Total No. of Questions: 40]

Total No. of Printed Pages: 7]

June/July, 2011

ELECTRONICS

Time: 3 Hours 15 Minutes]

[Max. Marks : 90

Note: i) The question paper has four Parts A, B, C & D.

- ii) Question No. 23 in Part C and Question No. 32 in Part D are from practicals.
- iii) Read the instructions given for each Part.

PART - A

Note: Answer all questions.

 $10 \times 1 = 10$

- 1. Draw the symbol of a PNP transistor.
- 2. Calculate the voltage gain of an amplifier if a 10mV input generates 1V output.
- 3. Write the expression for voltage gain with positive feedback.
- 4. Define Slew rate.
- 5. Between LC and RC oscillators, which is preferred for generating high frequencies?
- 6. What is an Antenna?
- 7. How many sidebands are present in AM wave?

[Turn over

- 8. Mention any one universal gate.
- 9. What is a pair in K-map?
- 10. Expand LAN.

. [-]

PART - B

Note: Answer any ten questions.

 $10 \times 2 = 20$

- 11. What are the advantages of a transistor over a triode vacuum tube?
- 12. Draw the frequency response of a CE Amplifier. Mention 3 dB line.
- 13. An amplifier has bandwidth of 100 kHz and voltage gain of 50. What will be the new bandwidth and gain if 2% negative feedback is introduced?
- 14. Write any four characteristics of an ideal Op-Amp.
- 15. Write the differences between an Amplifier and an Oscillator.
- 16. Define:
 - a) Skip distance
 - b) Skip zone.
- 17. The amplitude of carrier wave is 10 V and modulation index is 0.8. Calculate the amplitude of sidebands.
- 18. What are the limitations of AM?
- 19. Convert the given expression $Y = A + \overline{B}$ into canonical SOP form.
- 20. Using XOR gates convert $1011_{\{G\}}$ to binary.
- 21. What are combinational and sequential logic circuits?
- 22. Mention few uses of computer networks.

PART - C

Answer the following question :

 $1 \times 4 = 4$

23. Using the following data, calculate the theoretical and experimental values of frequency of Wein-Bridge Oscillator:

S.No.	R	C.	T	Frequency		
	(Ω)	(μF)	(ms)	Theoretical	Experimental	
1	330	0.1	0.2	·	141	
2 ·	470	0.1	0.3	· ·		

$$(R_1 = R_2 = R; C_1 = C_2 = C).$$

OR

Using the following data, calculate the experimental and theoretical values of voltage gain for an inverting Op-Amp.

$$V_{in} = 1 V$$

S.No.	R_1 in	R_f in	V_o in	Voltage gain	
	(kΩ)	$(k\Omega)$	volts	Theoretical	Experimental
1	4.7	12	- 2 ·6	3	
2	6∙8	15	- 2.3		

II. Answer any five questions:

 $5 \times 4 = 20$

24. Draw the output characteristics of transistor in CE mode. Write the biasing conditions in different operating regions.

[Turn over

- 25. In a single stage CE Amplifier $R_1 = 50 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, $R_C = 3 \cdot 3 \text{ k}\Omega$, $R_E = 1 \text{ k}\Omega$, $R_L = 2 \text{ k}\Omega$, $V_{CC} = 10 \text{ V}$ and $\beta = 100$. Given $r_e^{\ /} = \frac{26 \text{ mV}}{I_E}$, $V_{BE} = 0.7 \text{ V}$. Calculate r_{in} , r_o , A_v and A_p .
- 26. Derive an expression for the input impedance of a voltage series negative feedback amplifier.
- 27. What is a differentiator? Derive an expression for the output voltage.
- 28. Design an inverting adder using Op-Amp, whose output expression is $V_o = -(4V_1 + 3V_2 10V_3), \text{ where } R_f = 100 \text{ k}\Omega.$
- 29. What is a tank circuit? Explain how oscillations are produced.
- 30. An FM wave is given by $V = 20 \sin(4 \times 10^8 t + 5 \sin 2000 t)$.

Calculate:

- i) Carrier frequency
- ii) Modulating frequency
- iii) Modulation index
- iv) Frequency deviation.

31. Explain the function of each block of digital computer with a neat block diagram.

PART - D

I. Answer the following question:

6

32. Describe an experiment to study the frequency response curve of a transistor CC-amplifier.

OR

Describe an experiment to study Op-Amp subtractor. Draw the pin diagram of IC 741.

II. Answer any five questions:

 $5 \times 6 = 30$

33. a) Explain the working of CE amplifier.

4

- b) The voltage across collector resistance $R_C=2\cdot 2\,\mathrm{k}\Omega$ is 6V. Calculate the value of I_B and I_C if $\beta=100$.
- 34. a) Explain the working of direct coupled amplifier and draw the frequency response curve.

[Turn over

	b)	Differentiate between single stage CE amplifier and mutistage
-	ŗ	amplifier. 2
35.	a)	With a neat circuit diagram, explain the working of an RC
		Phase-shift oscillator. Write the expression for the frequency of
		oscillation. 4
	b)	What is a difference amplifier? Write its output voltage
		expression. 2
36 .	a)	Draw the block diagram of AM transmitter and explain briefly. 4
	ъ)	Using Op-Amp draw the buffer circuit. 2
37.	a)	Distinguish between AM and FM. 4
	b)	Give the equivalent circuit of a quartz crystal. 2
38.	a)	Explain the working of RS flip-flop using NAND gates. Write its
	•	truth table. 4
	ž.	
	b)	Write the logic symbol and truth table of NOR gate. 2

39. a) Using K-map simplify the expression

 $F(A,B,C,D) = \sum m(0,1,2,3,6,10,14)$

Draw the logic circuit for the simplified expression using basic gates.

b) Convert 25 7₁₀ into BCD.

:2

40. a) Draw the block diagram of a TV receiver.

- 4
- b) What are (i) transponder and (ii) uplink signal?