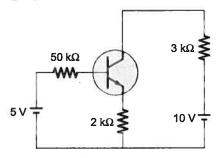

4

BJT Biasing

Multiple Choice Questions

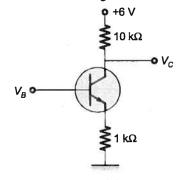
Q.1 A silicon transistor with $V_{BE_{sat}}=0.8$ V, $\beta_{dc}=100$ and $V_{CE_{sat}}=0.2$ V is used in the circuit shown below:

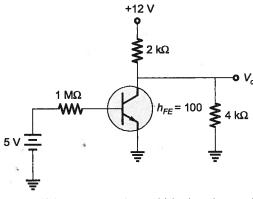


What is the minimum value of R_C for which transistor is in saturation?

- (a) 4286Ω
- (b) 4667Ω
- (c) 5000Ω
- (d) 1000Ω

[ESE-2004 (EE)]

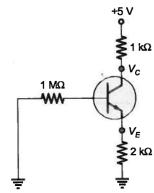

Q.2 For the circuit shown in figure, assume $\beta = h_{FE} = 100$. The transistor is in


- (a) Active region and $V_{CE} = 5 \text{ V}$
- (b) Saturation region
- (c) Active region and $V_{CE} = 1.42 \,\mathrm{V}$
- (d) Cut-off region

[ESE-2005 (EE)]

Q.3 For the transistor in circuit shown in figure $\beta = 200$. Determine V_C in the circuit if $V_B = 2$ V

- (a) -7 V
- (b) 1.5 V
- (c) 2.6 V
- (d) none
- Q.4 Consider the NPN transistor circuit shown below:

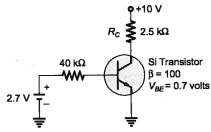


What if the output voltage V_0 in the above circuit?

- (a) 0 V
- (b) 12 V
- (c) 9 V
- (d) 7.5 V

[ESE-2004]

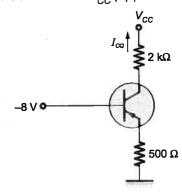
Q.5 Consider the following circuit:



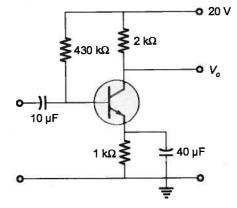
What is voltage difference between collector and emitter (V_{CF}) in the above circuit?

- (a) 10/3 V
- (b) 0 V
- (c) 5 V
- (d) 3 V

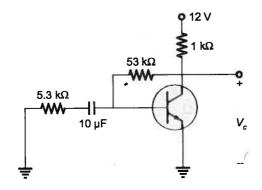
[ESE-2004]


Q.6 In the circuit shown

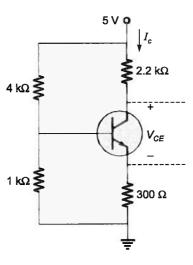
the transistor is biased at


- (a) 0 mA
- (b) 5 mA
- (c) 3.9 mA
- (d) ∞

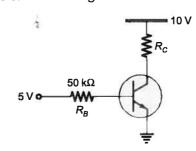
Q.7 The transistor circuit shown in the figure given below is to function as an amplifier. If $I_{CQ} = 3$ mA, what is the value of V_{CC} (approximate)?


- (a) 15 V
- (b) -15 V
- (c) -10 V
- (d) -13.5 V

Q.8 The circuit using a BJT with β = 50 and V_{BE} = 0.7 V is shown in the figure. The base current I_B and collector voltage V_C are respectively

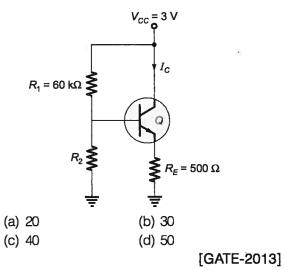

- (a) 43 µA and 11.4 Volts
- (b) 40 µA and 16 Volts
- (c) 45 µA and 11 Volts
- (d) 50 µA and 10 Volts
- Q.9 In the transistor amplifier circuit shown in the figure below, the transistor has the following parameters:

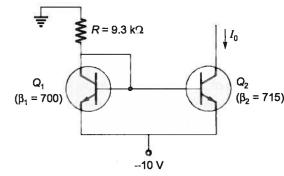
 $\beta_{\rm dc}$ = 60, V_{BE} = 0.7 V, $h_{ie} \rightarrow \infty$, $h_{fe} \rightarrow \infty$ The capacitance C_{C} can be assumed to be infinite.


- (i) Find V_{CF}
 - (a) 3 V
- (b) 1.5 V
- (c) 6 V
- (d) 7.5 V
- (ii) If β_{dc} is increased by 10%, the collector-toemitter voltage drop
 - (a) increases by less than or equal to 10%
 - (b) decreases by less than or equal to 10%
 - (c) increases by more than 10%
 - (d) decreases by more than 10%

Q.10 Assuming that the β of the transistor is extremely large and V_{BE} = 0.7 V, I_C and V_{CE} in the circuit shown in the figure are

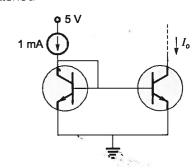
- (a) $I_C = 1 \text{ mA}$, $V_{CE} = 4.7 \text{V}$
- (b) $I_C = 0.5 \text{ mA}, V_{CE} = 3.75 \text{V}$
- (c) $I_C = 1 \text{ mA}, V_{CF} = 2.5 \text{V}$
- (d) $I_C = 0.5 \text{ mA}, V_{CF} = 3.9 \text{V}$


Q.11 In the circuit shown, the silicon BJT has $\beta = 50$. Assume $V_{BE} = 0.7$ V and $V_{CE(sat)} = 0.2$ V. Which one of the following statements is correct?

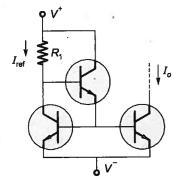

- (a) For $R_C = 1 \text{ k}\Omega$, the BJT operates in the saturation region
- (b) For $R_{\dot{C}} = 3 \text{ k}\Omega$, the BJT operates in the saturation region
- (c) For $R_C = 20 \text{ k}\Omega$, the BJT operates in the cut-off region
- (d) For $R_C = 20 \text{ k}\Omega$, the BJT operates in the linear region

[GATE-2014]

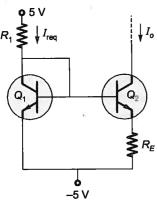
Q.12 In the circuit shown below, the silicon npn transistor Q has a very high value of β . The required value of R_2 in $k\Omega$ to produce $I_C = 1$ mA is



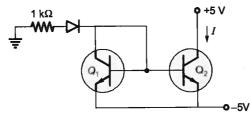
Q.13 In the silicon BJT circuit shown below, assume that the emitter area of transistor Q_1 is half that of transistor Q_2

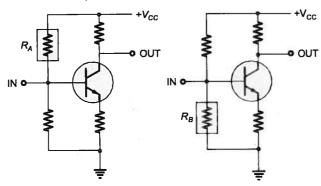

The value of current I_a is approximately

- (a) 0.5 mA
- (b) 2 mA
- (c) 9.3 mA
- (d) 15 mA
- **Q.14** In the current mirror circuit shown below. The transistor parameters are $V_{BE} = 0.7$ V, $\beta = 50$ and early voltage is infinite. Assume transistor are matched



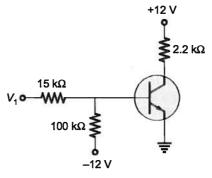
- (a) 1.04 mA
- (b) 1.68 mA
- (c) 962 µA
- (d) 432 µA


Q.15 Consider the basic three transistor current source in figure below. Assume all transistors are matched with finite gain and early voltage $V_A = \infty$. The expression for I_A is

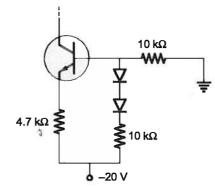

- Q.16 Consider the wilder current source shown below. Both of transistor are identical and $\beta > 1$ and $V_{BE_1} = 0.7 \text{ V}$. The valve of resistance R_1 and R_E to produce $I_{req} = 1$ mA and $I_0 = 12 \,\mu\text{A}$ is $(V_{\tau} = 26 \,\text{mV})$

- (a) 9.3 k Ω , 18.23 k Ω
- (b) $9.3 \text{ k}\Omega, 9.58 \text{ k}\Omega$
- (c) $15.4 \text{ k}\Omega$, $16.2 \text{ k}\Omega$
- (d) 15.4 k Ω , 34.4 k Ω
- Q.17 Two perfectly matched silicon transistor are connected as shown in the figure. Assuming the β of the transistors to be very high and the forward voltage drop in diodes to be 0.7 V, the value of current is

- (a) 0 mA
- (b) 3.6 mA (d) 5.7 mA
- (c) 4.3 mA
- Q.18 In the following two non-linear transistor biasing circuits,

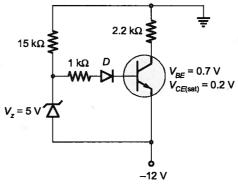

the resistors.

- (a) R_A and R_B , both have negative temperature
- (b) R_A and R_B , both have positive temperature
- (c) R_{A} has negative temperature coefficient and R_R has positive temperature coefficient
- (d) R_{A} has positive temperature coefficient and R_B has negative temperature coefficient
- Q.19 To avoid thermal runaway in the design of an analog circuit, the operating point of the BJT should be such that it satisfies the condition
 - (a) $V_{CE} = \frac{1}{2} V_{CC}$
- (c) $V_{CE} > \frac{1}{2} V_{CC}$
- (b) $V_{CE} \le \frac{1}{2} V_{CC}$ (d) $V_{CE} \le 0.78 V_{CC}$
- Q.20 The condition to be satisfied to prevent thermal runaway in a transistor amplifier where $(P_c = Power dissipated at Collector,$ T_i = Junction temperature, T_A =Ambient temperature, θ = Thermal resistance) is
 - (a) $\frac{\delta P_c}{\delta T_i} > \frac{1}{\theta}$
- (b) $\frac{\delta P_c}{\delta T_A} < \frac{1}{\theta}$
- (c) $\frac{\delta P_c}{\delta T_i} < \frac{1}{\theta}$ (d) $\frac{\delta P_c}{\delta T_A} > \frac{1}{\theta}$

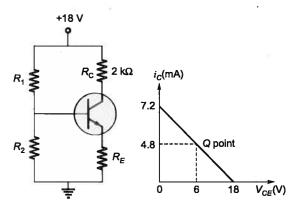


Numerical Data Type Questions

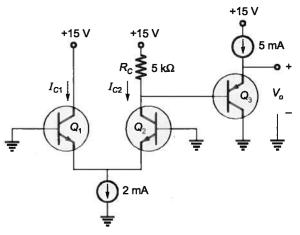
Q.21 For the transistor shown below, $\beta = 30$ and $V_{CFO} = 6$ V. The value of V_1 is _____ Volt.



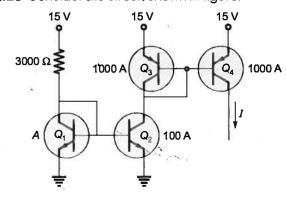
Q.22 In the bipolar current source of figure shown below, the diode voltage and transistor baseemitter voltage are equal


If base current is neglected, then collector current is ____ mA.

Q.23 The transistors used in the circuit shown below has $\beta = 30$ and I_{CBO} is negligible.


If the forward voltage drop of diode is 0.7 V, then the current through collector will be ____ mA.

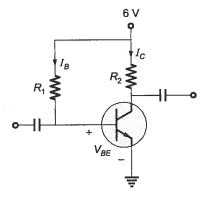
Q.24 The transistor circuit and its DC load line is shown in figure given below.



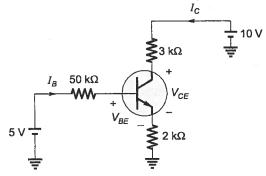
For the transistor, $\beta = 120$. What is the value of emitter resistance (R_E) at Q-point (in $k\Omega$)?

Q.25 In the circuit shown below assume that the transistors Q_1 and Q_2 have identical characteristics. All of the transistor operate in active region and β = 100. The value of output voltage V_0 is _____ volts.

Q.26 Consider the circuit shown in figure.

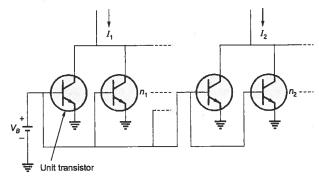


All the transistors have $\beta=\infty$, and $V_{BEactive}=0.7$ for n-p-n BJT Q_1 and Q_2 . The transistor Q_1 and Q_2 are exactly same, the only difference is that cross-section area of $Q_1=100$ times the cross-section area of $Q_1=100$ times the cross-section area of $Q_1=100$ times the cross-section area of $Q_2=100$ times the cross-section area of Q_3 is equal to cross-section area of Q_4 that is equal to 1000 times the cross-section area of Q_1 . The value of I is ______ A.



Try Yourself

- T1. In the circuit shown below, β = 150, V_{BE} = 0.7 V and it is operating at Q-point (3 V, 1.5 mA). If β increases to 200, the new operating point will be
 - (a) 2.88 V, 1.56 mA (b) 5.40 V, 3.50 mA
 - (c) 3.55 V, 4.60 mA (d) 1.06 V, 2.46 mA


T2. In circuit shown transistor has β = 100. $V_{BE(sat)}$ = 0.8 V and $V_{CE(sat)}$ = 0.2 V. Then the region of operation

- (a) active region
- (b) saturation region
- (c) cut-off region
- (d) reverse-active region

李言崇誉

T3. An integrated circuit requires two current sources; $I_1 = 0.2$ mA and $I_2 = 0.3$ mA . Assuming that only integer multiples of a unit bipolar transistor having $I_s = 3 \times 10^{-16}$ amp can be placed in parallel, and only a single voltage source V_B is available, the minimum number of unit transistor required for the circuit are

- $n_1 n_2$ (a) 1 2
- (b) 2 3
- (c) 4 6
- (d) 8 12