MATHEMATICS

Topics:

6.

(A) $\frac{29}{5}$

DPP No. 13

Fundamentals of Mathematics, Sequence & Series, Trigonometric Ratio, Matrices &

Total Marks: 45

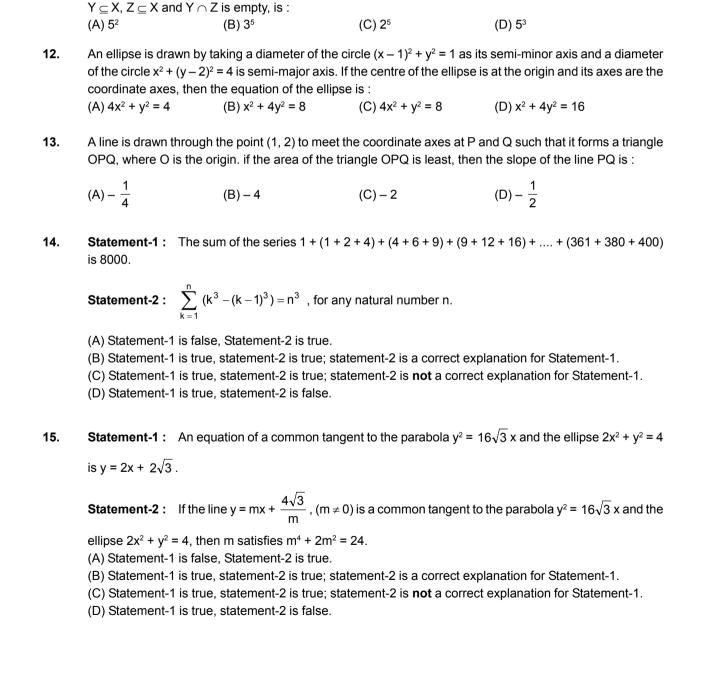
Max. Time: 45 min.

Determinants, Binomial Theorem, Straight Line, Permutation & Combination, Complex Number, Circle, Ellipse, Set & Relation

Single	of Questions choice Objective (no tion and Reason (no r	•		(3 marks, 3 min.) (3 marks, 3 min.)	M.M., [39, [6,	Min. 39] 6]
1.	The equation $e^{\sin x} - e^{-\sin x}$ (A) infinite number of rea (C) exactly one real root		(B) no real roo (D) exactly for			
2.	Let $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}$. If u_1 and u_2 are column matrices such that $Au_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ and $Au_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, then $u_1 + u_2$ is equal to:					
		$(B)\begin{pmatrix} -1\\1\\-1\end{pmatrix}$	$(C)\begin{pmatrix} -1\\ -1\\ 0 \end{pmatrix}$	$(D)\begin{pmatrix}1\\-1\\-1\end{pmatrix}$		
3.	If n is a positive integer, then $(\sqrt{3} + 1)^{2n} - (\sqrt{3} - 1)^{2n}$ is:					
	(A) an irrational number(C) an even positive integer		(B) an odd positive integer (D) a rational number other than positive integers			
4.	If 100 times the 100 th term the 150 th term of this AP (A) – 150 (C) 150		common differe (B) 150 times (D) zero	·	its 50 th term	ı, then
5.	In a \triangle PQR, if 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P = 1, then the angle R is equal to :					
	$(A) \frac{5\pi}{6}$	(B) $\frac{\pi}{6}$	(C) $\frac{\pi}{4}$	(D) $\frac{3\pi}{4}$		

7. Assuming the balls to be identical except for difference in colours, the number of ways in which one or more balls can be selected from 10 white, 9 green and 7 black balls is:

If the line 2x + y = k passes through the point which divides the line segment joining the points (1, 1) and


(C) 6

(D) $\frac{11}{5}$

(A) 880 (B) 629 (C) 630 (D) 879

(2, 4) in the ratio 3:2, then k equals:

(B) 5

If $z \ne 1$ and $\frac{z^2}{z-1}$ is real, then the point represented by the complex number z lies:

Let P and Q be 3×3 matrices $P \neq Q$. If $P^3 = Q^3$ and $P^2Q = Q^2P$, then determinant of $(P^2 + Q^2)$ is equal to :

The length of the diameter of the circle which touches the x-axis at the point (1, 0) and passes through the

(C) $\frac{6}{5}$

Let $X = \{1, 2, 3, 4, 5\}$. The number of different ordered pairs (Y, Z) that can formed such that

(D) - 1

(D) $\frac{5}{3}$

(A) either on the real axis or on a circle passing through the origin.

(B) 1

(B) $\frac{3}{5}$

(C) either on the real axis or on a circle not passing through the origin.

(B) on a circle with centre at the origin.

(D) on the imaginary axis.

8.

9.

10.

11.

(A) - 2

(A) $\frac{10}{3}$

point (2, 3) is:

Answers Key

(B) 1.

2. (D)

3. (A)

4. (D)

5. (B)

6. (C) **7.** (D)

8. (A)

9. (C) **10**. (A) **11**. (B) **12**. (D)

13. (C) **14**. (B)

15. (B)