Applications

of Derivatives

1.

The position of a moving car at time 7 is given by
f(O)=ar*+bt+c,t>0,where a, b and c arereal numbers greater
than 1. Then the average speed of the car over the time interval
[¢,,1,]is attained at the point : [Sep. 06, 2020 (1]

(@ (t,—1)2 (b) a(t,-t)+b

(©) (t,+1)2 (d) 2a(t,+t)+b

If the surface area of a cube is increasing at a rate of 3.6
cm?/sec, retaining its shape; then the rate of change of its
volume (in cm?/sec.), when the length ofa side of the cube

is10cm,is: [Sep. 03,2020 (IT)]
(a) 18 (b) 10
(¢) 20 d 9
If a function f'(x) defined by [Sep. 02,2020 (I)]
ae* +be, -1<x<1
N 2
fx)=qex , 1=x<3 be continuous for some

ax? +2¢x , 3<x<4

a, b, ceR and f'(0)+ f'(2) = e, then the value of a is :

1 e
b
@ e’ —3e+13 ®) e’ —3e—13
e oo
© 2 3er13 @ 23013

A spherical iron ball of 10 cm radius is coated with a layer
of ice of uniform thickness that melts at a rate of 50 cm?/
min. When the thickness of ice is 5 cm, then the rate (in
cm/min.) at which of the thickness of ice decreases, is:

[Jan.9,2020 (D]
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@ o ® S
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© 7= d) =

36m

A2 mladder leans against a vertical wall. Ifthe top of the
ladder begins to slide down the wall at the rate 25 cm/sec.,
then the rate (in cm/sec.) at which the bottom of the ladder
slides away from the wall on the horizontal ground when
the top of the ladder is 1 m above the ground is:

[April 12,2019 ()]
25
@ 253 ® 73
) dy 25
© 3 @

A spherical iron ball of radius 10 cm is coated with a layer of
ice of uniform thickness that melts at a rate of 50 cm*/min.
When the thickness of the ice is 5 ¢cm, then the rate at
which the thickness (in cm/min) of the ice decreases, is :

[April 10,2019 (IT)]
ne o L

@ e ®) J6x
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(© on (d on

A water tank has the shape of an inverted right circular

cone, whose semi-vertical angle is tan™'. Water is poured

into it at a constant rate of 5 cubic meter per minute. Then

the rate (in m/min.), at which the level of water is rising at

the instant when the depth of water in the tank is 10m; is:
[April 09,2019 (ID)]

(@ 1/15= (b) /10w

(c) 2/n d /5w

Ifthe volume of a spherical ball is increasing at the rate of

47 cc/sec, then the rate of increase of its radius (in cm/sec),

when the volume is 288 7 cc, [Online April 19, 2014]
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9.  Two ships A and B are sailing straight away from a fixed 16. Ifa circular iron sheet of radius 30 cm is heated such that
point O along routes such that ZAOB is always 120°. Ata its area increases at the uniform rate of 6 cm?/hr, then the
certain instance, OA = 8 km, OB =6 km and the ship A is rate (in mm/hr) at which the radius of the circular sheet
sailing at the rate of 20 km/hr while the ship B sailing at the increases is [Online May 7,2012]
rate of 30 km/hr. Then the distance between A and B is (@ 10 (b) 0.1
changing at the rate (in km/hr): [Online April 11, 2014] (c) 11 (d) 20

17. Two points A and B move from rest along a straight line
260 260 . . , .
@ = b)) —— with constant acceleration fand f' respectively. IfA takes
V37 37 m sec. more than B and describes ‘n’units more than B in
20 %0 acquiring the s:me speed then [2005]
© &7 @ 37 @ (f =/ = f'n

10. A spherical balloon is being inflated at the rate of 35cc/ ® (f+ f')m2 =f'n
min. The rate of increase in the surface area (in cm2/min.)
of the balloon when its diameter is 14 cm, is : 1 : 2

’ © —(f+fYym=fn
[Online April 25,2013] 2 ffm=5
() 10 ® 10 \ [y
J—f @ (/= fm= 1’
() 100 (d) 10v10 , L . .

1. If the surface area of a sphere of radius r is increasing 18. A lizard, at an initial distance of 21 cm behind an insect,
uniformly at the rate 8 cm?/s, then the rate of change of its moves from rest with an acceleration of 2cm/s? and
volume is : [Online April 9,2013] pursues the insect which is crawling uniformly along a
(a) constant (b) proportional to /7 straight llpe at a speed of 20 cm/s. Then the lizard will

. . catch the insect after [2005]
(c) proportional to 2 (d) proportional to » (@) 20s ®) 1s
12. A spherical balloon is filled with 45007 cubic meters of
. . (©) 21s (d) 24s
helium gas. Ifa leak in the balloon causes the gas to escape 19. A spherical iron ball 10 em in radius i ted with a1
at the rate of 72w cubic meters per minute, then the rate (in : sphericatiron ba ¢ 1 radius 1s coated with a fayer
meters per minute) at which the radius of the balloon ofice of uniform thickness that melts at a rate of 50 cm> /min.
decreases 49 minutes after the leakage began is: When the thickness of ice is 5 cm,then the rate at which
9 7 the thickness of ice decreases is [2005]
@ > ®) 5 [2012] 1 1
2 9 (a) —— cm/min. (b) —— cm/min.
© = @ = 36m 181
9 2

13. Ifametallic circular plate of radius 50 cm is heated so that (c) L cm/min. (d) S cm/min
its radius increases at the rate of 1 mm per hour, then the S4n 6n
rate at which, the area of the plate increases (in cm?/hour) 20, A point on the parabola 3% =18x at which the ordinate
18 [Online May 26, 2012] increases at twice the rate of the abscissa is [2004]
(@ 5=« (b) 10mw 9 9
© 1007 (d) 507 @ (_, _j ® (-4

14. The weight W of a certain stock of fish is given by W= nw, 82
where 7 is the size of stock and wis the average weight of 9 9
a fish. If n and w change with time ¢ as n = 2/2 + 3 and (c) (?’ EJ @ (2,4
w= {2 —t+2, then therate of change of Wwith respectto "
tatr=11is [Online May 19, 2012] ; I . NN O
@ 1 ®) 8 .\T()PT(‘ ncreasing ecreasing Functions @’ ]
(c) 13 d 5 T B

15. Consider a rectangle whose length is increasing at the 21, The function, f(x)= (3x—7)x2/ 3’ xeR, is increasing

uniform rate of 2 m/sec, breadth is decreasing at the uniform
rate of 3 m/sec and the area is decreasing at the uniform
rate of 5 m?/sec. If after some time the breadth of the
rectangle is 2 m then the length of the rectangle is

[Online May 12, 2012]
(@ 2m (b) 4m
(¢) Im (d) 3m

for all xlying in : [Sep. 03,2020 (D]

14 3
@ (- O)U(E,wj ® (=, o)u(?oo)

14
© (‘C’Os gj

14
(d) [—oo, —EJU(O, )
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Let f be any function continuous on [a, b] and twice
differentiable on (a, b). If for all x € (a, b), /2 (x)>0and

f"(x) <0, then for any ¢ € (a, b), % is greater

than: [Jan. 9,2020 ()]
b

@ ® 1
b-c c—a

© c—a @ b-c

T T
Let flx)=xcos™' (sin |x]),x € [—5,5}, then which of the

following is true? [Jan. 8, 2020 ()]

T T

(a) f’isincreasing in —550 and decreasing in 0’5
, m
®) £©0)=-7

(c) f’is notdifferentiableatx=0

T T
(d) f~isdecreasing in —570 and increasing in 0,5

Let f(x) = e*—x and g(x) =x*>—X, X € R. Then the set of all
x € R, where the function h(x) = (fog) (x) is increasing, is :
[April 10,2019 (D]

o [13h ) [otfne

-1
© [0,0) ) {T,O}U[l,o@)
If the function f: R — {1, -1} — A defined by

2
f(x) = lx_z’ is surjective, then A is equal to:
-x
[April 09, 2019 (I)]
(@ R-{-1} (b) [0,
(© R-[-1,0) (d) R-(-1,0)

Let f: [0: 2] — R be a twice differentiable function such

that /"(x) >0, for all xe(0, 2). If ¢(x) = x) + (2 —x), then is:
[April 08,2019 (D]

(a) increasingon (0, 1) and decreasing on (1, 2).

(b) decreasing on (0, 2)

(c¢) decreasing on (0, 1) and increasing on (1, 2).

(d) increasing on (0, 2)

If the function f'given by

f(x)=x3—3(a—2)x%+ 3ax+7, for some acR is increasing

in (0, 1] and decreasing in [1, 5), then a root of the equation,

S(x)-14

s =0(x#1) is [Jan. 12, 2019 (ID)]
—

(@ -7 (b) 5

(© 7 @ 6

28.

29.

30.

31.

32.

33.

34.

): X a d—x
\/a2 +x° \/b2 +(d—x)2

and d are non-zero real constants. Then :
[Jan. 11, 2019 (IT)]

,x € R wherea, b

Let f(x

(a) fis anincreasing function of x

(b) fis a decreasing function of x

(c) f"is not a continuous function of x

(d) fis neither increasing nor decreasing function of x
The function f'defined by
fX)=x*-3x*+5x+7,is:
(a) increasingin R.

(b) decreasinginR.

(c) decreasing in (0, ) and increasing in (— o, 0).

(d) increasing in (0, o) and decreasing in (— o, 0).

Let f(x) = sin*x + cos*x. Then fis an increasing function in

the interval :

5t 3m T 5m
@ P o L
o b

T
© [23]

Let fand g be two differentiable functions on R such that
f'(x)>0and g'(x) <0 forall x €R . Then forall x:
[Online April 12,2014]

@ fEt))>fgkx-1) () f(gx)>f(glx+1)
© gf)>g(fx—=1) (@ gf(x)<g(fx+1)
The real number k for which the equation, 2x3 + 3x + k=0
has two distinct real roots in [0, 1] [2013]
(a) lies between 1 and 2
(b) lies between 2 and 3
(c) liesbetween .1 and 0
(d) does not exist.
Statement-1: The function x2 (¢* + ¢ ) is increasing for
allx>0.
Statement-2: The functions x2e* and x2e™ are increasing
for all x> 0 and the sum of two increasing functions in any
interval (a, b) is an increasing function in (a, b).

[Online April 22,2013]
(a) Statement-1 is false; Statement-2 is true.
(b) Statement-1is true; Statement-2 is true; Statement-2 is

not a correct explanation for Statement-1.
(c) Statement-1 is true; Statement-2 is false.
(d) Statement-1is true; Statement-2 is true; Statement-2 is
a correct explanation for statement-1.

Statement-1: The equation x log x =2 —x is satisfied by at
least one value of x lying between 1 and 2.
Statement-2: The function f(x) =x log x is an increasing
function in [1, 2] and g (x) =2 — x is a decreasing function in
[1, 2] and the graphs represented by these functions
intersect at a pointin [1, 2] [Online April 9, 2013]

[Online April 9, 2017]
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35.

36.

37.

38.

39.

(a) Statement-1 is true; Statement-2 is true; Statement-2
is a correct explanation for Statement-1.

(b) Statement-1 is true; Statement-2 is true; Statement-2
is not correct explanation for Statement-1.

(c) Statement-1 is false, Statement-2 is true.

(d) Statement-1 is true, Statement-2 is false.

Iffix)=xe"!™, x ¢ R , then fx)is

[Online May 12, 2012]

(a) decreasingon [-1/2,1]

(b) decreasing on R

(c¢) increasingon [-1/2, 1]

(d) increasingon R

For real x, let f(x) =x3 + 5x + 1, then

(a) fis onto R but not one-one

(b) fis one-one and onto R

(c) fisneither one-one nor onto R

(d) fis one-one but not onto R

How many real solutions does the equation

x7+ 14x> + 16x3 + 30x — 560 = 0 have?

@ 7 () 1

(© 3 d 5

The function f (x) = tan~'(sin x + cos x) is an increasing

function in [2007]
T T
® (_2’2)

0 (03
oGy el

A function is matched below against an interval where it is
supposed to be increasing. Which of the following pairs is

[2009]

[2008]

incorrectly matched? [2005]
Interval Function
@ (o0, ) ¥ —3x% +3x+3
(®) [2, o) 2% —3x2 —12x+ 6
1 2
(c) —00,5 3x° —2x+1
(d) (—o,-4) ¥ +6x2+6

If the tangent to the curve, y = f(x) = xlog x, (x > 0) at a
point (c, f{c)) is parallel to the line segement joining the
points (1, 0) and (e, e), then c is equal to:

[Sep. 06,2020 (ID)]

e—1

@ — -

€

o {8

. &

€
(d) o1

41.

42.

43.

44,

45.

46.

47.

48.

Which of the following points lies on the tangent to the
curve x*e” +2,/y+1=3 atthe point (1, 0)?

[Sep. 05,2020 (ID)]
@ 22 (b) (2,6)
(© (=2,0) d 2,4
If the lines x + y = a and x — y = b touch the curve
y=x*—3x + 2 at the points where the curve intersects the

x-axis, then % is equal to . [NA Sep. 05, 2020 (ID)]

If the tangent to the curve, y = e at a point (¢, €°) and the
normal to the parabola, > = 4x at the point (1, 2) intersect
at the same point on the x-axis, then the value of ¢ is

[NA Sep. 03,2020 (II)]

6
If y= E kcos™ {%coskx—%sinkx}, then & atx=01is
X
k=1

. [NA Sep. 02,2020 (IT)]
Let the normal at a point P on the curve y*—3x*+y+10=0

3
intersect the y-axis at (0, E) If m is the slope of the

tangent at P to the curve, then |m| is equal to -
[NA Jan. 8,2020 (I)]

The length of the perpendicular from the origin, on the
normal to the curve, x? + 2xy — 3y* = 0 at the point (2, 2)

is: [Jan. 8,2020 (ID)]
@ 2 ) 42
(© 2 @ 242

2x_3, xeR,(x;tJ_r\/g),

atapoint (o, B) (0, 0) on it is parallel to the line

2x+6y—11=0, then: [April 10,2019 (ID)]

(a) |6a+2p|=19 (b) |6o.+2B|=9

(© Ra+6B=19 (d Ra+6p=11

If the tangent to the curve, y = x* + ax — b at the point

(1, -5) is perpendicular to the line, — x + y + 4 =0, then

which one of the following points lies on the curve?
[April 09,2019 (I)]

@ 2.1 (b) 2,2)

(© 2-1 d 2.2

Let S be the set of all values of x for which the tangent to

the curve y=f{x) =x*—x*—2x at (X, y) is parallel to the line

segment joining the points (1, f(1)) and (- 1, f{— 1)), then S

is equal to: [April 09,2019 (D]

1
_31 b _l_
(a){3} (){3,1}
1 1
o {51 o {51

If the tangent to the curve ¥ =
X
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50.

51.

52.

53.

54.

55.

The tangent and the normal lines at the point (/3 , 1) to

the circle x? + y* =4 and the x-axis form a triangle. The area
of this triangle (in square units) is : [April 08,2019 (II)]

4 1
@ 73 ® 3

2 1
© 5 @ 7

The maximum area (in sq. units) of a rectangle having its
base on the x-axis and its other two vertices on the parabola,
y=12—x2 such that the rectangle lies inside the parabola,

is: [Jan. 12,2019 (1)]
@) 36 (b) 2042
© R d 1843

The tangent to the curve y =x%—5x + 5, parallel to the line
2y =4x + 1, also passes through the point :

[Jan. 12, 2019 (ID)]
71
o (34

1
(b) (gﬂj
1 17
o (7 @ (33)

3
The shortest distance between the point (E’ 0) and the

curve y =[x, (x> 0), is: [Jan. 10,2019 (I)]

@ g ® ?
3 5
© 5 @ 5

2 .
The tangent to the curve, y=xe* passing through the

point (1, e) also passes through the point:
[Jan. 10,2019 (IT)]

(b) G 2e)

(d) (.60

@ (2,3¢)

(c) (%, Zej

A helicopter is flying along the curve given by
. .. (1
y—x*2=17,(x>0). A soldier positioned at the point (E 7 j

wants to shoot down the helicopter when it is nearest to

him. Then this nearest distance is:  [Jan. 10, 2019 (IT)]

56.

57.

58.

59.

60.

61.
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Js 1 [7
@ ® 545
1 |7 1
© 3 (d) 5

If 6 denotes the acute angle between the curves,
y=10—x?and y =2 + x? at a point of their intersection,
then |tan O] is equal to: [Jan. 09, 2019 ()]

4 o8
@ 5 ®) 3
7 o8
© 17 @ 17
If the curves y2 =6x,9x% + by2 =16 intersect each other
at right angles, then the value of bis : [2018]
z b) 4
@ 3 ®)
2 @ 6
© 3 @

Let P be a point on the parabola,x2 = 4y. If the distance of
P from the centre of the circle, x2 + y% + 6x + 8 = 0 is
minimum, then the equation of the tangent to the parabola

atP, is [Online April 16,2018]
(@) x+4y-2=0 (b) x+2y=0
() x+y+1=0 (d x—y+3=0

Ifthe tangents drawn to the hyperbola 4y2 =x2 + 1 intersect
the co-ordinate axes at the distinct points 4 and B, then
the locus of the mid point of AB is[Online April 15,2018]
@ x2—42+16x2)2=0
(b) 4x2—y2+16x2)2=0
(©) 4x2—y2—16x2y2=0
(d) x2-42-16x2y2=0
If B is one of the angles between the normals to the ellipse,

x2 + 3y = 9 at the points (3cosG,x/§sin6) and

(—3sin O, \/5 cos 0); € (0,%) ; then 2.0—0;5 is equal to

sin
[Online April 15,2018]
2
2 b) —
@ 2 (b) NG
1 V3
(© N (d) =

A normal to the hyperbola, 4x% — 9y% = 36 meets the co-
ordinate axes x and y at 4 and B, respectively. If the
parallelogram OABP (O being the origin) is formed, then
the locus of P is [Online April 15, 2018]
(@) 4x2-92=121

(b) 4x2+92%=121

(©) 9x2-42=169

(d) 9x2+42=169
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62. Thenormal tothe curve y(x — 2)(x—3)=x+6 at the point 68. If the tangent at a point P, with parameter t, on the curve
where the curve intersects the y-axis passes through the x =4t +3,y=8t— I, t € R, meets the curve again at a
point: [2017] point Q, then the coordinates of Q are :
11 11 [Online April 9, 2016]
(@) [5’5) (b) (—5,—5) (@ (16t2+3,-64t3—1) (b) (4t2+3,-8t3-2)
(©) (t2+3,83-1) (d) (t2+3,-83-1)
(c) (l s l] (d) (l , —l] 69. Thenormal tothe curve, X2+ 2xy—3y>=0, at (1, 1) [2015]
22 .. . 2 3 . (a) meets the curve again in the third quadrant.
63. The eccentricity of an ellipse whose centre is at the (b) meets the curve again in the fourth quadrant.
1 S (c) does not meet the curve again.
origin is 5 If one of its directices is x = — 4, then the (d) meets the curve again in the second quadrant.
70. The equation of a normal to the curve,
equation of the normal to it at [l,g) is: [2017] . [ .
2 sin y = x sin §+y atx =0, is :
(@ x+2y=4 (b) 2y—-x=2 . .
(©) 4x—2y=1 (d) dx+2y=7 [Online April 11, 2015]
64. Atangent to the curve, y =f(x) at P(x, y) meets x-axis at A (@) 2x — NE) y =0 (b) 2x + NG y =0
and y-axisat B.IfAP: BP=1:3andf(a)=1, then thecurve NG
also passes through the point :  [Online April 9,2017] © 2y- 3x =0 () 2y+ N3x =0
{ 1 71. Ifthe tangent to the conic, y— 6 = x% at (2, 10) touches the
(@) (—,24) (b) (5’4) circle, x* + y? + 8x — 2y = k (for some fixed k) at a point
3 (o, B) ; then (o, B)is : [Online April 10, 2015]
1 1 7 6 4 1
o) wle) X
8 28 @ ("17°17 ® (71717
65. The tangent at the point (2, —2) to the curve, 6 10 8 2
x2y% — 2x = 4 (1-y) does not pass through the point : (©) [_ﬁ’ﬁj (d) (_ﬁ’ﬁ)
[Online April 8,2017] ) )
72. The distance, from the origin, of the normal to the curve,
1
47_ b 8,5
@)[ 3j ®) @5) x:2cmt+%smuy:2ﬁm—2umHMt:%,m:
© 4-9) @ 2,-7) [Online April 10, 2015]
a) 2 b) 4
66. Consider @ ®)
© V2 @ 22
f(x):tanfl 1+sinx xelo n 73. For the curve y = 3 sin@ cos®, x=e%sin 0, 0 <O <, the
1-sinx |’ 2 [2016] tangent is parallel to x-axis when 0 is:
[Online April 11, 2014]
T
A normal toy=f{x)at X =— also passes through the point: 3n i
6 @ — b =
4 2
b T
(a) (—,Oj (b) (—,Oj n n
6 4 i i
© 5 @ &
© (0,0) d) (O;EEJ 74. If an equation of a tangent to the curve,
3 y—cos(xt+f),—1 —1<x<1+m, isx+2y=kthen kisequal
3 to: [Online April 25,2013]
67. LetChbeacurve givenbyy(x)=1+ x/4x—3,X>Z.IfPis @ 1 (b) 2
2 T T
a point on C, such that the tangent at P has slope 3 then © 4 () B
a point through which the normal at P passes, is : 75. The equation of the normal to the parabola,
[Online April 10, 2016] x2= 8yatx=4is [Online May 19, 2012]
(@ (1,7 (b) (3,-4) (@ x+2y=0 (b) x+y=2
© (4-3) @ @3 © x-2=0 @ x+y=6
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4
The equation of the tangent to the curve V = ¥+ — | that
x

is parallel to the x-axis, is [2010]
@@ y=1 (b) y=2
(c) y=3 (d) =0
Angle between the tangents to the curve y = x> —5x+6
at the points (2, 0) and (3, 0) is [2006]
@ = ® =
2
b i
c) — d —
(©) S (d) 2
The normal to the curve [2005]

x=a(cosp + 0 sinp),y=a(sing — 6 cosQ) at any
point O is such that
(a) it passes through the origin

I
(b) itmakes an angle 5 + @ with the x- axis
(c) it passes through [ag,— a]

(d) Itisata constant distance from the origin

The normal to the curve x = a(1+cos6),y=asinb at ‘0’

always passes through the fixed point [2004]
@ (a0 (b) (0,4)
© (0,0 (d) (a,0)

A function y = f(x) has a second order derivative
f"(x)=6(x—1).1If its graph passes through the point
(2,1) and at that point the tangent to the graph is y =3x—

5, then the function is [2004]
@ (x+1)7° b) (x-1)°
© (x+1)° @ (x-1?

Let m and M be respectively the minimum and maximum

values of [Sep. 06, 2020 ()]
cos? x 1+sin? x sin 2x
1+ cos? x sin® x sin 2x
cos® x sin® x 1+sin2x

Then the ordered pair (m, M) is equal to :
@ (=3,3) (b) (=3,-1)
© 4-1 d (1,3
Let AD and BC be two vertical poles at A and B respectively
on a horizontal ground. fAD=8m, BC=11 mandAB=10
m; then the distance (in meters) of a point M on AB from
the point A such that MD? + MC? is minimum is

[NA Sep. 06, 2020 (I)]

83.

84.

85.

86.

87.

88.

The set of all real values of ) for which the function
f(x)=(1-cos’ x)-(A+sinx) , x e —E,EJ ,has exactly
one maxima and exactly minima, is: 2

[Sep. 06, 2020 (ID)]

@ (350 (33
11 33
(©) (_E’EJ (d (—55)—{0}

If x =1

F(x)=(3x* +ax—2—a)e”, then:

is a critical point of the function

[Sep. 05, 2020 (ID)]

2
(@ x=1and x= -3 are local minima of f-
2 .
(b) x=1and x= -3 are local maxima of f.
(c) x=lisalocal maximaand x = —% isalocal minimaof f.

. .. 2. . .
(d) x=1lisalocalminimaand x = -3 isalocal maximaof 1.

The area (in sq. units) of the largest rectangle ABCD whose
vertices A and B lie on the x-axis and vertices C and D lie
on the parabola, y = x2— 1 below the x-axis, is :

[Sep. 04,2020 (ID)]

1

33

4
33
Suppose f{x) is a polynomial of degree four, having critical
points at —1, 0, 1. If 7 ={x e R| f(x) = f(0)}, then the

sum of squares of all the elements of T'is :
[Sep. 03, 2020 (ID)]

@ (b)

2
33

4
© 3 @

(@ 4 (b) 6
(© 2 d 8
Let f{(x) be a polynomial of degree 3 such that f{—1)= 10,

f(1)=—6, f(x) has a critical point at x =—1 and f’(x) has a

critical point at x = 1. Then f{x) has a local minima at

x= . [NA Jan. 8,2020 (ID)]

Let f{x) be a polynomial of degree 5 such that x==+1 are its

critical points. If = 4, then which one of the following is

not true ? [Jan.7,2020 (ID)]

(a) fis an odd function.

(b) AD—-4A-1)=4.

(¢) x=1 is a point of maxima and x = —1 is a point of
minima of f.

(d) x=1is a point of minima and x = —1 is a point of
maxima of /.



M-346  Mathematics |
89. If m is the minimum value of k& for which the function 96. Letx, y be positive real numbers and m, n positive integers.
f(x)=xVhkx— x? isincreasing in the interval [0,3] and M ) . XM yn

. . . The maximum value of the expression ——=——
is the maximum value of f'in [0,3] when k& = m, then the (1 4 2m )(1 + y2n)
ordered pair (m, M) is equal to : [April 12,2019 ()]
(a) (4’3\/?) (b) (4,3\/5 is: [Jan. 11, 2019 (IT)]
1
© (3.33) @ (536 @ 1 ®) 5
90. Leta,a,a,....bean A.P.with a,=2. Then the common 1 m+n
difference of this A.P., which maximises the product a, a, © 24 (d) 6mn
ds15: [April 10,2019(ID] g7 Tpe maximum volume (in cu.m) of the right circular cone
@ 3 ) 8 having slant height 3 m is: [Jan. 09, 2019 ()]
2 5 (@ 6n ®) 33n
6 2 4
© 3 @3 © 37 @ 237
91. IfS, andS, are respectively the sets of local minimum and 1
local maximum points of the function, 98. Let f(x)= x2 4+ Lz and g(x)=x-—, xeR-{-1,0,1}.
Sx)=9x*+12x* - 36x> +25, xR, then : X X
[April 08,2019 (I)] f(x) .. .
If h(x) = ——=, then the local minimum value of h(x) is :
(@) S,={-21:8,= (0.1} (&) S,={-2,0}:5,~ {1} = mum value ofh(9 1
(© S,={2,1};;5,={0} (d) S,={-1};5,={0,2} [2018]
92. Theheight of aright circular cylinder of maximum volume @ -3 b 22
inscribed in a sphere of radius 3 is : [April 08,2019 (II)] © 22 d 3
@ J6 (b) Eﬁ 99. Let M and m be respectively the absolute maximum and
3 the absolute minimum values of the function,
© 23 @ 3 f(x)=2x3-9x2+ 12x + 5 in the interval [0, 3]. Then
M — m is equal to [Online April 16,2018]
. 3cosO+5sinl 0 (@ 1 b) 5
93. Themaximum value of 3cosf +5sin| 6 — 3 for any real © 4 @ 9
value of © is: [Jan. 12,2019 ()] 100. Ff aright circularcoge having maximum volume, is inscribed
in a sphere of radius 3 cm, then the curved surface area
@ o ) J79 (in cm?) of this cone is [Online April 15,2018]
’ @ 83 ®) 642
© 34 A V31 (© 63n (d) 8v2n
94. Let P(4, —4) and Q(9, 6) be two points on the parabola, 101. Twenty metres of wire is available for fencing off a flower-
2_ 4 d let this X b it POO of thi bed in the form of a circular sector. Then the maximum area
y- = axandle 1,S ¢ any point arc POQ of this (in sq. m) of the flower-bed, is: [2017]
parabola, where O is vertex of the parabola, such that (@) 30 (b) 1255
the area of APXQ is maximum. Then this minimum area (c) 10 (d 25
(in sq. units) is: [Jan. 12,2019 ()] 102. A wire of length 2 units is cut into two parts which are bent
75 125 respectively to form a square of side = x units and a circle
(@ — (b) — ofradius =r units. If the sum of the areas of the square and
2 4 the circle so formed is minimum, then: [2016]
625 125 (a) x=2r (b) 2x=r
(©) 7 (d) B (©) 2x=(n+4r (d) @ m)x=nr
) ) 3 ) 103. The minimum distance of a point on the curve y = x% —4
95. Themaximum valueofthe function f{x)=3x"—18x~+27 x—40 from the origin is: [Online April 9,2016]
onthesetS={XGR3X2+3OS11X} is : @ J15 ®) \/E
) 2 =
[Jan. 11,2019 (I)] 2 2
(@) —122 (b) —222 15 J19
(©) 122 @ 222 © \7 (d =
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104.

105.

106.

107.

108.

109.

110.
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Let k and K be the minimum and the maximum values of
. 1+ .
the function f(x) = IW in [0, 1] respectively, then
+x

the ordered pair (k, K) is equal to :

[Online April 11, 2015]
@ 271 (b) (2704 206
(© 1) @ (1,27
From the top of a 64 metres high tower, a stone is thrown
upwards vertically with the velocity of 48 m/s. The
greatest height (in metres) attained by the stone,
assuming the value of the gravitational acceleration g =

32m sz, is: [Online April 11, 2015]

(@) 128 (b) 88

(© 112 (d) 100

Ifx =—1 and x = 2 are extreme points of

f(x) =alog|x|+px* +x then [2014]
a—Zﬁ——l =2 B—l

(a) > 2 (b) > 2
o=-6 [3—1 d) a=-6 B——l

© a=-6p=2 (@ a=-6p=-2

The minimum area of a triangle formed by any tangent to

2 2
the ellipse I3 + % =1 and the co-ordinate axes is:
[Online April 12,2014]
(@ 12 (b) 18
(©) 26 (d) 36

The volume of the largest possible right circular cylinder

that can be inscribed in a sphere of radius = /3 is:

[Online April 11, 2014]
4
@ 3¥3n ORAE:
(c) 4n (d) 2n

The cost of running a bus from A to B, is ?[aw—é}
%

where v km/h is the average speed of the bus. When the
bus travels at 30 km/h, the cost comes out to be ¥ 75 while
at 40 km/h, it is¥ 65. Then the most economical speed (in

km/ h) of the bus is : [Online April 23,2013]
@@ 4 (b) 50
(© 0 (d) 40
The maximum area of a right angled triangle with
hypotenuse /4 is : [Online April 22, 2013]
2 2
Q) —— b
(@) b (b) 5
n* h?
© —= (d —

NG

111.

112.

113.

114.

115.

Let a, b € R be such that the function f given by
f(x)=1In|x|+ bx?+ ax, x # 0 has extreme values at x =—1
andx=2

Statement-1 : / has local maximum atx=—1 and at x=2.

1 -1
Statement-2 : 2 = 5 and b=—

L [2012]
(€)]

Statement-1 is false, Statement-2 is true.

(b) Statement-1 is true, statement-2 is true; statement-2 is
a correct explanation for Statement-1.

(c) Statement-1 is true, statement-2 is true; statement-2 is
not a correct explanation for Statement-1.

(d) Statement-1 is true, statement-2 is false.

A line is drawn through the point (1,2) to meet the

coordinate axes at P and Q such that it forms a triangle

OPQ, where O is the origin. If the area of the triangle OPQ

is least, then the slope of the line PQ is : [2012]
1
@ -5 (b) —4
(c) -2 (d) .
2
Let f (—o0,00) — (—o0,) be defined by
f)y=x3+1. [Online May 26, 2012]

Statement 1: The function f has a local extremum at x=0

Statement 2: The function f is continuous and

differentiable on (—00, 00) and f'(0)=0

(a) Statement 1 is true, Statement 2 is false.

(b) Statement 1 is true, Statement 2 is true, Statement 2 is
a correct explanation for Statement 1.

(c) Statement 1 is true, Statement 2 is true, Statement 2 is

not the correct explanation for Statement 1.
(d) Statement 1 is false, Statement 2 is true.

Let f be a function defined by - [2011RS]
tanx’ v 20

flx)=1 x
1, x=0

Statement - 1 : x =0 is point of minima of f’

Statement-2: 7 (0)=0.

(a) Statement-1 is true, statement-2 is true; statement-2 is
a correct explanation for statement-1.

(b) Statement-1 is true, statement-2 is true; statement-2 is
NOT a correct explanation for statement-1.

(c) Statement-1 is true, statement-2 is false.

(d) Statement-1 is false, statement-2 is true.

5 X
For x € (0,;), define f(x)= J.x/;sintdt. Then f has
0

[2011]
(a) local minimum atwand 27
(b) local minimum at 7 and local maximum at 27t
(¢) local maximum at  and local minimum at 271t
(d) local maximumat wand 21t
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116.

117.

118.

119.

Let f: R — R be a continuous function defined by

J(x)=

ey [2010]
e’ + e

1
Statement -1 :f(c)= 3 for somec e R.

Statement-2: 0</(x) <—— , forallx €R
N2
(a) Statement-1 is true, Statement -2 is true ; Statement -
2 is not a correct explanation for Statement -1.
(b) Statement -1 is true, Statement -2 is false.
(c) Statement-1 is false, Statement -2 is true .
(d) Statement - 1 is true, Statement 2 is true ; Statement -2
isa correct explanation for Statement -1.
Letf: R — R be defined by
k=2x, if x<-1
=) 2543, y}; X >-1

Iff has alocal minimum at x =— 1, then a possible value of

kis [2010]
@@ 0 (b) —%
(0 -1 @ 1

Given P(x) =x*+ ax® + bx? + cx + d such that x = 0 is the
onlyreal root of P' (x) =0. IfP(—1) <P(1), then in the interval
[-1,1]: [2009]
(a) P(-1)is not minimum but P(1) is the maximum of P

(b) P(-1)is the minimum but P(1) is not the maximum of P
(c) Neither P(-1) is the minimum nor P(1) is the maximum

of P

(d) P(-1)is the minimum and P(1) is the maximum of P

Suppose the cubic x> — px + ¢ has three distinct real roots
where p > 0 and ¢ > 0. Then which one of the following
holds? [2008]

120.

121.

122.

123.

a) The cubic has minima at £ and maxima at — P
(€)] 3 3

(b) Thecubic has minima at \/% and maxima at

(¢) The cubic has minima at both \/% and \/%

(d) The cubic has maxima at both \/g and \/%

. 2 .
The function f(x)= %4’ = hasa local minimum at
X

Py

@ x=2 b) x=-2
(©) x=0 (d x=1
The real number x when added to its inverse gives the
minimum value of the sum at x equal to
(@) -2 (b) 2

©1 (d) -1

If the function f(x)=2x —9ax® +124°x+1, where
a >0 , attains its maximum and minimum at p and ¢

[2006]

[2003]

respectively such that p2 =g, then a equals [2003]
1
- b) 3

@ 5 (b)

©1 d 2

The maximum distance from origin of a point on the curve

. [ at at

X = a sin t-b sin ; ,y=acost—bcos Z , both

a,b>0is

@ a-> (b) a+d [2002]

(ONVESSS @ Va? -p?
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Hints & Solutions

From (i) and (ii), 50 = 4n(10 + x)
t)— f(t
1.  (c) Averagespeed = f'(¢) = J&) = f ) d
L=t = 50=4n(10+5¢ —- [ thickness of ice x = 5]
2at+b=a(ty+t,)+b=>t= hth
2 dc 1 /i
2. (d) Let the side of cube be a. = U 1gglm/mm
ds da da
S=6a’=—=12a-—=3.6=12a-— . ,
a 7 7 a a 5. (b) According to the question,
d 25 at 1
=2 _95aty=
:12(10)——36:@—003 dt 7
dt By Pythagoras theorem, x> + > = 4 ...(0)
av d Wheny=1=x= /3
V=d = =3> 2 23010 ( j 9 . == 3
dt dt 100 Diff. equation (i) w. r. t. ¢,
3. (d) Since, function f'(x) is continuous at x =1, 3 dx dy
2x Z +2y E =
S SW)=fA0)
=ae+be' =¢ (1)
S®=1GY T
=9c=9+6c=c=3a ..(11) y 2
From (i) and (ii), l
b=ae(3- (il
ae(3-e) (i) .
X _po-x dx d dx
ae* —be l<x<l1 :>x—+yy—0:>x/§—+(_25)=0
fx)= 2cx I<x<3 dt dt dt
2ax+2¢ 3<x<4 dx _ 25 .
TN e
[0y =a=b, f'2) =4c 6. (a) Given that ice melts at a rate of 50 cm*/min.
Given, f'(0)+ f['(2Q)=e - Diee _ 5
a-b+4c=e -(iv) dt

From egs. (i), (ii), (iii) and (iv), V. - iﬂ?(l(ﬂ- r)3 —in(10)3
1ce

a-3ae+ae* +12a=¢

v 4 2dr

= - =3m10+7) Zd’
dt

=13a-3ae+ae’ =e =4n(10+7)

__°
e’ —3e+13
4. (d) Let the thickness of ice layer be = x cm

= a=

4
Total volume V'= 3 (10 + x)*

dv 2 dx
= =4n(10+ i
7 (10+x)" — % ()

Since, it is given that Substitute r = 5,

A 50em?® /min i 50 = 47(225) %~ S D __ L
. (i) = di dr 4m(225)  18rn

cm/min
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9.
()
------ S tano =102
10 m 3, .
l 5m /min
v
Given that water is poured into the tank at a constant
rate of 5 m*/minute.
. ﬂ =5m> /min
dt
Volume of the tank is,
Vzlnrzh ..()
3
where r is radius and /4 is height at any time.
By the diagram,
tan0 = L = l
h 2
dh  2dr
= h=2r=>—="— ii
i dr ...(i1)
Differentiate eq. (i) w.r.t. ‘¢’, we get 10.
d_V:l n2rﬂh+nr2%
da 3 dt dt
) dv . .
Putting 2= 10, »=5and u =35 in the above equation.
TR AL
3 dt dt Sm
4 3 .
(¢) Volume of sphere V = ETEV ..(1)
ﬂ = i.3nr2.ﬂ
dt 3 dt
i = 4.
T e
1 _dr
P dr
Since, V = 288m, therefore from (i), we have
4 288x 3 11.
2881 = —n() > i o
3 4
=216 =7
=>r=
e A1
ence, =

(@ A

120°
0 B

Let OA = x km, OB = y km, AB = R
(AB)? = (OA)? + (OB)? — 2 (OA) (OB) cos 120°
R?=x?+)" 2 xp (—%]:x2+y2+xy ..(1)

R atx =6 km, and y = 8 km

R= 6218 1+6x8=237

Differentiating equation (i) with respect to ¢

2Rd—R = 2x§+2yﬂ+[xﬂ+yﬁj
dt dt dt dt "~ dt

- %[2><8><20+2><6><30+(8><30+6><20)]

dR 1 260
N [1040]= =
= gzl =

4
(a) Volume of sphere V = 3W3

av

——i.n 3r? ﬂ
3

dt

dt

35:4151’2.@ or dr_ 35
dt dt 42

Surface area of sphere = S = 4m?

§:4nx2rxﬂ:8nr.ﬂ
dt dt dt
as_0 By using G
= (By using (i)

Now, diameter = 14 cm, r=7

as _

10
dt
dr .
d) V=—mn’ = = =4p? 2 ..
(G o r (1
dr
= —=8mr.—
S=4m? = J "
:>8:8nr—r dr_L
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12.

13.

14.

M-351

dr
Putting the value of m in (i), we get

ﬂ = 4mr? x L =4r
dt s

dav . .
= a’_ is proportional to r.
t

(¢) Volume of spherical balloon = p = im3
3

Differentiate both the side, w.r.t 't' we get,

d—V = 4mr? (ﬂj (1)
dt dt
After 49 min,

Volume = (4500 — 49 x 72)m= (4500 —3528)n =972 n m’
= V=972nm’

972m = 2
3

= P=3x243=3x3=3%=(3%>
= r=9

Given d_V =72n
dt
4
Putting I 721 and r =9, we get
72n= 4Tt><9><9(ﬂj
dt

dr (2)
= —=| =
dt 9

(b) Let 4 = mr’ be area of metalic circular plate of
r =50 cm.

Also, given ar _ Imm = Lcrn
dt 10
A=t
dA d 1
= Lo -ons50.—=10n
dt dt 10

Hence, area of plate increases in 107 cm?/hour.

(¢) Let W=nw
aw dw dn
—_— —_— + R

=n w. ..(1)

dt dt dt
Given : w=£—t+2andn=27+3

dw dn

—=2¢-1 — =
= 7 and ” 4t
.. Equation (i)

dw
= - = +3)Q-D+ E—-t+2) (4)
Thus, 2 =@ +3) Q-1+ @ @

'S
=5(1)+8=13

15.

16.

17.

(d) LetAbethearea, b be the breadth and / be the length
of the rectangle.
Given . A5 df_, db

iven : — T
We know, A=/ x b
= a4 = lé.ﬁ+b.ﬁ =-3(+2b
dt dt dt
=-5=-3/+2b.
When b =2, we have

w | o

—5=-30+4= (== =3m

(b) Let A =nr’

3 dr dr 1
—=—=—=—=0.1
30 dt dt 10
Thus, the rate at which the radius of the circular sheet
increases is 0.1

=

(d)
i (S s+n

A t+tm v
u=0 ,

B — f S v

As per question if point B moves s distance in ¢ time then
point A moves (s + n) distance in time (¢ + m) after which
both have same velocity v.

Then using equation v = u + at we get

v=[f(t+m)=f't=1= ff._";. (i)
Using equation vV =u?+2 , as we get
v =2f(s+n)=2f"s :s=% (i)

1
Also for point B using the eqn s = ut+5al2, we get

L2
s=—f"t

s
Substituting values of t and s from equations (i) and (ii)
in the above relation, we get

fno 1, 2w’
f=r 20 (p-r)

=(f'=f)n= %ﬁ“mz
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18.

19.

20.

21.

22.

(c) Let the lizard catches the insect after time t then
distance covered by lizard = 21cm + distance covered by
insect

:>%ft2:4><t+21

:>%><2><t2:20><t+21

=12 -20r-21=0 =1=2lsec
(b) Given that
Total radius 7 =10+ 5= 15 cm

dv
—=50 cm¥/min = i(inr3) =50
dt dt\3

d
= 4nr2;:= 50

dr__ 50 |
= g 4n(15)2 fﬁcm/mm
() Giveny2=18x:>2y%:18:>§=2
Xy
dy 2dx dy
ATQ —=— =
th dt dx
:>2—2:> =
y T

Putting in 3% =18x= x =

oo | o

o (29
.. Required point is 8’2
@ fx)=0Cx-7)-x"

F(x) =3+ (3x—7)~§x*”3

_15x-14
- 3513
+ — +
0 14
15

For increasing function

£'(x)> 0 then x €(~, 0)U [% oo]

(d) Since, function f* (x) is twice differentiable and
continuous in x € [a, b]. Then, by LMVT for x € [a, c]

LOZTED _ ig),ae (ae)
c—a

23.

24,

Again by LMVT for x € [c, b]
TOZSO _ p)pee)

wf"(x) <0 = f'(x)is decreasing
f)-f@) _ f()-f(e)

c—a b—c

S'(@)>f'@) =

[(©)-f(@)  c-a
JB)=f@© b-c
(@ /() =x (x—cos’ (sink))

AT

= (= f (x) is increasing)

S(x)=
b1
x| ——x|, x<0
5]
g+2x, x>0
S'(x)= -
——2x, x<0
2

T
Hence, f'(x) is increasing in (Oaaj and decreasing in

3

) .

(b) Given functions are, f(x) = e*—x and g (x) = x>—x
2

fE@)) =¥ _(x?-x)

Given f'(g (x)) is increasing function.

~(flg)) = e(xz_x) x(2x-1)-2x+1

2 2
= 2x-1)e* ™ 41-2x = Qx-D[e¥ P -1]=0
For (f(g (x)))" 20,

_ (*=x) _|1 are either both positive or
2x-1D)&[e 1] p
negative

— +ve —ve +

N = T

xXe |:0,%:| U[1,0)
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2
_ X
25. (c) f(x)—l_x2
2
= f(-x)=——5=f(x)
1-x
o 2x
J'(=x) 2P

f(x) increases in x € (10, )
Also f(0) = 0 and

xgl};wf ) ==1 and f(x) is even function

Set A=R-[-1, 0)
And the graph of function f(x) is

) s

26. (©) S@=f()+/2-x)

Now, differentiate w.r.t. x,

S @) =f)-f12-x

For f(x) to be increasing f(x) >0

= [)-f2-x>0

= [)>/'C2-x)

But f"(x) > 0 = '(x) is an increasing function
Then, f'(x)>f'2-x)>0

= x>2-x

= x>1

Hence, f(x) is increasing on (1, 2) and decreasing on (0, 1).

27. (©) fix)=x*-3(@-2)x*+3ax+7,f0)=7

fx)=0atx=1

O (0, 0)

= f'x)=3x"-6(a—2)x+3a
S1=0

28.

29.

30.

M-353
= 1-2a+4+a=0
= a=5
Then, filx)=x>—9x*+ 15x +7
Now,
f(x)-14
-1 0
¥ —9x2 +15x+7-14
- (x-1)?
(x=1*(x=7)
= —(x—1)2 =0=>x=7
X d—x
W f@= e
Ja+x PP +d-x)

X (x—d)
= +
\/L22+x2 \/bz+(x—a!)2

Pl X2

2\/a2+x2
fx) = 2,2
(a”+x°)

P +(xd) - (x—d)2(x—d)
. * 2b% +(x—d)>

(67 +(x-a)?)

a2 +x2=x* P +(x—d)* - (x—d)*

= (a2 +x2)3/2 (b2+(x_d)2)3/2

a’ + b?
= 3/2
(a2 +x2) (b2 +(x—d)?
= f'(x)>0,lxe R

= f(x) is increasing function.

)3/2 >0

Hence, f(x) is increasing function.
(a) f(x): X =3x% +5x+7
For increasing
f(x)=3x% —6x+5>0
= xeR
For decreasing
f(x)=3x —6x+5<0
(©) f(x)=sin*x+ cos*x
f'(x) = 4sin’ x cos x + 4cos> x (— sin x)
= 4sin x cos x (sin” x — cos’ x)

= —2sin 2x cos 2x = — sin 4x
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31.

32.

33.

34.

f(x) is increasing when f"'(x) > 0

= —sin4x>0 = sin4x<0

= XEE’E
42

y =sin 4x

r r
4 2,

N

(b) Since f''(x) > 0 and g'(x) < 0, therefore

fx) is increasing function and g(x) is decreasing function.
=fx+D>/(x)and g (x + 1) < g (x)
=g+ DI<g[/f(]andf[g (x+ D] <f[g ()]
Hence option (b) is correct.

@ fx)=2+3x+k

fx)=6x>+3>0VxeR (. x*>0)

= f(x) is strictly increasing function

= f(x) =0 has only one real root, so two roots are not
possible.

() Lety=x>.¢~

For increasing function,
d_y>0 = x[2-x)e"]>0
dx

x>0, . 2-x)e*>0

1
= 2-x) —x>0
€
For0<x<2, 2-x)<0
L<0, but it is not possible

X
e
Hence the statement-2 is false.

(@ f)=xlogx,f(1)=0,/(2)=4
gx)=2-x,g(1)=1,22)=0
log 10 >1log4 = 1>log4

Y
19 f(x) =x log x, xe [1, 2]
log 4% >€(x) —2x,xe[l 2]
X' X
0 1 2

3s.

36.

37.

38.

Thus statement -1 and 2 both are true and statement-2 is
a correct explanation of statement 1.

(© f(x) = xex(l_x),x eR
f(x)= ex(lfx).[l +x— 2x2}
= —ex(l_x).[2x2 -X —1}

=_2€x<1—x>.[(x+%] (x—l)}

f(x)= 2017 4

1
where 4 = (x‘*‘zj (X—l)

Now, exponential function is always +ve and f'(x) will

1
be opposite to the sign of 4 which is —ve in [—5,1}
. . 1
Hence, f'(x) is +ve in —5,1

1
. flx) is increasing on {—E,q

(b) Given that f(x) =x>+5x + 1

') =3*+5>0, VxeR
= f(x) is strictly increasing on R
= f(x) is one one

.. Being a polynomial f'(x) is continuous and increasing.

on R with lim f(x) = —o0
x>0

and lim f(x)=o

X—0
. Rangeof f = (-, ®0)=R
Hence f is onto also. So, f is one one and onto R.
(b) Letf(x)=x"+ 14x°+ 16x> + 30x =560
= fO)=1"+70*+483+30>0,y x €R (D)
= flis an increasing function on R

..(ii)

Also lim f(x)=o and lim f(x)=-o
X—>0 X—>—0

From (i) and (ii) clear that the curve

y = f(x) crosses x-axis only once.

.. f(x) = 0 has exactly one real root.

(d) Given that £ (x) = tan"! (sin x + cos x)
Differentiate w.r. to x

1 .
'(x) = ——————.(cos x —sinx)
S® 1+(sinx+cosx)2
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3.4 v Yy _
ﬁ.[Lcosx—Lsinx] (@x"+x7-y)e + i+y 0

V2 V2

1+ (sin x + cos x)? dy —43eY

AV A
X 1 4

Lo

ﬁ[cos%.cosx—sin%.sinx} L y+1 e )
- 1+ (sin x + cos x)2
= (d—y) =2
n & )10
xfzcos(x " Zj .. Equation of tangent;

S =

1+ (sin x + cos x)? y—0==2(x-1)=2x+y=2

Given that £ (x) is increasing Only point (-2, 6) lies on the tangent.

42. (0.50)
A f1(x)>0 = cos (x + E] >0 The given curve y = (x — 1)(x — 2), intersects the x-axis at
: 4 A(1, 0) and B(2, 0).
T T
Y .-.@ 2x—3;(ﬂ) =—1 and [d—yj =1
\ dx dx/ .y dx ) (y-2)
T T

= vy <x< 2 Equation of tangent at A(1, 0),
Hence, f'(x) is increasing when y=-lx-)=x+y=1

T Equation of tangent at B(2, 0),
" e(_E’Z] y=l(x-2)=x—y=2

Soa=1landb=2

a
when f'(x)=6x-22=0 ==

1
b 2
= xe[l/3,0) 43. @)
For (1,2)of y? =4x=rt=1a=1

Equation of normal to the parabola

39. (c) From option (c), f(x) = 3x% —2x+1 is increasing
=0.5.

. f(x) is incorrectly matched with (—oo,%}

40. (b) The given tangent to the curve is, =+ y=2at+ at’

y=1xlog, x x>0 = x+y =3 intersect x-axis at (3, 0)

dy A s
=—==1+1 ="' =>——=¢

dx 08X 7 dx

P Equation of tangent to the curve

y
3EL_C =1+log,c (slope) = y—e = (x—c)
- Tangent to the curve and normal to the parabola

-+ The tangent is parallel to line joining (1, 0), (e, e) intersect at same point.
.'.1+logec=e_ S 0-e=eB-0)>c=4.

e—1
4. (91

= log c=—2 1=log,c ! 6
P o= . 4
e—1 e—1 y:chos l{Ecoskx——smkx}
B ~ 5 5
=c=e°! 3 4
41. (c¢) The given curveis, x* e’ +2y+1=3 Let cos a=7 and sin a=7

Differentiating w.r.t. x, we get
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6 2

.'.y:Zkcos_l{cosacoskx—sinasinkx} & :0;—32:—2:—l

part dx (ap) (a”=3) 6 3
3(@*+3)=(*-3)’= a*=9

kcos™ (cos(kx + a))
! And, B=

Mo

X

=~
Il

> :>(X2_3:E:>3:6
. a” -3 B
k(ke+a)="Y" (k*x+ ak)
1 k=1

Mc\

1
=a=33p=%x—
b 2

>
Il

o o, 6a3) 1 These values of a and B satisfies |6o. + 23| = 19
"E_§k =——"2=09]. 48. (d) y=x*+ax-b
= Since, the point (1, —5) lies on the curve.
45. (4.0)P=(x,y) =1l+a-b=-5
2y —6x+y =0

=a-b=-6 ..(1)
' 6X1 d
= — y 2
= ) [HZ)’J £=3x +a
(&)
2 7 __[1+2y1j X g =312
™ 6x) Since, required line is perpendicular to y = x — 4, then
slope of tangent at the point P (1, —=5) = -1
[By point slope form, y —y, = m(x — x,)] 34+a=-1
= 9-6y =1+2y a=_4
= y =1 B
X == 2 b=2
112 the equation of the curve is y = x> —4x — 2
Slope of tangent (m) = [_Tj =+4 (2, -2) lies on the curve
49. (d) y=fx)=x’-x>-2x
|m| = 4
46. (d) Given equation of curve is [ 3x2 —2x—2
x2+2xy—-32=0 dx
= xty+20/-6p'=0 fihy=1-1-2=-2, fl-)=-1-1+2=0
= x'+y +3xy_—3yy +: 0 Since the tangent to the curve is parallel to the line
= VE=3)=-bty) segment joining the points (1, -2) (-1, 0)
- dy Xty Since their slopes are equal
dx 3y—x
2 -2-0 -1
=53 -2x-2=—— =x=1—
—-dx x-3y 2 3
Slope of normal = —, =~
dy x-3y -1
Hence, the required set S = ?,1
Normal at point (2, 2) = 242 50. (c¢) Equation of tangent to circle at point (\/§,1) is
Equation of normal tocurve =y —-2=-1 (x — 2)
= x+y=4 Vax+y=4
. Perpendicular distance from origin +
0+0-4 P31
g
x Vs
47 Gi is, V= v
(a) Given curve is, 2 3 0 y
& F-Y-xn) -3 Jix+y=4
dx (x2_3)2 (x2_3)2

2 2
x+ty =4
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51.

52.

' . A B [ 4 Oj
coordinates of the point \/5 >
1 1 4 2 )
Area = EXOAXPM =EXEX1:$ sq. units

(¢) Given, the equation of parabola is,
x2=12-y

(0, 12)

(-, 12-1%)

/ \

t, 12-2)

N\

Area of the rectangle = (2¢) (12 — £)
A =24t-2¢
dA

——24_6p2
dt 6f

dA
Put —=0=24-6/=0
dt
= t=%2
-2 +2

At t =2, area is maximum = 24(2) — 2(2)?
=48 — 16 = 32 sq. units
(b) *- Tangent to the given curve is parallel to line 2y =4x + 1
.. Slope of tangent (m) = 2
Then, the equation of tangent will be of the form
y=2x+c .(1)

Line (i) and curve y = x*>— 5x + 5 has only one point
of intersection.

2x+c=x*-5x+5

X=Tx+(5-0)=0

D=49-4(5-¢)=0

29

= =
€Ty

. 29
Hence, the equation of tangent: y = 2x Y

53. (a)

1
Here the curve is parabola with a = s

2
=t .
Let P(at?, 2at) or P(Z’Ej be a point on the curve.
Now, y*=x
dy dy 1
Q1281
G TR R

equation of normal at P to y* = x is,

(o)

11,
=y = —tx+5[+zt

()

3
For minimum PQ, (i) passes through @ PR 0

3 ¢ 7
—t+—+—=0=>—-4t+£=0
2 2 4
= H(Ff-4)=0=t=-2,0,2
t20=>1=0,2

3
Ift=0,P(O,0):>AP=5
Ift:Z,P(l,l):APzg

3
Shortest distance (Ea Oj and y= Vxis g
54. (b) The equation of curve y = ye*

dy 2 2
= ——=¢" l+xe" 2x
dx

M-357
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Since (1, e) lies on the curve j = xe"z, then equation o
tangent at (1, e) is
yoe= (e (1+2x2)) (x=1)

x=1

y—e=3e(x—1)
3ex—y=2e

£ 56. (b) Since, the equation of curves are
y=10-x* ..(i)
y=2+x..(ii)
Adding eqn (i) and (ii), we get
2y=12=y=6
Then, from eqn (i)

So, equation of tangent to the curve passes through the

4
point (5, 26)

55. (¢) fx)=y=x**+7
dy 3
— —/x>0
dx = 2
= f{x) is increasing function V x > 0

Let P )cl,)cl3/2 +7)

mTP=malP=71
3/2 1
3 —
1 =2
= T2 =1
X —=
2
2
X
22—
= —_—
X ——
3 17,

= 3x’=2x - 1=23x2+2x-1=0

= 3x12+3x1—x1—1:0
= 3x@+D-1x+1)=0

1
173 (v x,>0)

= X, =

1 1
Pl=,7+—
= (3 3@]

TP = /L+L_l 7
“N27 36 6\3

x==2

Differentiate equation (i) with respect to x

3 ] - B
alxi_x:> dx 2,6 and { dx (-2,6)

Differentiate equation (ii) with respect to x

bn(8), e8],
e T \dx e T TN dx ), 6T

(9H-4% _8

At (2, 6) tan 0 =(1+(—4)><(4))_15
H-(4 _ 8 8
At (-2, 6),tan9:m=_—153|tanel=g

o
.. [tan B]= 5
57. (¢) Let curve intersect each other at point P(x, y,)

Y
y2 = 6X
P(x;, )

/ X
R

9x% + by* =16

Since, point of intersection is on both the curves, then
2 .
yi = 6Xl (l)

and 9x? +by? =16 (i)
Now, find the slope of tangent to both the curves at the
point of intersection P(x , y,)

For slope of curves:

Curve (i):

4,
dx (x1.y1) b4l
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Curve (ii): Equation of tangent at (x|, y,) is
dy 9x, y=mx+c
and | gy sy =
(Xl’yl) Y1 :y:i.x.}rc
Since, both the curves intersect each other at right angle 4y
then, As tangent passes through (x,, y,)
2
mymy = 1= 221 = p=272L T
byi i N=5 ¥
.. from equation (i), b=27x 1 = 9 4y2 _ 52 |
6 2 >C=—l 1
58. (c¢) Let P(2t, ) be any point on the parabola. N a2
Centre of the given circle C=(—g,—f) = (-3, 0)
For PC to be minimum, it must be the normal to the Therefore, y =M 4 L =Sd4yy=xx+1
’ 4

parabola at P.

Yy =y -0
Slope of line PC= 22—1 =— —
Xy—x 2t+3

Also, slope of tangent to parabola at P =

&

.. Slope of normal = _71

£-0_ -1

2t+3 ¢t
= B3+2t+3=0
= (t+1)(@2-t+3)=0
.. Real roots of above equation is
t=-1
Coordinate of P= (21, t2) = (- 2, 1)
Slope of tangent to parabola at P=¢=—1
Therefore, equation of tangent is:
0-D=CDkx+2)
= x+y+1=0

59. (d) Equation of hyperbola is :

4?2 =x2+1
= —x2+ 4y2 =1

2

712 12_
2)
a=1,b=1
2

Now, tangent to the curve at point (x;, y;) is given by
4x2y ﬂ =2x
dx

dy 2y _ x
dx 8y, 4y

60.

1 4y

which intersects x axis at 4 (

4y

Let midpoint of 4B is (4, k)

-1

h=—
2x

:;—LH
16k>  4h*

16k

e +16k°

=1

= h?=4k* + 16 h* k.
So, required equation is
¥2—4?-16x2y2=0
(b) Since, x2+3y2=9
= 2x + 6y Y 0
dx
& _—x
dx 3y

Slope of normal is _dx
dy

x _ 3y

X

-1
—,0
X

] and y axis at
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(_ ﬁj _afEsin0_ g So. P (x, y) = (ﬂ%j ()
T A |

= 4
dy (3cosH \/gsine) 3cos O . o
’ “ (xg, o) lies on hyperbola, therefore
( dxj 4(x0)? = 9(,)* = 36 (i)
N L —9x 4
dy (~3sin 0./3 cos0) From equation (i): x, = - @ dy,= %
i From equation (ii), we get
2 2
_3 3?0S6:—\/§c0t6:m2 9x* — 4y~ =169 _ . , ,
—3sin 0 Hence, locus of point P is : 9x — 4y~ = 169
As, B is the anagle between the normals to the given ellipse b B X+6
then 62. (¢) Wehavey= (x—2)(x-3)
m, — m, Aty-axis,x=0=>y=1
tan f§ = 1+ mym, On differentiating, we get
dy (x> =5x+6) (1)- (x +6) (2x - 5)
_ V3 tan 6 ++/3cot _ V3 tan 6 ++/3cot dx (x2 = 5x+6)

1-3tan O cot O 1-3

a .
ix 1 at point (0, 1)

.. Slope of normal = — 1
Now equation of normal isy— 1 =-1 (x — 0)

So,tan 3 = ?|tan9+cot6|

1 _\/5 sin® cosH = y-l=-x
= cotp 2 |cos® sinb x+y=1
11
= ' _ ﬁ 1 (5’5) satisfy it.
cotp 2 |sinOcos6
. . 1
N 1 3 2cotf 2 63. (c) Eccentricity of ellipse = 3

= = =
cotf sin26 sin20 3

a 1
61. (c) Given,4x2— 92 =36 Now, == =-d4=a=4x7=2=a=2

After differentiating w.r.t. x, we get

1
42x-925. Y =g We have b’ =a’ (1 —¢’) =a’ (I—Z)
dx

:Slopeoftangent=ﬂz4—x :4X§=3

dx 9y 4
So, slope of normal = -9y .. Equation of ellipse is

4x 5 5
Now, equation of normal at point (x, y,) is given by XT + y? =1

_ = . .
Vo= x (x—xp) Now differentiating, we get
0
. . X 2

As normal intersects X axis at 4, Then - 5 +?y xy'=0 =y = i_’;

A= Bﬂ,o and B = ,%
9 4

As OABP is a parallelogram

, 3 2 1
y |(1’3/2)|:_ZX§:_5

13y, Slope of normal = 2
.. midpoint of OB = [ R TO) = Midpoint of AP
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65. (d) x3°—2x=4-4y

.. Equation of normal at [1,%} is Differentiate w.r.t. 'x'
d d
Aoy . =g 2
3 ey dx dx
y75=2(x71):>2y73=4x74
dx —2v=1 = ﬂ(z X H+4)=2-2x.)°
X —2y= e -y
64. (© v, L B _2-2x2x4 147
dxly 2(2)x4+4 -12 6
BX .. Equation of tangent is

y+2 :z x—2) or 7Tx—6y=26
6

. (2, -7) does not passes through the required tangent.

T 1+sinx]
- 66. (d) f(x)=tan [’/—1—sinx

Let y=f(x) be a curve
slope of tangent = f' (x)
Equation of tangent (Y —y) =f' (x) (X —x)

PutY=0
y
= X=|X-
( f’(X)]
Put X=0 :>y_£+£ :ﬂ—l
= Y=y-xf'(x) 4 2 x 2
Slope of normal =——=-2
= A= X—/L,O (ij
f'(x) dx
and B=(0,y—xf'(x)) ) (TC I Tl',]
AP:PB=1:3 Equation of normal at 6’4+12
3 y _[E T o,
- 2| x- y + X
= X 4{ fr(X)J 4 12 6
41 ) +2n
AL, Pl
Sy Ay Sy "2 6
= X=4 = dx  x
f(X) y——=-2x+—
d_y_—3dx C 5
y S :>y:X—3 y:f2x+?n

fla=1 =C=1 5

! 1 This equation is satisfied only by the point (0, _n)

y=— is required curve and (2,§j passing 3
X

a1 2
. 7. @ T oJa s 3
through ¥ =—3 = 4x-3=9

X
= x=3
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So,y=4 71. (d) X*—y+6=0
Equation of lat P (3,4)i
quation of normal at P (3, 4) is dy dy
3 2x — a =0=> E =2x
yo4=—3 (x=3)
ie.2y—8=-3x+9 & =4
= 3x+2-17=0 Axl(x,y)=2,10)
This line is satisfied by the point (1, 7) equation of tangent
68. (d) P@4~P+38F—1) y—10=4(x - z2)
dyldi dy dx—y+z=0
ddl e 3¢ (slope of tangent at P) tangent passes through (a., B)
_B+z= =4q, + (1
Let Q = (47 + 3.8~ 1) 2ot 2 it 2;2 0 X
slope of PQ = 3¢
3 3 ,_2x+8_2a+8_4 .
j;—iiiz B y 22y 2-28 ..(11)
- from (i) and (ii
= £-3+20°=0 (1) and (1)
(=1 . (P+0—22%)=0 a=Sp=-2
(=22 (t+20)=0 17 17
—t -8 2
t=A(or)A=— = =
(or) 2 [17 17j
Q[A+3,-7r-1]. 72. (a) Given that
69. (b) Given curve is Xx=2cost+2tsint
x2+2xy -3y =0 ...(0) dx
Differentiatew.r.t. x 50, 4 = —2sint+2[tcost+sint]
2X+2xd—y+2y—6yﬂ:0 d
dx dx —y:2cost—2[—tsint+cost]
2, ‘“
dx
(L1) d—y:2tsint
Equation of normal at (1, 1) is dx
§=1fo S and (i . ---(1f) dy 2tsint
olvin . -—=
g egs. (1) and (ii), we ge I 2teost
x=1,3
Point of intersection (1, 1), (3, —1) dy =tant
Normal cuts the curve again in 4th quadrant. dx
i (ﬂj =1
70. (b) Given curve is sin y = X sin (§+ y) dx/ /4

Diff with respect to x, we get

dy . (TC ] [TE )dy
= —sin|—+y|+xcos| —+y|—
cosydX 3 y 3 Yy dx
sin(ﬁ+ )
dy _ 30
dx (n )
COSy—Xcos| —+y
d N
Yy
_— t = —
ax @ (0,0) >

2
= Equation of normal is y— 0 = —ﬁ x-0)

=2x +.3y=0

so the slope of the normal is — 1
T
Att=m/dx = ﬁ+m and

y=\/§—n/2\/5

the equation of normal is

[y—(\/z—n/Z\/Eﬂ=—1[(x—(\/§+n/2\/§))}

y—\/§+iz—x+ 2+m/242

22

X+y= 242, so the distance from the origin is 2
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Applications of Derivatives

73. (¢) Given, y = 3 sin 6.cos 0
dy . .
70 3[sin O(—sin B) + cos B(cos 0)]
d
d_JG/ = 3[cosze—sin2 0] =3 cos 20
and x = ¢° sin 0
dx
@~ _ e Lo 0
0 "¢ cos O +sin O e
dx 0 ..
20 € (sin © + cos 0)

Dividing (i) by (i)

d_y B 3co0s260 B 3(cos2 0 —sin’ 0)

dx % (sin 0 + cos 0) - % (sin 0 + cos0)
dy  3(cosO=sind )(cosd—sin6)
d & (s5in®+cos0)

dy 3(cos O —sin 0)
dx ee

d
Given tangent is parallel to x-axis then d_y
x

3(cosO —sin 0)
= —ee
or cos 0 —sin © =0 = cos 6 = sin O

tan 1t

T
=tan 0 =1=tan 0 = :>6:Z

74. (d) Lety=cos(x+y)
dy . ( dy)
= —=-sin(x+ 1+—
dx n(x+y) dx

Now, given equation of tangent is

x+2y=k
1 — __

= Slope B

So, & _-1 put this value in (i), we get
dx 2

-1 . 1
?z—sln (x+y) (I_Ej

= sin(x+y)=1

= Xty=— = y=—-x

I
2 2

Now, gfx =cos (x +y)

()

...(ii)

75.

76.

77.

78.

= ng andy=0

T
Thusx+2y=k = E:k

d x*>=8y ()
When, x = 4, then y = 2

Now ﬂ:z_xzﬁ’ﬂ =1
dc 8 4 dx]._4
S1 f 1= —L——l
ope of normal = Q_
dx

Euqation of normal at x = 4 is
y=2=-1x-4)
>y=—-x+4+2=-x+6
=>x+ty=6

(¢) Since the tangent is parallel to x-axis,

dy 8
—=0=>1-—1=0 = =
I JE =>x=2 =y=3

Equation of the tangent is y —3 =0 (x — 2)
= y=3

dy
b) —=2x-5 ..
®) dx o

m = (2x—5)(2,0) =-1,

i.e. the tangents are perpendicular to each other.

(d) Given x= a(cose+6sin9)

= dx _ a(—sinB+sin6+6cos0)

do

dx

—=abcos6 . i
= 70 (1)

y= a(sinG—GcosG)
d_y: a[cosG—cose+Osin6]
do

d .
= d—g —absin® (i)

From equations (i) and (ii) we get

dy

ol tan @ = Slope of normal = — cot 9

Equation of normal at '0' is

y—a(sin®—0cos 0) =—cot 0 (x—a (cos 6 + 0 sin 0))
= ysing —asin20 +a gcos@sing

=—xcos@ +acos?@ +a@singcosd

= XxcosQ tysing =a

Clearly this is an equation of straight line which is at a
constant distance ‘a’ from origin.
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79.

80.

81.

(d) Since,x=a (1 + cos 0) o
M:f[—]:—2+1:—1
dx . . 4
:%:—asme and y =asin6

So, (m, M)=(-3,-1)

dy
= —=acos0
70 82. (5
C
dy y
.. —=—cot0. i
dx D‘ /
.. The slope of the normal at = tan 6 \ ;
.. The equation of the normal at 0 is 8 1

y—asinB =tan0(x —a —acos0)

= ycos 0—asin O cos 0 =x sind — a sind — a sinb cosO A—x— M, B

= xsin®—ycosO =asin® Let AM =xm

= y=(x—a)tan® - (MD)* +(MC)? = 64+ x> +121+(10-x)* = f(x)

which always passes through (a, 0) (say)
say

(b) f'"'(x)=06(x—-1). Inegrating, we get
f'(x)=2x-2(10—x)=0
F'(x)=3x* —6x+c

Slopeat (2,1) = f'(2)=c=3
[-- slope of tangent at (2,1) is 3]
() =33 —6x+3=3(x—1)°

=4x=20=>x=5
f'(x)=2-2(-)>0
- f(x) is minimum at x = 5 m.
83. (d) f(x)=(1-cos® x)(h+sinx)=sin® x(A +sin x)
Inegrating again, we get —(x=1+D .
g g8 get fx)=(x=1) = f(x)=Asin? x+sin’ x ...(i)
The curve passes through (2, 1)

:>1:(2—1)3+D:>D:0 = f'(x)=sinxcos x[2A +3sinx] =0

L) =(x-1) . . 20
: =0 and =-= =a (let
®) C—>C+C, = sinx and sinx 3 = x=a (let)

) So, f (x) will change its sign at x = 0, o because there is
2 l+sin“x  sin2x

Let f(x)=[2 sin’x sin2x exactly one maxima and one minima in (_—;, gj
.2 .
1 sin“x l+sin2x B N 3 N
R >R -2R;; R, > R, 2R, t } } :
- 0 o g
0 cos’® —(2+sin2x) T 9
=|0 -sin’x —(2+sin2x)|=-2-2sin2x OR
1 sin’x 1+sin2x — + — +
. T o 0 7
'(x)=—-2cos2x=0 _= i
/ 2 2
3
:cos2x=0:x=£,—rE . 2\
4 4 Now, sinx = —?
f"(x)=4sin2x 0 3 3
= -1<—<1=-—=<A<——{0}
n . 3 2 2
So, f"|—|=4>0 (minima)
4 I A=0= f(x)=sin’x (from (i)
m= f(Ej - 2_1=-3 Which is monotonic, then no maxima/minima
4

3 So, A e(—%, %j —{0}
f "(T} =—4<0 (maxima)
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Applications of Derivatives

84. (d) The given function
F(x)=(3x* +ax—2—a)e”
F(x) = (6x+a)e* +(3x* + ax—2—a)e"
7(x) = [3x% +(a+6)x —2]e"
-+ x =1 is critical point :
L f'M=0
=@B+a+6-2)-e=0

=a=-7

L f(x) = BxP = x=2)e"
=(Bx+2)(x-1)e"

+ = +

23 1

2
SX= 3 is point of local maxima.

and x = 1 is point of local minima.
85. (d) Area ofrectangle ABCD
A=2x-(x*=1)=2x> - 2x
dA

)
dx

. dA 1
For maximum area — =0=x=4+—
dx V3

2 \ _
d°A :£<0

dx_zjx:;l 3

2
d f:(le):(

dx

&

y
y=x-1

X

D

C 2
(=x, ¥*-1) (e, x=1)

’

Y

L_i‘_i
ENREIENE)

-+ The critical points are —1, 0, 1

.. Maximum area :‘

86. (a)
L) =k ex(x+D)(x—1) = k(x> —x)

= f(x):k{%—%} +C

= f(0)=C

(re>0)

87.

88.

v f(x)=£(0)

4 2
:>k—()C 42x )+

c=C

=x*(x*-2)=0
:>x=0,\/—,—\/5
=T=1{0,+2, -2}

B) Letfixy)=ax*+bx>*+cx+d
fi=1)=10and f(1)=-6
—a+b-c+d=10 ..(1)
atb+tc+d=-6 .. (i)

Solving equations (i) and (ii), we get

= fx)=a@x*-3x>-9x)+d

1) = % (- 2x-3)=0

= x=3,-1
+ | |
| |
-1 3
Local minima exist at x = 3

d) fix)=ax’+ bx*+ cx?

5 4 3
lim[2+ax +bx” +cx ]:4

x—0 x3

= 2+c=4 = c=2
f'(x) = 5ax* + 4bx® + 6x7
= x}(5ax* + 4bx + 6)
Since, x = £ 1 are the critical points,
f'H)=0 = Sa+4b+6=0 (1)
f'-1)=0 = S5a-4b+6=0 ...(ii)

From eqns. (i) and (ii),

b=0and a=-2
=0V an 5

f(x) :_?6)(5 +2x°
f'(x)=—6x*+6x2=6x* (x> + 1)

=—6x*(x+1)(x-1)

— + —
| |
T

-1 1
fix) has minima at x = — 1 and maxima at x = 1




M-366

89.

90.

91.

92.

(b) Given function f(x) = (/i — 2 = Jia® — x*

Differentiating w. r. t. x,

(3/cx2—4x3)>0
f(x)= W— for x € [0, 3]

[+ f(x) is increasing in [0, 3]]
=3k—4x>0=3k>4x
i.e., 3k>4x forx € [0, 3]
Sk>4ie,m=4

Putting k& = 4 in the function, f'(x) = x \/45 — 2

For max. value, f “ (x) =0

2 3
je, 12X —4Y -3

24 4)c3 — x4

y=33 ie, M=33

(b) a=a+5d=2

Here, a is first term of A.P and d is common difference
Let A=a a,a,= a (a+ 3d) (a+ 4d)

1%

=a(2-2d)(2-4d)
A=2-5d) (4-6d+2d)
dA
oo
By
Q2-5d)(-6+4d)+(4—-6d+2d)(—5)=0
8 2
—154*+34d-16=0=> d=—,=
53
F d7§£<0
or =52
8
d=2
Hence 5

©) f(x)=9x*+12x3—36x*+ 25
f'(x)=36[x"+x2-2x]=36x (x—1) (x + 2)

- + - +
] ] ]
T T T

-2 0 1

Here at -2 & 1, f''(x) changes from negative value to

positive value.

= -2 & 1 are local minimum points. At 0, f"'(x) changes
from positive value to negative value.

= 0 is the local maximum point.

Hence, S, = {-2, 1} and S, = {0}

(¢) Let radius of base and height of cylinder be » and %
respectively.

93.

2
.’.r2+h—=9
4

Now, volume of cylinder, V' = mr?h
Substitute the value of 1 from equation (i),

W .
—h|9——| = 9mh- 4

Differentiating w.r.t. A,

For maxima/minima,
dv
o 0=h= 12

d dZ_V = —ETEh
an th D

2
[—d Z] <0
dh” ),_ iz

Volume is maximum when j = 2./3

(a) Let, the functions is,

f0)= 3c0s6+55in6~cosg—5sin%cose
= 3c0s9+5><£sin9—5><lcose
2 2
= (3—§]cose+5x£sine
2 2

5\3

cosO+——sin0

1
2

2
1 25 [76
max f(0) = Z+TX3= T=\/E
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94. (b)

n

Parametric equations of the parabola y* = 4x are,

x=~randy=2t

ltz 2 1
AreaAPXQ=§4 —4 1
9 6 1
=52+ 5¢+ 30
=5 —1-6)

For maximum area ¢ = E

. maximum area = 5( 4

25) 125
4

95. (c¢) Consider the function,
Sx) =3x(x— 3)*— 40
NowS = {x eoR:x*+30< 11x}
So x*-11x+30<0

. fix) will have maximum value for x = 6

The maximum value of function is,
f6)=3x6x3x3-40=122.

m_n 1

= xoe [5,60]

Xy
96. (¢) 4= = p . p
© A= 2™ @ G )
m+ —m l
% > (x™.x™)2 =Sx"+tx"22

In the same way, y™ + y" > 2
Then, (x"+x™) (y"+y") 24
1
(" +x ")+

L
= 4

97.

98.

@

n»+r=0r=9 .03
Volume of cone

1

v= —m’h (i)
3

From (i) and (ii),

=V= %n(9— W)

1 3 dv 1 2
— —1(9h—=h — =—n\9-3A4

For maxima/minima,

dv 1

== 0= =m(9-31*)=0

y 0:>31T( )

=h=+3=h=f3 (o h>0)
axv 1

Now; W = 51'5(—6}1)

Here, 77 2
at h—_\/g

Then, h = /3 is point of maxima

Hence, the required maximum volume is,

V= %n(9—3)\/§ =23x

1
X"+ | 5
(¢) Here, h(x)= X —|x—— |+
1 . 1
X—— _=
X X

M-367

Hence, —2./2 will be local maximum value of h(x).

When x—l>0
X
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1 2 2 2 2
x——+—722\2 SpR=opeo 2 = 2.2, 1o 8 lér
x L 3 9 3 9
X

2 2
Hence, 2./2 will be local minimum value of h(x). _(24-16) = 8

99. (a) Here, f(x)=2x3 - 92+ 12x+5 ? ?
= flx)=6x2-18x+12=0 23
For maxima or minima put f'(x) = 0 =b= r =242 cm
= x2-3x+2=0 3
=>x=lorx=2 Therefore curved surface area = mb!/
Now, f"(x)=12x-18
= [f"()=12(1)-18=-6<0 =nb W2+ =22 42 +8 =8S3rem?

Hence, f(x) has maxima atx =1
. maximum value=M=f(1)=2-9+12+5=10. 101. (d) We have

And fu(z) — 12(2) ~18=6 >0. Total length =r+r+1r9=20
Hence, f (x) has minima at x = 2. =>2r+r9=20
. minimum value = m = f(2) 20-2
=208)-94) +122)+5=9 =0= d ..(1)
S M-m=10-9=1 r
100. (a) Sphere of radius r =3 cm 0 )
Let b, & be base radius and height of cone respectively. A= Area= %X nr
1
So, volume of cone = — nb’h 1, 1 5(20-2r ‘
2 =—10==1"| ——
2 2 r r r

A=10r—r2

For A to be maximum

d_A =0 =>10-2r=0

Y dr or
q . =>r=5
v d’A
7 =-2<0
dr
In right angled A ABC by Pythagoras theorem - Forr=35 Ais maximum
(h—r2+b2=12 (i) From (i)
= b=~ (h—r? =71 (h* = 2hr +12) = 2hr — h? o= 20-20)_10 _,
5 5

1 2 1 2 3
.. Volume (vV)=—nh|2hr —h” |=—|2h“r - h 2
) 375[ r=’] 3[ r=#] A=z><ﬁ(5)2=25sq.m

102. (a) 4x+2mr=2 =
ﬂ=1[4hr—3hz]:o:h(4r—3.h):0 (@) 4x+2m =2x+mr=1
dh 3 S=x2+mr?

2
2 1-mr 2
d—;=1[4r—6h] S=[ 5 j+rcr
dh® 3
ds l-mr )\ -n
4r d*v 1 4r 1 _:2[_)(_)+2nr
Ath= —,—==|4r——x6 |==[4r-8r|<0
3dh23[ 3}3[ ] dr 2 2
4r 4 - B B
:maximumvolumeocursath:?r:§x3:4cm 37+7+2ﬁr—0 3r—m
As from (i),

2
(h—r?+b2=2 :>x—n+4 =X=2r

EBD 83



Applications of Derivatives M-369
106. (a) Let f(x)=olog|x|+px?+x
= [2 2 2 .
103. @) D o’ +(a” ~4) Differentiate both side,
D’=a’+a'+16-8a*=a' - 70+ 16 "
) f'(x)=—+2Px+1
dD 3 X
— =40’ - 14a=0 . :
do. Since x = —1 and x = 2 are extreme points therefore

20202 -7)=0 f'(x)=0 at these points.
azzz Putx =—landx=2in f'(x), we get

2 e 2prl=0=0+2p =1 ()

L1 aB+1=0 = o +8p =2 .(ii)
\__o / o
On solving (i) and (ii), we get
1
\M@ 6h=-3=p=—y

49 49 15 a=2
=2 T 6P 6

4 2 4
b Jis 107. (d) A[O, %

2

(1+x)5

104. (a) Let f(x) = — andx € [0,1]
1+x5
35 2 3 =2
(1+x5)=(1+x) 5 —g(1+x)5(x 5)
(1+x5)?

(3 -2 32
_ LH—XSJ(I-&—X) —(1+x)5x 5

I 3 3
3 1+x5 (1+x)°
5 2 2
| 1+x)> x5
2 2
x5 +x-1-x x5 -1
=72 2 ~ 2 2<0
x5(1+x)5  x5(1+x)3
Also, f(0)=1= f(x) € [27°4 1]
f(a)=2""

105. (d) Let ‘u’ be the velocity
s u=48 m/s, Given, g =32
At maximum height v=0
Now, we know v> = u? — 2gh
=0=(48’-2(32h=h=36
Maximum height = 36 + 64 = 100 mt

/ (h, k)

Let (h, k) be the point on ellipse through which tangent
is passing.

. ¢ ¢ at xh vk |
Equation of tangent at (A, k) = —1 +—1 =
aty=0,x = :

y > ]
¢ 81
zl X b y L

1 1
Area of AOB = —x (—6) X [ﬂ) = _648
2 k hk

h
2
,  (648) )
=2 ..(1)

(h, k) must satisfy equation of ellipse
nok?
_+_ =

16 81

1
W= 8—?(81—k2)

Putting value of 42 in equation (i)
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ke 81(648)> «
16xk*>81-k%) 81k%—k*

differentiating w.r. to k

-1
2AA" = (x[ﬁJ 162k — 4k>)
81k% —k

2AA" = 2A 81k — 4K°) = A'= — 81k — 4k
Put A’ = 0
= 162k — 4k =0, k (162 — 4k*) = 0

e

= k=0k=*%

A" =— (81 — 12k%)
For both value of k, A” = 405 > 0

9
- i - +—
Area will be minimum for & ﬁ

16
W= g B1-K) =8

h= %22

A f tri lAOB*M*% it
rea of triangle N sq uni

108. (¢) Given, radius of sphere = /3
Now, In AOAB, by Pythagoras theorem
(OA)* = (OB)* + (AB)’

e h/2

W3y = @2 +r?

2 h2
3= %+r2 = ;»2:3—T ..(0)
Now, volume of cylinder = h
( 5 #) , . .
V= TEL 4J (using eq. (i))
3
V= 3nh—% ..(ii)

Now, for largest possible right circular cylinder the
volume must be maximum
.. For maximum volume, 2—: =0

Now, Differentiating eq. (2) w.r.t. &
dv

—=3n —znhz
dh 4

3
or 3n—znh2 =0 };{:%;{hz

>h=4=h=2

Now, volume (V) of the cylinder
(52

= nk3—TJh=n(6—2) =45

b
109. (¢) LetcostC= av+ "

According to given question,

b
30a+—=75 ... (@
a+30 (@)
40a+i—65 ii
e ... (i)

On solving (i) and (ii), we get

1
a=5 and b = 1800

b
:v:\/::\/3600 = v =60 kmph
a

110. (d) Letbase=5h

h —
A .
b

Altitude (or perpendicular) = Vh? —b?

1 1
Area, A= 3 x base x altitude = 3 xbxh? —b?

N a1\ 2 2. _—Zb}
db 2 N
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111.

112.

m-371

_llhz—zbz}
2 /hz_bz
dA h

Put —=0, = b=—
db 2

. 1 h , W n?
Maximum area = — X —=X|h° —— = —
2 2 2 4

(b) Given that, f(x)=In|x| +bx% +ax
f'(x):l+2bx+a
x

Atx=-1, f'(x)=-1-2b+a=0
= a-2b=1 (1)

1
Atx=2, f'(x)=5+4b+a=0

1
= atdb=—= ...(if)
2
L . 1 1
On solving (i) and (ii) we get a = E,b =2
Thus f'(x)—l—f l_—27x2+x
’ x 202 2x

_—x2+x+2_—(x2—x—2) _—(x+l)(x—2)
- 2x 2x - 2x

So maxima at x =—1, 2

(¢) Equation of a line passing through (x,y,) having

slope m is given by y —y, = m (x —x,)

Since the line PQ is passing through (1,2) therefore its

equationis (y—2)=m (x — 1)

where m is the slope of the line PQ.

Now, point P (x,0) will also satisfy the equation of PQ
y2=mix-1) > 0-2=m(x-1)

= -2= )= x-1=—
m(x—1) X m

= x=—+1
m
Also, OP = /(x—0)? +(0-0)* =x 20
m

Similarly, point Q (0,y) will satisfy equation of PQ
y2=m@x-1)

113.

114.

= y-2=m(-1)
= y=2-m and OQ=y=2-m

Area of APOQ = %(OP)(OQ) = %(1 - %) (2-m)

(" Areaof A= %x base x height )

R |

(1,2)

ol

m 2
Let Area = f(m) = 2————
2 m

, -1 2
m)=—+—
Now, f( ) 5 m2

Put £’ (m)="0

>ml=4=>m= +2

Now, f"(m)="5

m3
£ (1) e =5 <0
£ () a2 =5 >0

Area will be least at m = -2

Hence, slope of PQ is —2.

d) Letf: (—o0,00) = (—o0,00) be defined by fix) =x> + 1.
Clearly, f{x) is symmetric along y = 1 and it has neither
maxima nor minima.

.. Statement-1 is false.

Hence, option (d) is correct.

tan x
—, x#0
b) f(x)= X
1, x=0
Forx>0
tan x > x
ta
nx>1
X
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Y ) k—2x, if x<-1
A 7. f(x=9, ¢ )
y=tanx x+3, ifx>-—
= 2x+3
X< 2y x k=2x v
O 1
1
\ 4
Y Clear that f'(x) is minimum at (-1, 1)
Forx<0 = tanx<x LfED=1
= anx _, l=k+2= k=-1
. 118. (a) Given that P (x) =x*+ax> + bx2 + cx +d
f(0)=1atx=0

115.

116.

= x=0 is the point of minima

So, Statement 1 is true. Statement 2 is also true.

(© f'(x)=+xsinx
S'(x)=0
= x=0 or sinx=0

= x=271,T

1
"(x =\/;cosx+—sinx
700 e
1

——=(2xcos x +sin x)

2Jx
Atx=m, f"(x)<0
Hence, local maxima at x =1t

At x =271, £'(x)>0

Hence local minima at x = 27

X
e

1
d) Given f(x)= =
@ & 2eF P2

(€ +2)e" —2¢*% &

(> +2)?

S =

S =0 = 2% 42 =20
=22 D=2
‘.'f"(x/f):+ve

2
.. Maximum values of f(x) = e

2V2

= 0<f(x)£L VxeR

22
1

Since, g« =« ——

1
3 22

= for some ceR,f(c):§

119.

= P'(x)=4x3+3ax?+2bx+c

But given P'(0) =0 = ¢ =0
Pix)=x*+ax>+bx*+d

Again given that P (— 1) < P (1)

= l-at+b+d<l+a+b+d

= a>0

Now P ' (x) = 4x3 + 3ax2 +2bx = x (4x% + 3ax + 2b)

As P' (x) = 0, there is only one solution x = 0, therefore

4x% + 3ax + 2b = 0 should not have any real roots i.e. D < 0

2
= 942-32b<0 = b>93iz>o

Hencea, b>0

= P'(x)=4x3+3ax?>+2bx >0 Vx>0
P (x) is an increasing function on (0,1)
P(0) < P(a)

Similarly we can prove P (x) is decreasing on (- 1, 0)
P(1)> P(0)

So we can conclude that

Max P (x) =P (1) and Min P (x) = P (0)

= P(-1) is not minimum but P (1) is the maximum of P.

(@) Lety=x’-px+gq 3%:3)62—17
X

For maxima and minima

@y =3x2-p=0 3x=i\/z
d 3

x
d2 2 2
—;=6X d—; =+ve andd—;/ =—ve
dx dx x:\/z dx x;\/z
3 3

.. y has minimum at x = ,§ and maximum at
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1

120. (a) Given f(x)= 2%3 =l 2 g

121.

122.

=37
=>x=4=x=2,-2

Now, f"(x):i3
X

f"(x)]x=2 =+ve = f(x) has local min at x = 2.

1 dy 1
¢) ATQ, y=xt+— = —=1-—
(©) ATQ e

For maxima. or minima.,

1—%:0:”11
X

'y 2 _(d
3

X :dez)xﬂ

. yis minimum at x = 1

=2>0

dx*

@ f(x)=2x —9ax* +12a°x +1
£(x) = 6x% —18ax +12a°;
For maxima or minima.

6x% —18ax+12a> =0 = x> —3ax+2a*> =0

123.

= x=aorx=2a.

£(x)=12x—18a

f"(@)=-6a<0 .. fix)is max. atx = q,
£"(2a)=6a>0

o flx) is min. at x =2a
. p=aandq=2a

ATQ, p*=¢

na*=2a=a=2ora=0

but a > 0, therefore, a = 2.

(b) We know that distance of origin from

(x,»= \/xz +y2
= \/az +b% —2ab cos[t—%t) :

<a? +b? +2ab

(=5 =)o

.. Maximum distance from origin =a + b
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