will be		S				
	(a) 600 rad/s (b) 500 rad/s (c) 600	Hz (d) 500 Hz	0				
22.		, ,					
44.	220 V. This means	, the meter shows the steady input voltage of					
	(a) input voltage cannot be ac voltage, but a dc voltage.						
	(b) maximum input voltage is 220 V.						
	(c) the meter reads not V but $\langle V^2 \rangle$ and is calibrated to read $\sqrt{\langle V^2 \rangle}$.						
	(d) the pointer of the meter is stuck by some mechanical defect.						
23.	3. In highly inductive load circuit, it is more dangerous when						
		pen the switch					
		easing the resistance					
24.							
	$\varepsilon = E_0 \sin \omega t, i = I_0 \sin (\omega t - \phi)$						
	Then average power transferred to the circuit in one complete	•					
	(a) $E_0 I_0$ (b) $\frac{1}{2} E_0$						
	$(c) \frac{1}{2}E_0I_0\sin\phi \qquad (d) \frac{1}{2}E_0$	$I_0 \cos \phi$					
25.	Given below are two statements labelled as Statement P and S	Statement Q:					
	Statement P : An alternating current of frequency 50 Hz b	ecomes zero, 100 times in one second.					
	Statement Q: Alternating current changes direction and b	ecomes zero twice in a cycle.					
	Select the most appropriate option: (a) P is true, but Q is false (b) P is	alse, but Q is true					
		P and Q are false					
26.							
	(a) $30 \sin 200 \pi (ct - x)$ (b) 10^{-1}	$\sin 200 \pi (ct - x)$					
	(c) $30 \sin \frac{2\pi}{10} (ct - x)$ (d) 10^{-1}	$r^{7}\sin\frac{2\pi}{10}\left(ct-x\right)$					

97	, ,	۱m alaat	tromagnetic	*****	travalling	i		ie de	coribod	h.
~ 1	• £	an eieci	เบอเทลยทยนต	wave	uavening	шу	acuum	ıs ae	scribeu	DV

(a)
$$E_0 k = B_0 \omega$$

(b)
$$E_0B_0 = \omega k$$

(c)
$$E_0\omega = B_0k$$

$$(d) E_0\omega^2 = B_0k^2$$

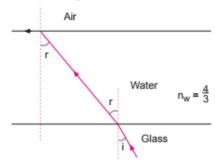
28. Four lenses of focal length \pm 15 cm and \pm 150 cm are available for making a telescope. To produce the largest magnification, the focal length of the eyepiece should be

$$(a) + 15 \text{ cm}$$

$$(b) + 150 \text{ cm}$$

29. The refractive index of glycerine with respect to air is 1.5 for normal light. The speed of light in glycerine is

(a)
$$10^8$$
 m/s


(b)
$$2 \times 10^8$$
 m/s

(c)
$$3 \times 10^8$$
 m/s

(d)
$$4.5 \times 10^8$$
 m/s

30. If an object is placed unsymmetrically between two plane mirrors inclined at 70°, then the total number of images formed is

31. A ray of light is incident at the glass-water interface at an angle i, it emerges finally parallel to the surface of water, then the refractive index of glass n_g would be

$$(a) \frac{4}{3} \sin i$$

(b)
$$\frac{1}{\sin i}$$

(c)
$$\frac{4}{3}$$

32. Match the following in Column A with appropriate characteristics in Column B.

Column A			Column B		
(i)	For a point charge	(p)	Electric field is cylindrically symmetric.		
(ii)	For a dipole and a line charge	(q)	Only a torque but no net force.		
(iii)	A dipole in a uniform electric field	(r)	Both a torque and a net force.		
(iv)	A dipole in a non-uniform electric field	(s)	Electric field is spherically symmetric.		

(a) (i)-(
$$p$$
), (ii)-(q), (iii)-(r), (i v)-(s)

(c) (i)-(r), (ii)-(q), (iii)-(
$$p$$
), (i v)-(r)

(d) (i)-(s), (ii)-(q), (iii)-(
$$p$$
), (i v)-(r)

33. In Young's double-slit experiment the slit separations is d and the wavelength of light used in λ . The maximum intensity is I. Then the angular position where the intensity becomes $\frac{I}{4}$ is

(a)
$$\sin^{-1}\left(\frac{\lambda}{d}\right)$$

(b)
$$\sin^{-1}\left(\frac{\lambda}{2d}\right)$$

(c)
$$\sin^{-1}\left(\frac{\lambda}{3d}\right)$$

$$(d) \sin^{-1}\left(\frac{\lambda}{4d}\right)$$

34. A calcite crystal is placed over a dot on a piece of paper and rotated. On seeing through the calcite, one will see

(a) two rotating dots

(b) two stationary dots

(c) one dot only

(d) one dot rotating about the other

35.	The angle of incidence at which reflected light is tot index n) is	ally polarised for reflection from air to glass (refractive	P	
	(a) $\sin^{-1}(n)$	$(b) \sin^{-1}\left(\frac{1}{n}\right)$		
	(c) $\tan^{-1}\left(\frac{1}{n}\right)$	(d) $tan^{-1}(n)$	н	
36.		and is situated at a distance of one kilometer from two bjects, which can be resolved by the telescope, when the er of	Y	
	(a) 0.5 m (c) 5 mm	(b) 5 m (d) 5 cm	9	
37.	In a diffraction pattern due to a single slit of width	a, the first minimum is observed at an angle 30° when he first secondary maximum is observed at an angle of		
	(a) $\sin^{-1}\left(\frac{1}{4}\right)$	(b) $\sin^{-1}\left(\frac{2}{3}\right)$	ı	
	(c) $\sin^{-1}\left(\frac{1}{4}\right)$	(d) $\sin^{-1}\left(\frac{3}{4}\right)$	C	
38.		tted from a surface when photons of energy 6 eV fall on		
	it is 4 eV. The stopping potential is (a) 2 V	(b) 4 V	S	
	(c) 6 V	(d) 10 V		
39.	-	es m_1 and m_2 with non-zero velocities. The ratio of de		
	Broglie wavelengths of the particles $\frac{\lambda_1}{\lambda_2}$ is			
	$(a)\ \frac{m_2}{m_1}$	$(b) \frac{m_1}{m_2}$		
	(c) $\sqrt{\frac{m_1}{m_2}}$	(d) 1:1		
40.	The energy of hydrogen atom in n^{th} orbit is E_n , the will be	n the energy in n^{th} orbit of single ionised helium atom		
	(a) $4E_n$	(b) $\frac{E_n}{4}$		
	(c) $2E_n$	(d) $\frac{E_n}{2}$		
41.	The ground state energy of hydrogen atom is -13.6 state?	eV. What is the potential energy of the electron in the		
	(a) 0 eV	(b) -27.2 eV		
	(c) 1 eV	(d) 2 eV		
42.	In Bohr model of hydrogen atom, which of the follo			
	(a) linear velocity of electron	(b) angular velocity of electron		
40	(c) linear momentum of electron	(d) angular momentum of electron		
43.	Given below are two statements labelled as Statement P and Statement Q:			
	Statement P : Bohr's postulate states that the s is some integral multiple of $\frac{h}{2\pi}$	tationary orbits are those for which the angular momen	itum	
	Statement Q: Linear momentum of the electrons	on in the atom is quantised.		
	Select the most appropriate option:	•		
	(a) P is true, but Q is false	(b) P is false, but Q is true		
	(e) Both P and Q are true	(d) Both P and Q are false		

44. The equation $_{Z}X^{A} \longrightarrow _{Z+1}Y^{A} + _{-1}e^{0} + \bar{v}$ represents

(a) β-decay

(b) γ-decay

(c) fusion

(d) fission

45. During a mean life of a radioactive element the fraction that disintegrates is

(a) e

(b) $\frac{1}{e}$

(c) $\frac{e-1}{e}$

(d) $\frac{e}{e-1}$

46. A nuclear reaction is given below. The masses in amu of reactant and product nuclei are given in brackets:

$$A + B \longrightarrow C + D + Q (MeV)$$

The value of energy Q is

- (a) 1.234 MeV
- (b) 0.91 MeV
- (c) 0.465 MeV
- (d) 1.862 MeV

47. The truth table shown here is for which of the following gates:

Truth Table				
A	В	Y		
1	1	0		
1	0	1		
0	1	1		
0	0	1		

- (a) NAND
- (b) AND
- (c) XOR

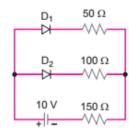
(d) NOT

48. Which of the following is/are true?

Digital signal

- (a) provide a continuous set of values
- (b) represent values on discrete steps

(c) can utilise only binary system


- (d) can utilise only decimal system
- 49. When a forward bias is applied to a p-n junction, it
 - (a) raises the potential barrier

(b) reduces the majority carrier current to zero

(c) lowers the potential barrier

(d) none of the above

50. Assume that each diode shown in the figure has a forward bias resistance of 50 Ω and an infinite reverse bias resistance. The current through the 150 Ω resistance is

- (a) 0.66 A
- (b) 0.05 A
- (c) zero

(d) 0.04 A

ANSWERS

PRACTICE PAPER — 17

(a)

2. (a)

3. (a)

(d)

(b)

6. (b)

7. (b)

8. (a)

9. (d) **10.** (a)

11. (a)

12. (c)

13. (b)

14. (b)

15. (d)

16. (c)

17. (d)

18. (c)

19. (b)

20. (c)

21. (b)

22. (c)

23. (b) 24. (d)

25. (c)

26. (b)

27. (a)

28. (a)

29. (b)

30. (a) **31.** (b)

32. (b)

33. (c)

34. (d)

35. (d)

36. (c)

37. (d) 38. (b)

39. (d)

40. (a)

41. (b)

42. (d)

43. (a)

44. (a)

45. (c)

46. (d)

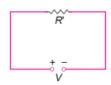
47. (a)

48. (b)

49. (c)

50. (d)

SOLUTIONS


PRACTICE PAPER-17

- 1. (a) Smallest charge = $e = 1.6 \times 10^{-19}$ As charge is small force is minimum $F = \frac{k \times e \times e}{(1)^2} = ke^2$
- 2. (a) As glass rod is rubbed with silk, so relative motion and friction comes to play.
- 3. (a) A negatively charged body has more electrons than the neutral body and these excess electrons results in an increase in mass.
- 4. (d) Quantisation mean integral multiple of any smallest thing.
- **5.** (b) Either positive or negative charges will interact with the lines of electric field to make the electric field discontinuous.

If there is no charge inside the electric field then the lines will not be affected. So, electric field becomes continuous.

6. (b)
$$F = \frac{-kq^2}{r^2}$$

 \therefore 25% charge from A is transferred to B, so, $q'_{B} = -q + \frac{q}{4} = \frac{-3q}{4}$

$$R = \rho \frac{l}{A} = \rho \frac{l}{\pi r^2}$$

$$R = \rho \frac{l}{A} = \rho \frac{l}{\pi r^2} \qquad R' = \rho \frac{2l}{\pi (2r)^2} = \rho \frac{2l}{4\pi r^2}$$

$$H = \frac{V^2}{R}t$$

$$H' = \frac{V^2}{R'}t$$

V = constant

So,
$$\frac{H'}{H} = \frac{R}{R'} = \frac{\frac{\varrho l}{\pi r^2}}{\frac{2l}{4\pi r^2}} = \frac{2}{1}$$

$$\therefore H' = 2H$$

13. (a)
$$\tau = NIAB \sin 90^{\circ} = 100 \times 2 \times (80 \times 10^{-4}) \times 0.2$$

= 0.32 N-m

Hence, coil rotates with side AC into the page.

14. (b) Force on wise B is,

$$\begin{split} F &= \frac{\mu_0 I_1 I_2 l}{2\pi r} \ = \frac{4\pi \times 10^{-7} \times 10 \times 2 \times 2}{2\pi \times 10 \times 10^{-2}} \\ &= 8 \times 10^{-5} \ \mathrm{N} \end{split}$$

$$\frac{3q}{4}$$
A $r \longrightarrow$
B $\frac{-3q}{4}$

So,
$$q_A' = \frac{3q}{4}, q_B' = \frac{-3q}{4}$$

New force
$$(F') = \frac{k\left(\frac{3q}{4}\right)\left(\frac{-3q}{4}\right)}{r^2} = \frac{-9 kq^2}{16 r^2} = \frac{9F}{16}$$

7. (b) Electric field outside the plates =
$$\frac{\sigma}{2\varepsilon_0} - \frac{\sigma}{2\varepsilon_0} = 0$$

Electric field inside the plates = $\frac{\sigma}{2\epsilon_0} + \frac{\sigma}{2\epsilon_0}$

$$=\frac{\sigma}{\varepsilon_0} = \frac{q/A}{\varepsilon_0} = \frac{q}{A\varepsilon_0} = 50 \text{ N/C}$$

8. (a)
$$v_d = \frac{e}{m} \times \frac{V}{l} \tau$$
 or $v_d = \frac{e}{m} \cdot \frac{El}{l} \tau$ (Since $V = El$)

- (d) Specific resistance doesn't depend upon length and area.
- **10.** (a) In parallel, $P = P_1 + P_2 = 100 + 100 = 200 \text{ W}$
- 11. (a) The resistance of wire depends on its geometry of wire/metallic rod. So, for greater value of R, l must be higher and A should be lower, i.e., $R = \rho \frac{l}{A}$

- 15. (d) Magnetic Lorentz force, electron is projected with uniform velocity along the axis of a current carrying long solenoid F = eVB sin 180° = 0 and also (θ = 0°), as B || v . The electron will continue to move with uniform velocity along the axis of the solenoid.
- 17. (d) According to Faraday's law of EMI, emf is induced in the coil still whenever the magnetic flux is changing between coil and magnet.

19. (b)
$$e = -\frac{\Delta \phi}{\Delta t} = \frac{-(0.2 - 0.7)}{0.1} = \frac{0.5}{0.1} = 5 \text{ V}$$

20. (c) According to maximum power transfer theorem, $X_L = -X_g$

21. (b)
$$\omega_r = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{8 \times 0.5 \times 10^{-6}}} = 500 \text{ rad/s}$$

- 22. (c) The voltmeter connected to AC mains reads mean (< V² >) and is calibrated in such a way that it gives value of < V² >, which is multiplied by firm factor to give rms value.
- **23.** (b) When just open the switch, more quickly current changes gives higher the voltage in the circuit.

24. (d)
$$P_{av} = E_{rms} I_{rms} \cos \phi = \frac{E_0}{\sqrt{2}} \times \frac{I_0}{\sqrt{2}} \cos \phi$$

$$= \frac{1}{2} E_0 I_0 \cos \phi$$

26. (b) As we know,

$$B_0 = \frac{E_0}{c} = \frac{30}{3 \times 10^8} = 10^{-7} \text{ T}$$
Also, $\frac{2\pi}{\lambda} = \frac{2\pi}{10.0 \times 10^{-3}} = 200 \pi$

$$\therefore B = B_0 \sin 200 \pi (ct - x)$$

$$= 10^{-7} \sin 200 \pi (ct - x)$$

- 27. (a) $E_x = E_0 \sin(\omega t kx), B_y = B_0 \sin(\omega t kx)$ Also, $\frac{E_0}{B_0} = c = \frac{\omega}{k} \implies E_0 k = B_0 \omega,$ k = propagation constant.
- 28. (a) For making telescope, lenses should be convex and objective has large focal length and eyepiece has small focal length. Hence, focal length of eyepiece should be +15 cm.
- **29.** (b) Absolute refractive index,

$$n = \frac{c}{v} \implies 1.5 = \frac{3 \times 10^8}{v}$$

$$\Rightarrow v = \frac{3 \times 10^8}{1.5} = 2 \times 10^8 \text{ m/s}$$

- **30.** (a) Number of images formed in inclined mirror $= \frac{360}{\theta} = \frac{360}{70} = 5 \text{ (whole number)}$
- **31.** (b) From Snell's law, $n \sin i = \text{constant}$ For glass and air media,

$$n_1 \sin i_1 = n_2 \sin i_2$$

 $\Rightarrow n_g \sin i = 1 \times \sin 90^\circ \Rightarrow n_g = \frac{1}{\sin i}$

33. (c) Maximum intensity = IIntensity due to one slit = $\frac{I}{4}$ $\frac{I}{4} = I \cos^2 \frac{\phi}{2}$

- 34. (d) Calcite crystal is doubly refracting; the light transmitted through calcite crystal consists of two rays. The image of dot due to ordinary ray remains stationary while that due to extraordinary ray rotates about stationary dot.
- **35.** (d) Polarising angle, $i = \tan^{-1}(n)$, (Brewster's law)
- **36.** (c) We know, Resolving power = $\theta = \frac{d}{D}$, also, $\theta = \frac{\lambda}{a}$. Then,

$$d = \theta D = \frac{\lambda}{a} D = \frac{5 \times 10^{-7} \times 10^{3}}{0 \cdot 1}$$
$$= 5 \times 10^{-3} \text{ m} = 5 \text{ mm}$$

37. (*d*) The condition for first minimum is $a \sin \theta = \lambda$

$$\Rightarrow a \sin 30^{\circ} = \lambda$$

 \Rightarrow $a = 2\lambda$

The condition for first secondary maximum is $a \sin \theta_1 = \frac{3\lambda}{9}$

$$\Rightarrow \qquad \sin \theta_1 = \frac{3\lambda}{2a} = \frac{3\lambda}{2 \times 2\lambda} = \frac{3}{4}$$

$$\therefore \qquad \theta_1 = \sin^{-1}\left(\frac{3}{4}\right)$$

38. (b) As we know, $K.E_{max} = eV_0$

$$\therefore V_0 = \frac{K.E_{mox}}{e} = \frac{4 eV}{e} = 4V.$$

- **39.** (*d*) Two emitted particles will have equal and opposite momentum, so $\lambda = \frac{h}{b} = \text{same}$
- **40.** (a) For hydrogen like atom/ions,

$$E'_n = Z^2 E_n \qquad \left[:: E_n \propto \frac{Z^2}{n^2} \right]$$

For helium, Z = 2

$$E'_n = 4E_n$$

41. (*b*) $PE = 2 \times \text{Total energy} = 2 \times (-13.6)$

26. (*b*) As we know,

$$B_0 = \frac{E_0}{c} = \frac{30}{3 \times 10^8} = 10^{-7} \text{ T}$$

Also,
$$\frac{2\pi}{\lambda} = \frac{2\pi}{10.0 \times 10^{-3}} = 200 \,\pi$$

$$\therefore B = B_0 \sin 200 \pi (ct - x)$$

= 10⁻⁷ \sin 200 \pi(ct - x)

27. (a) $E_x = E_0 \sin(\omega t - kx), B_y = B_0 \sin(\omega t - kx)$

Also,
$$\frac{E_0}{B_0}=c=\frac{\omega}{k} \ \Rightarrow \ E_0 k=B_0 \omega,$$

k = propagation constant.

- 28. (a) For making telescope, lenses should be convex and objective has large focal length and eyepiece has small focal length. Hence, focal length of eyepiece should be +15 cm.
- **29.** (b) Absolute refractive index,

$$n = \frac{c}{v} \implies 1.5 = \frac{3 \times 10^8}{v}$$

$$\Rightarrow v = \frac{3 \times 10^8}{1.5} = 2 \times 10^8 \text{ m/s}$$

30. (a) Number of images formed in inclined mirror

$$=\frac{360}{\theta} = \frac{360}{70} = 5$$
 (whole number)

31. (b) From Snell's law, $n \sin i = \text{constant}$

For glass and air media,

$$n_{_1}\sin\,i_{_1}=n_{_2}\sin\,i_{_2}$$

$$\Rightarrow n_g \sin i = 1 \times \sin 90^\circ \Rightarrow n_g = \frac{1}{\sin i}$$

33. (c) Maximum intensity = I

Intensity due to one slit = $\frac{I}{4}$

$$\frac{I}{4} = I \cos^2 \frac{\phi}{2}$$

$$\phi = \frac{2\pi}{2}$$

Path difference =
$$\frac{\lambda}{2\pi} \times \frac{2\pi}{3} = \frac{\lambda}{3}$$

Angular position is given by

$$d\sin\theta = \frac{\lambda}{3}$$

$$\Rightarrow$$
 $\sin \theta = \left(\frac{\lambda}{3d}\right)$

$$\Rightarrow \theta = \sin^{-1}\left(\frac{\lambda}{3d}\right)$$

- **34.** (*d*) Calcite crystal is doubly refracting; the light transmitted through calcite crystal consists of two rays. The image of dot due to ordinary ray remains stationary while that due to extraordinary ray rotates about stationary dot.
- **35.** (d) Polarising angle, $i = \tan^{-1}(n)$, (Brewster's law)
- **36.** (c) We know,

Resolving power = $\theta = \frac{d}{D}$, also, $\theta = \frac{\lambda}{a}$

$$d = \theta D = \frac{\lambda}{a} D = \frac{5 \times 10^{-7} \times 10^{3}}{0.1}$$

$$= 5 \times 10^{-3} \,\mathrm{m} = 5 \,\mathrm{mm}$$

37. (d) The condition for first minimum is

$$a \sin \theta = \lambda$$

$$\Rightarrow a \sin 30^{\circ} = \lambda$$

$$\Rightarrow a = 2\lambda$$

The condition for first secondary maximum is

$$a \sin \theta_1 = \frac{3\lambda}{2}$$

$$\Rightarrow \sin \theta_1 = \frac{3\lambda}{2a} = \frac{3\lambda}{2 \times 2\lambda} = \frac{3}{4}$$

$$\therefore \quad \theta_1 = \sin^{-1}\left(\frac{3}{4}\right)$$

38. (b) As we know, K.E_{mox} = eV_0

$$\therefore V_0 = \frac{K.E_{mox}}{e} = \frac{4 eV}{e} = 4V.$$

- **39.** (*d*) Two emitted particles will have equal and opposite momentum, so $\lambda = \frac{h}{p} = \text{same}$
- 40. (a) For hydrogen like atom/ions,

$$E'_n = Z^2 E_n \qquad \left[:: E_n \propto \frac{Z^2}{n^2} \right]$$

For helium, Z = 2

$$E'_n = 4E_n$$

41. (b) $PE = 2 \times \text{Total energy}$

$$= 2 \times (-13.6)$$

$$= -27.2 \text{ eV}$$

- (d) In Bohr model of hydrogen atom, angular momentum of electron is quantised.
- **43.** (a) According to Bohr's postulate, the stationary orbits are those orbits in which angular momentum of electron is an integral multiple of $\frac{h}{2\pi}$.

i.e.,
$$L = mvr = \frac{nh}{2\pi}$$
, $n = 1, 2, 3, ...$

44. (a) Antinuetrino released, so it's nuclear reaction belong to β- decay process.

45. (c)
$$N = N_0 e^{-\lambda t}, \tau = \frac{1}{\lambda}$$

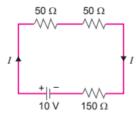
Then, $N = N_0 e^{-\lambda \times \frac{1}{\lambda}} = N_0 e^{-1}$

So, fraction disintegrated;

$$1 - \frac{N}{N_0} = 1 - e^{-1} = \frac{e - 1}{e}$$

46. (d)
$$Q = [m_A + m_B - (m_C + m_D)] \times c^2$$

= $(2.006 - 2.004) \times 931 \text{ MeV}$
= 1.862 MeV .


47. (a) From given truth table,

$$Y = \overline{A \cdot B}$$

It behave like a NAND gate.

- **48.** (c) In full wave rectifier, the fundamental frequency in ripple is twice that of input frequency.
- **49.** (c) Lowers the potential barrier due to narrowing of depletion layer.

50. (d) Diode D_1 is forward biased and offers 50 Ω resistance. Diode D_2 is reverse biased and offers infinite resistance. The equivalent circuit is

Current through the 150 Ω resistance,

$$I = \frac{10}{50 + 50 + 150} = \frac{10}{250} = 0.04 \text{ A}$$

