Consortium of Medical Engineering and Dental Colleges of Karnataka

(COMEDK-2006)

CHEMÍSTRY

1.	Which of the following is not an	ore of magnesium?
	1) Carnallite	2) Dolomite
	3) Calamine	4) Sea water
2.	The atomic numbers of Ni and C	${\it Cu}$ are 28 and 29 respectively. The electron configuration
	$1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 3d^{10}$ repr	resents
	1) Cu^+	2) Cu^{2+}
	3) Ni^{2+}	4) <i>Ni</i>
3.	In the following, the element wit	h the highest ionisation energy is
	1) $[Ne]3s^23p^1$	2) $[Ne]3s^23p^3$
	3) $[Ne]3s^23p^2$	2) $[Ne]3s^2 3 p^3$ 4) $[Ne]3s^2 3 p^4$
.4.		the oxidation number of Br changes from

2)
$$+ 1 \text{ to } + 5$$

3)
$$zero to -3$$

4)
$$+ 2 \text{ to } + 5$$

Among the alkali metals cesium is the most reactive because 5.

- 1) its incomplete shell is nearest to the nucleus
- 2) it has a single electron in the valence shell
- 3) it is the heaviest alkali metal
- 4) the outermost electron is more loosely bound than the outermost electron of the other alkali metals.

6.	Which of the following repre	sents the Lewis structure of N_2 molecule?
	1) ${}^{\times}_{\times}N_{\cdot}\equiv N_{\times}^{\times}$	$2)\ \stackrel{x}{\overset{x}}{\overset{x}{\overset{x}{\overset{x}{\overset{x}}{\overset{x}{\overset{x}}{\overset{x}{\overset{x}}{\overset{x}{\overset{x}}{\overset{x}{\overset{x}}{\overset{x}{\overset{x}}{\overset{x}}{\overset{x}{\overset{x}}{\overset{x}{\overset{x}}{\overset{x}}{\overset{x}}{\overset{x}}{\overset{x}}{\overset{x}}{\overset{x}{\overset{x}}{\overset{x}}{\overset{x}}{\overset{x}}{\overset{x}}{\overset{x}}{\overset{x}}{\overset{x}}{\overset{x}}{\overset{x}}}{\overset{x}}{\overset{x}}{\overset{x}}}{\overset{x}}{\overset{x}}{\overset{x}}}{\overset{x}}{\overset{x}}}{\overset{x}}}{\overset{x}}{\overset{x}}{\overset{x}}}{\overset{x}}}{\overset{x}}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}{\overset{x}}}{\overset{x}}}{\overset{x}}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}}{\overset{x}}{\overset{x}}}{$

3)
$$\overset{\times}{\overset{\times}{N}}\overset{\times}{\overset{\times}{N}} - \overset{\times}{\overset{\times}{\overset{\times}{N}}}\overset{\times}{\overset{\times}{\overset{\times}{N}}}$$

4)
$$\overset{\times}{\underset{\times}{N}}\overset{\times}{N}\overset{\times}{\underset{\times}{N}}=\overset{\times}{\underset{\times}{N}}\overset{\times}{\underset{\times}{\times}}$$

Hydrogen bond is strongest in **7.** .

1)
$$S-H----O$$

2)
$$O - H - S$$

3)
$$F-H-\cdots F$$

The decomposition of a certain mass of $CaCO_3$ gave $11.2\,\mathrm{dm^3}$ of CO_2 gas at STP. The mass 8. of KOH required to completely neutralise the gas is

1) 56 g

2) 28 g

3) 42 g

4) 20 g

9. The density of a gas is 1.964 g dm^{-3} at 273 k and 76 cm Hg. The gas is

1) CH₄

2) C_2H_6

3) CO₂

4) *Xe*

10. 0.06 mole of $K\!N\!O_3$ solid is added to 100 cm³ of water at 298 k. The enthalpy of $K\!N\!O_{3a\sigma}$ solution is 35.8 kJmol⁻¹. After the solute is dissolved the temperature of the solution will be

1) 293 k

2) 298 k

3) .301 k

4) 304 k

11.	4 moles each of SO_2 and O_2 gases are allowed to react to form SO_3 in a closed vessel. At
	equilibrium 25 % of O_2 is used up. The total number of moles of all the gases present at
	equilibrium is

1) 6.5

2) 7.0

3) 8.0

4) 2.0

12. An example for autocatalysis is

- 1) oxidation of NO to NO_2
- 2) oxidation of SO_2 to SO_3
 - 3) decomposition of $KClO_3$ to KCl and O_2
- , 4) oxidation of oxalic acid by acidified KMnO_4
- 13. During the fusion of an organic compound with sodium metal, nitrogen of the compound is converted into

1) $NaNO_2$

. 2). NaNH₂

3) NaCN

4) NaNC

14. Identify the product Y in the following reaction sequence

$$CH_2-CH_2-COO \\ | Ca \xrightarrow{heat} X \xrightarrow{Zn-Hg} Y \\ CH_2-CH_2-COO$$

1) pentane

2) cyclobutane

.3) cyclopentane

4) cyclopentanone

15. The reaction
$$C_2H_5ONa + C_2H_5I \rightarrow C_2H_5OC_2H_5 + NaI$$
 is known as

1) Kolbe's synthesis

- 2) Wurtz's synthesis
- 3) Williamson's synthesis
- 4) Grignard's synthesis

			•					
16.	ΔG^{0}	Vs T plot in the	Ellingham's	diagram	slopes	downwards	for the	reaction

. 1)
$$Mg + \frac{1}{2}O_2 \rightarrow MgO$$

$$2) \quad 2Ag + \frac{1}{2}O_2 \rightarrow Ag_2O$$

3)
$$C + \frac{1}{2}O_2 \rightarrow CO$$

4)
$$CO + \frac{1}{2}O_2 \rightarrow CO_2$$

17. Which of the following reaction taking place in the Blast furnace is endothermic?

1)
$$CaCO_3 \rightarrow CaO + CO_2$$

2)
$$2C + O_2 \rightarrow 2CO$$

3)
$$C + O_2 \rightarrow CO_2$$

4)
$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

18. Liquor ammonia bottles are opened only after cooling. This is because

- 1) it is a mild explosive
- 2) it is a corrosive liquid
- 3) it is a lachrymatory
- 4) it generates high vapour pressure

. /

19. The formation of $O_2^+[P_tF_6]^-$ is the basis for the formation of Xenon fluorides. This is because

- 1) O_2 and Xe have comparable sizes
- 2) both O_2 and Xe are gases
- 3) O_2 and Xe have comparable ionisation energies
- 4) O_2 and Xe have comparable electronegativities

20. The highest magnetic moment is shown by the transition metal ion with the configuration

1) $3d^2$

2) $3d^{5}$

3) $3d^{7}$

4) $3d^{9}$

21.	°A transition metal ion exists in i	ts highest oxidation state. It is expected to behave as
	1) a chelating agent	2) a central metal in a coordination compound
	3) an oxidising agent	4) a reducing agent
22.	In which of the following complex i	on, the central metal ion is in a state of sp^3d^2 hybridisation?
	1) $\left[CoF_{6} \right]^{3-}$	$2) \left[Co \left(NH_3 \right)_6 \right]^{3+}$
	3) $\left[Fe(CN)_{6} \right]^{3-}$	4) $\left[Cr(NH_3)_6\right]^{3+}$
23.	Which of the following can partic	cipate in linkage isomerism?
	NO_2	2) $H_2\ddot{N}CH_2CH_2\ddot{N}H_2$
	3) H ₂ O	4) $:NH_3$
24.	Which of the following has the h	ghest bond order?
	1) N_2	2) O ₂
	3) He_2	4) H_2
25.	Which of the following is diamag	netic?
	1) H_2^+	. 2) O ₂
	3) <i>Li</i> ₂ .	4) He_2^+

26.		ecreases from 0.1 M to 0.025 M in 40 minutes . If the rate of the reaction when the concentration of X is
	0.01 M will be	4.4 %
	1) $1.73 \times 10^{-4} M \text{ min}^{-1}$	2) $3.47 \times 10^{-4} M \text{ min}^{-1}$
	3) $3.47 \times 10^{-5} M \text{ min}^{-1}$	4) $1.73 \times 10^{-5} M \text{ min}^{-1}$

- 27. Chemical reactions with very high $\boldsymbol{E}_{\mathrm{a}}$ values are generally
 - 1) very fast

2) very slow

3) moderately fast

4) spontaneous

- 28. Which of the following does not conduct electricity?
 - 1) fused NaCl

2) solid *NaCl*

3) brine solution

4). Copper

- **29.** When a quantity of electricity is passed through $CuSO_4$ solution, 0.16 g of Copper gets deposited. If the same quantity of electricity is passed through acidulated water, then the volume of H_2 liberated at STP will be [Given At.Wt. Cu = 64]
 - 1) 4.0 cm^3

2) 56 cm^3

 $3) 604 \text{ cm}^3$

4) 8.0 cm^3

30. Solubility product of a salt AB is 1×10^{-8} M² in a solution in which the concentration of A^+ ions is 10^{-3} M. The salt will precipitate when the concentration of B^- ions is kept

1) between 10^{-8} M to 10^{-7} M

2) between 10^{-7} M to 10^{-6} M

3) $> 10^{-5} \text{ M}$

4) $< 10^{-8} M$

31. Which one of the following condition will increase the voltage of the cell represented by the equation: $Cu_{(s)} + 2Ag^{+}_{aq} \rightleftharpoons Cu^{2+}_{aq} + 2Ag_{(s)}$					
1)	increase in the dimensions of Cu electrode				
2)	increase in the dimensions of Ag electrode				
3)	increase in the concentration of Cu^{2+} ions				
4)	increase in the concentration of Ag^+ ions				

				• -	
32.	. The r	H of 10) ⁻⁸ M <i>HC</i>	l solution	ıis

. 1) 8.

2) more than 8

3) between 6 and 7

4) slightly more than 7

33. The mass of glucose that should be dissolved in 50 g of water in order to produce the same lowering of vapour pressure as is produced by dissolving 1 g of urea in the same quantity of water is

1) 1 g

2) 3 g

3) 6 g

4) 18 g

34. Osmotic pressure observed when benzoic acid is dissolved in benzene is less than that expected from theoretical considerations. This is because

- 1) benzoic acid is an organic solute
- 2) benzoic acid has higher molar mass than benzene
 - 3) benzoic acid gets associated in benzene
 - 4) benzoic acid gets dissociated in benzene

35. For a reaction to be spontaneous at all temperatures

1) ΔG and ΔH should be negative

2) ΔG and ΔH should be positive

3) $\Delta G = \Delta S = 0$

4) $\Delta H < \Delta G$

36.	Which o	f the following electrolyte will ha	ive max	simum flocculation value for $Fe(OH)_3$ sol. ?
	1)	NaCl	2)	$Na_{2}S$
	3)	$(NH_4)_3 PO_4$	4)	K_2SO_4
37 .	For a rev	versible reaction: $X_{(g)} + 3Y_{(g)} =$	$=2Z_{(g)}$)
				Z are 60, 40 and 50 JK ⁻¹ mol ⁻¹ respectively.
		perature at which the above rea		
	1)	400 K	2)	500 K
	3)	273,K	4)	373 K
38.	The radi	_	and 181	l pm respectively. The edgé length of $NaCl$
	1)	276 pm	2)	138 pm
	.3)	552 pm	4)	415 pm
39.	Inductiv	e effect involves		
	1)	displacement of σ electrons	2)	delocalisation of π electrons
	(3)	delocalisation of σ electrons	4)	displacement of π electrons
40.	The basi	city of aniline is less than that o	f cycloh	nexylamine. This is due to
	1)	+ R effect of – NH_2 group	2)	$-I$ effect of $-NH_2$ group
		$-R$ effect of $-NH_2$ group		hyperconjugation effect

41.	©Methyl k	promide is converted	into ethane by hea	ating it in ether medium with
	· . 1)	Al	2)	Zn
	3)	Na	4)	Cu
	Which of	f the following compo	ound is expected to	be optically active?
	1)	$(CH_3)_2$ CH CHO	2)	$CH_3CH_2CH_2CHO$
	.3)	CH ₃ CH ₂ CHBr CH	<i>IO</i> 4)	CH_3 CH_2 CBr_2 CHO
43.	Which c	ycloalkane has the lo	owest heat of comb	ustion per CH_2 group ?
	1)	cyclopropane	2)	cyclobutane
	3)	cyclopentane	.4)	cyclohexane
44.	The cata	, .	paration of an alk	cyl chloride by the action of dry HCl on an
	1)	anhydrous $AlCl_3$	2)	$FeCl_3$
	3)	anhydrous ${\it ZnCl}_2$	4)	Cu
45.	In the re	eaction		
	R - X	$\frac{alcoholic}{KCN} \to A \frac{di}{dt}$	$\frac{lute}{lCl} \rightarrow B$,	
	the prod	$\mathrm{uct}B$ is		
	1)	alkyl chloride	2) ald	•
	3)	carboxylic acid	4) ket	tone

46.	Which of	f the following compou	nd would not evolv	e CO_2 when treated with $NaHCO_3$ solution?
	1)			phenol
	3)	benzoic acid	4)	4-nitro benzoic acid
47.	By heati	ing phenol with chlore	oform in alkali, it	is converted into
	1)	salicylic acid	2)	salicylaldehyde
	3)	anisole	4)	pḥenyl benzoate
48.	When a	mixture of calcium b	enzoate and calc	ium acetate is dry distilled, the resulting
	compour	nd is		
	1)	acetophenone`	2)	benzaldehyde
	3)	benzophenone	4)	acetaldehyde
49.	Which of	f the following does no	ot give benzoic aci	d on hydrolysis ?
	1)	phenyl cyanide	2)	benzoyl chloride
	3)	benzyl chloride	4)	methyl benzoate
· 50.	Which of	f the following would t	ındergo Hoffmanı	n reaction to give a primary amine?
		0		
		.11		
	1)	R-C-Cl	2)	$RCONHCH_3$
	3)	$RCONH_2$	4)	RCOOR

51. ;		contains in addition to alde					
	 one secondary <i>OH</i> and four primary <i>OH</i> groups one primary <i>OH</i> and four secondary <i>OH</i> groups 						
		two primary OH and three	<u>-</u>	. • -			
	4)	three primary OH and two	secondary	• • •			
52.	A distin	ctive and characteristic fund	tional grou	p of fats is			
	. 1)	a peptide group	2)	an ester group			
	3)	an alcoholic group	4)	a ketonic group			
53.	At pH =	4 glycine exists as					
	1)	$H_3 \stackrel{+}{N} - CH_2 - COO^-$	2)	$H_3\stackrel{+}{N}-CH_2-COOH$			
	3)	$H_2N - CH_2 - COOH$	4)	$H_2N - CH_2 - COO^-$			
54.	Insulin 1	regulates the metabolism of					
	1)	minerals	. 2)	amino acids			
	3)	glucose	4)	vitamins			
55.	The form	nula mass of Mohr's salt is 3	92. The iron	present in it is oxidised by $KMnO_4$ in acid			
		The equivalent mass of Mo		· · · · ·			
	1)	392	2)	31.6			
	3)	278	4)	156			

56.	The brov	wn ring test for nitrates depends or	ı	
	1) the reduction of nitrate to nitric oxide			
2) oxidation of nitric oxide to nitrogen dioxide			oxide	
	3)	reduction of ferrous sulphate to iron		
	4)	oxidising action of sulphuric acid		
57.	Acrolein test is positive for			
	1)	polysaccharides	2)	proteins
	. 3)	oils and fats	4)	reducing sugars
58.	An organic compound which produces a bluish green coloured flame on heating in presence of copper is			
	1)	chlorobenzene	. 2)	benzaldehyde
	3)	aniline	4)	benzoic acid
59. ∘	For a reaction $A+B\to C+D$ if the concentration of A is doubled without altering the concentration of B , the rate gets doubled. If the concentration of B is increased by nine times without altering the concentration of A , the rate gets tripled. The order of the reaction is			
	1)	2	2)	1
	3)	3. 2	4)	4 3
60.	. Which of the following solutions will exhibit highest boiling point?			
	1)	$0.01~\mathrm{M}~Na_2SO_{4_{(aq)}}$	2)	$0.01~{ m M}^{-}$ $KNO_{3}_{(aq)}$
	3)	$0.015~\mathrm{M}~\mathrm{urea}_{(aq)}$	4)	$0.015 \text{ M glucose}_{(aq)}$