11.1

Chapter 11

Radiation

Dipole Radiation

11.1.1 What is Radiation?

In Chapter 9 we discussed the propagation of plane electromagnetic waves through various
media, but I did not tell you how the waves got started in the first place. Like all electro-
magnetic fields, their source is some arrangement of electric charge. But a charge at rest
does not generate electromagnetic waves; nor does a steady current. It takes accelerating
charges, and changing currents, as we shall see. My purpose in this chapter is to show you
how such configurations produce electromagnetic waves—that is, how they radiate.

Once established, electromagnetic waves in vacuum propagate out “to infinity,” carrying
energy with them; the signature of radiation is this irreversible flow of energy away from
the source. Throughout this chapter I shall assume the source is localized' near the origin.
Imagine a gigantic spherical shell, out at radius r (Fig. 11.1); the total power passing out
through this surface is the integral of the Poynting vector:

P(r)zfs-dazlf(ExB).da. (11.1)
10

The power radiated is the limit of this quantity as r goes to infinity:

Pryg = rgrgo P(r). (11.2)

This is the energy (per unit time) that is transported out to infinity, and never comes back.

Now, the area of the sphere is 4712, so for radiation to occur the Poynting vector must
decrease (at large r) no faster than 1/r2 (if it went like 1 /r3, for example, then P (r) would
go like 1/r, and Pr,q would be zero). According to Coulomb’s law, electrostatic fields
fall off like 1/r2 (or even faster, if the total charge is zero), and the Biot-Savart law says

1For nonlocalized sources, such as infinite planes, wires, or solenoids, the whole concept of “radiation” must
be reformulated—see Prob. 11.24.
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Figure 11.1

that magnetostatic fields go like 1/r2 (or faster), which means that § ~ 1 /r*, for static
configurations. So static sources do not radiate. But Jefimenko’s equations (10.29 and
10.31) indicate that rime-dependent fields include terms (involving p and J) that go like
1/r; itis these terms that are responsible for electromagnetic radiation.

The study of radiation, then, involves picking out the parts of E and B that go like 1/r at
large distances from the source, constructing from them the 1/r2 term in S, integrating over
a large spherical® surface, and taking the limit as » — oo. I'll carry through this procedure
first for oscillating electric and magnetic dipoles; then, in Sect. 11.2, we’ll consider the
more difficult case of radiation from an accelerating point charge.

11.1.2 Electric Dipole Radiation

Picture two tiny metal spheres separated by a distance d and connected by a fine wire
(Fig. 11.2); at time ¢ the charge on the upper sphere is g(r), and the charge on the lower
sphere is —q (7). Suppose that we drive the charge back and forth through the wire, from
one end to the other, at an angular frequency w:

q(t) = qo cos(wt). (11.3)
The result is an oscillating electric dipole:3
P(?) = pocos(wt) 2, (11.4)

where
Po = qod

is the the maximum value of the dipole moment.

21t doesn’t have to be a sphere, of course, but this makes the calculations a lot easier.

e might occur to you that a more natural model would consist of equal and opposite charges mounted on a
spring, say, so that g is constant while d oscillates, instead of the other way around. Such a model would lead
to the same result, but there is a subtle problem in calculating the retarded potentials of a moving point charge.
which I would prefer to save for Sect. 11.2.
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Figure 11.2

The retarded potential (Eq. 10.19) is

Vet = 1 [qo coslo(t —21/c)]  gocoslo(t —a_/c)] } ’ (11.5)
4reg v 2
where, by the law of cosines,
24 =\/r2q:rdcos6+(d/2)2. (11.6)

Now, to make this physical dipole into a perfect dipole, we want the separation distance to
be extremely small:

approximation1: d < r. (11.7)

Of course, if d is zero we get no potential at all; what we want is an expansion carried to
first order in d. Thus

d
)Li%’r<1:|:—cose>. (11.8)
2r
It follows that
1 1 d
—S—(li—cos&), 11.9)
R ¢ 2r

and
wd
coslw(t —24/c)] = cos [a)(t —r/c) £ oA cos Gjl
c
wd . . (wd
= cos[w(t —r/c)]cos | — cosf | Fsin[w(t — r/c)]sin | — cosb | .
2c 2¢
In the perfect dipole limit we have, further,

approximation 2 : d <« 3. (11.10)
w
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(Since waves of frequency w have a wavelength A = 27 ¢/w, this amounts to the requirement
d < A.) Under these conditions

cos[w(t —2+/c)] = coslw(t —r/0)] F C;—j cos@sinfw(t — r/o)]. (11.11)

Putting Egs. 11.9 and 11.11 into Eq. 11.5, we obtain the potential of an oscillating
perfect dipole:

pocosé

V(r,b,1) = {—?sin[a)(t—r/c)]—l— %cos[a)(t —r/c)]} . (11.12)

dmegr
In the static limit (@ — 0) the second term reproduces the old formula for the potential of

a stationary dipole (Eq. 3.99):
V= pocosé

T dmegr?’

This is not, however, the term that concerns us now; we are interested in the fields that
survive at large distances from the source, in the so-called radiation zone:*

approximation 3 : r > i. (11.13)
w

(Or, in terms of the wavelength, » >> A.) In this region the potential reduces to

V(r,0,t) = — > sinfo(t —r/c)]. (11.14)

dmege

pow (cos 6

Meanwhile, the vector potential is determined by the current flowing in the wire:

d

1S

I(t) = Z = —qowsin{wt) Z. (11.15)

Y

t

Referring to Fig. 11.3,

A, t) = (11.16)

o /d/2 —gow sin[w (¢ —”f/C)]id

4 —d/2 2

Because the integration itself introduces a factor of d, we can, to first order, replace the
integrand by its value at the center:

Hopow

A(r6,1)=— Ay

sinfw(t — r/o)] z. (11.17)

(Notice that whereas I implicitly used approximations 1 and 2, in keeping only the first
order in d, Eq. 11.17 is not subject to approximation 3.)

4Note that approximations 2 and 3 subsume approximation 1; all together, we have d < A < r.
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From the potentials, it is a straightforward matter to compute the fields.

oV . 10V 4
VV=—r+4+-——
ar r 06

=P cos —l sinfw(t —r/c)] — had cos[w(t — r/c)]) r— ﬂ sin[w(t — r/c)]é
4mege r2 re r2

12

> cos[w(t — r/o)] L.

pow?® [ cosb
Amegc? \ r

(I dropped the first and last terms, in accordance with approximation 3.) Likewise,

A popow?

at Amr cos[w(t — r/c)l(cos6 £ —sin b §),

and therefore

0A 2 (sin6 A
E=_vy_ 28— _ROPOY (SO osfw — r/o)]. (11.18)
at 4 r
Meanwhile
1[a 0A, ]
VXA =-|-—(rde) —
x r |:3r(r 2 26 ] ¢
ino )
— _Hopo® [2 sin 8 cos[w(t — r/c)] + b sin[w(t — r/c)]] ¢.
dmr c r

The second term is again eliminated by approximation 3, so

2 .
B=VxA= _ Hopow <ﬂ> cos[a)(t—r/c)]$. (11.19)
4mc r
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Equations 11.18 and 11.19 represent monochromatic waves of frequency o traveling in
the radial direction at the speed of light. E and B are in phase, mutually perpendicular, and
transverse; the ratio of their amplitudes is Eq/By = c. All of which is precisely what we
expect for electromagnetic waves in free space. (These are actually spherical waves, not
plane waves, and their amplitude decreases like 1/r as they progress. But for large r, they
are approximately plane over small regions—ijust as the surface of the earth is reasonably
flat, locally.)

The energy radiated by an oscillating electric dipole is determined by the Poynting
vector:

2

2 .
s= L (ExB =M {p‘)“) <ﬂ> cosw(r — r/c)]} i (11.20)
1o c 4 r

The intensity is obtained by averaging (in time) over a complete cycle:

2,4\ 2
Hopyw sin“ 6
S) = ——F. 11.21

) ( 3R2nlc ) r2 ¢ )
Notice that there is no radiation along the axis of the dipole (here sin & = 0); the intensity
profile’ takes the form of a donut, with its maximum in the equatorial plane (Fig. 11.4).
The total power radiated is found by integrating (S) over a sphere of radius r:

jopie / sin? @ popga’

(11.22)

P)= [(S)-da= 2sin0dodep = .
(P /<) a 32 ;2 s ¢ 127c

Figure 11.4

5The “radial” coordinate in Fig. 11.4 represents the magnitude of (S) (at fixed r), as a function of ¢ and ¢.
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It is independent of the radius of the sphere, as one would expect from conservation of
energy (with approximation 3 we were anticipating the limit » — 00).

Example 11.1

The sharp frequency dependence of the power formula is what accounts for the blueness of
the sky. Sunlight passing through the atmosphere stimulates atoms to oscillate as tiny dipoles.
The incident solar radiation covers a broad range of frequencies (white light), but the energy
absorbed and reradiated by the atmospheric dipoles is stronger at the higher frequencies because
of the w* in Eq. 11.22. Itis more intense in the blue, then, than in the red. It is this reradiated
light that you see when you look up in the sky—unless, of course, you’re staring directly at
the sun.

Because electromagnetic waves are transverse, the dipoles oscillate in a plane orthogonal
to the sun’s rays. In the celestial arc perpendicular to these rays, where the blueness is most
pronounced, the dipoles oscillating along the line of sight send no radiation to the observer
(because of the sin 6 in equation Eq. 11.21); light received at this angle is therefore polarized
perpendicular to the sun’s rays (Fig. 11.5).

Sun's rays ———

This dipole does not

/ radiate to the observer

Figure 11.5

The redness of sunset is the other side of the same coin: Sunlight coming in at a tangent to the
earth’s surface must pass through a much longer stretch of atmosphere than sunlight coming
from overhead (Fig. 11.6). Accordingly, much of the blue has been removed by scattering and
what’s left is red.

Problem 11.1 Check that the retarded potentials of an oscillating dipole (Egs. 11.12 and 11.17)
satisfy the Lorentz gauge condition. Do not use approximation 3.

Problem 11.2 Equation 11.14 canbe expressed in “coordinate-free” form by writing pg cos 6 =
po - . Do so, and likewise for Eqs. 11.17, 11.18. 11.19, and 11.21.
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Atmosphere (thickness grossly exaggerated)

Sun's
|
rays

Figure 11.6

Problem 11.3 Find the radiation resistance of the wire joining the two ends of the dipole.
(This is the resistance that would give the same average power loss—to heat—as the oscillating
dipole in fact puts out in the form of radiation.) Show that R = 790 (d/2)? Q, where A is the
wavelength of the radiation. For the wires in an ordinary radio (say, d = 5 cm), should you
worry about the radiative contribution to the total resistance?

+q

Figure 11.7

Problem 11.4 A rotating electric dipole can be thought of as the superposition of two oscillating
dipoles, one along the x axis, and the other along the y axis (Fig. 11.7), with the latter out of
phase by 90°:
p = polcos(wt) X + sin(wt) ¥].

Using the principle of superposition and Eqs. 11.18 and 11.19 (perhaps in the form suggested
by Prob. 11.2), find the fields of a rotating dipole. Also find the Poynting vector and the
intensity of the radiation. Sketch the intensity profile as a function of the polar angle 6, and
calculate the total power radiated. Does the answer seem reasonable? (Note that power, being
quadratic in the fields, does nor satisfy the superposition principle. In this instance, however,
it seems to. Can you account for this?)
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Figure 11.8

11.1.3 Magnetic Dipole Radiation

Suppose now that we have a wire loop of radius » (Fig. 11.8), around which we drive an
alternating current:
I(t) = Ipcos(wt). (11.23)

This is a model for an oscillating magnetic dipole,
m() = b’ I(t) % = mocos(wt) Z, (11.24)

where
mo = mb* I (11.25)

is the maximum value of the magnetic dipole moment.
The loop is uncharged, so the scalar potential is zero. The retarded vector potential is

A, 1) = i‘_j‘;/ IOCOS[“)EZ —N . (11.26)

For a point r directly above the x axis (Fig. 11.8), A must aim in the y direction, since the
x components from symmetrically placed points on either side of the x axis will cancel.
Thus

s¢'d¢’ (11.27)

Lb . ™ t—
T =

(cos ¢’ serves to pick out the y-component of dl'). By the law of cosines,

2= \/r2+b2 — 2rbcos i,
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where ¥ is the angle between the vectors r and b:
r=rsinfx+rcosfz, b=bcos¢' x4+ bsing'§.

Sorbcosyr =r-b =rbsinf cos¢’, and therefore

2= \/rz + b2 —2rbsinf cos¢’.
For a “perfect” dipole, we want the loop to be extremely small:
approximation1: » <« r.

To first order in b, then,

i

b
2=y (1 - —sinGcosgb’),

r

)
1 1 b . ,
~=—|1+4+ —sinfcos¢
72 r r
and
- wb ,
cos[w(t —2/c)] = cos [w(t —r/c) + — sinf cos ¢
c

(11.28)

(11.29)

(11.30)

= cos[w(t — r/c)]cos (%b sin @ cos ¢’> —sin[w(t — r/c)] sin (a)_b sin 6 cos d)’) .
c

As before, we also assume the size of the dipole is small compared to the wavelength

radiated: ¢
approximation 2 : 5 < —.
w

In that case,

cos[w(t —2/c)] = cos[w(t —r/c)] — C%b sin @ cos ¢’ sin[ew(t — r/c)].

(11.31)

(11.32)

Inserting Eqs. 11.30 and 11.32 into Eq. 11.27, and dropping the second-order term:

Inb R 27
Ar,nH = lﬁfn(; y/(; {cos[a)(t —r/c)]

+ bsinf cos ¢’ (l coslw(t —r/c)] — % sin[w (¢t — r/c)]) } cos¢’ do’.
r

The first term integrates to zero:

27
/ cos¢' d¢ = 0.
0
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The second term involves the integral of cosine squared:
2n
/ cos’ ¢’ d¢' = .
0

Putting this in, and noting that in general A points in the ti)—direction, I conclude that the
vector potential of an oscillating perfect magnetic dipole is

A, 6,1 =

Homo (sin 8
r

) [lcos[a)(t —r/c)] — -ch sin[w(t — r/c)]} $ (11.33)
r

In the static limit (w = 0) we recover the familiar formula for the potential of a magnetic
dipole (Eq. 5.85)

A 6) = ,uo mo s;ne -
r
In the radiation zone,
c
approximation 3 : r > —, (11.34)
1)
the first term in A is negligible, so
6
A6, 1) = — Um0 (Sm ) sinfw(t — r/c)] §. (11.35)
drc
From A we obtain the fields at large r:
KL 2 6
= — HoT® sm cos|o(t —r/c)] ¢ (11.36)
o 4mc
and
/Lomoa)2 sm [
B=VxA=- cos[w(t — r/c)]9 (11.37)
4mc?

{(Tused approximation 3 in calculating B.) These fields are in phase, mutually perpendicular,
and transverse to the direction of propagation (F), and the ratio of their amplitudes is
Ey/By = c, all of which is as expected for electromagnetic waves. They are, in fact,
remarkably similar in structure to the fields of an oscillating electric dipole (Eqs. 11.18 and
11.19), only this time it is B that points in the 8 direction and E in the ¢ direction, whereas
for electric dipoles it’s the other way around.

The energy flux for magnetic dipole radiation is

1 2 /sinf :.
=—ExB)= Ho {moa) (ﬂ) cos[w(t — r/c)]} r, (11.38)
o c | 4nc r
the intensity is
2, 4\ .2
Hompyw™ \ sin“6
S) = , 11.39
) <327r2c3> r2 r ¢ )
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and the total radiated power is

(p) = Mo’
1273

Once again, the intensity profile has the shape of a donut (Fig. 11.4), and the power radiated

goes like *. There is, however, one important difference between electric and magnetic

dipole radiation: For configurations with comparable dimensions, the power radiated elec-

trically is enormously greater. Comparing Eqgs. 11.22 and 11.40,

Pragnetic _ (ﬂ)z (11.41)
Pelectric poc ' .

(11.40)

where (remember) mg = 7b’Iy, and py = qod. The amplitude of the current in the
electrical case was Iy = gow (Eq. 11.15). Setting d = 7 b, for the sake of comparison, 1 get

2
Pragnetic _ (a)_b) . (11.42)

Pelectric c

Butwb/cis precisely the quantity we assumed was very small (approximation 2), and here it
appears squared. Ordinarily, then, one should expect electric dipole radiation to dominate.
Only when the system is carefully contrived to exclude any electric contribution (as in the
case just treated) will the magnetic dipole radiation reveal itself.

Problem 11.5 Calculate the electric and magnetic fields of an oscillating magnetic dipole
without using approximation 3. [Do they look familiar? Compare Prob. 9.33.] Find the
Poynting vector, and show that the intensity of the radiation is exactly the same as we got using
approximation 3.

Problem 11.6 Find the radiation resistance (Prob. 11.3) for the oscillating magnetic dipole in
Fig. 11.8. Express your answer in terms of A and b, and compare the radiation resistance of
the electric dipole. [Answer: 3 x 105 (b/3)* Q]

Problem 11.7 Use the “duality” transformation of Prob. 7.60, together with the fields of an
oscillating electric dipole (Eqgs. 1.18 and 11.19), to determine the fields that would be produced
by an oscillating “Gilbert” magnetic dipole (composed of equal and opposite magnetic charges,
instead of an electric current loop). Compare Eqs. 11.36 and 11.37, and comment on the result.

11.1.4 Radiation from an Arbitrary Source

In the previous sections we studied the radiation produced by two specific systems: os-
cillating electric dipoles and oscillating magnetic dipoles. Now [ want to apply the same
procedures to a configuration of charge and current that is entirely arbitrary, except that
it is localized within some finite volume near the origin (Fig. 11.9). The retarded scalar
potential is

| -
v(r, ”247160/”’2 Y 4o, (11.43)
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Figure 11.9

where

r=+vrt+r?-2r-r. (11.44)

As before, we shall assume that the field point r is far away, in comparison to the dimensions
of the source:
approximation1: r < r. (11.45)

(Actually, 7’ is a variable of integration; approximation 1 means that the maximum value
of 7', as it ranges over the source, is much less than .) On this assumption,

~ r-r
rEril-—-), (11.46)
-
SO | | /
r-r
Zg?<1+ p ) (11.47)
and »
- T
P(r/,t—’b/c’)ép(r/,t—Z_*_r_).
(4 c

Expanding p as a Taylor series in ¢ about the retarded time at the origin,
h=t— -, (11.48)

we have

ot t —2)c) = p(t, o) + (¥, 1g) (r 'Cr ) +... (11.49)

where the dot signifies differentiation with respect to time. The next terms in the series

would be
1./8-T\*> 1_(¢-\°
2P\ ) P\ )
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We can afford to drop them, provided

< c c c

B/ 1816172 T5/617P
For an oscillating system each of these ratios is ¢/w, and we recover the old approximation
2. In the general case it’s more difficult to interpret Eq. 11.50, but as a procedural matter
approximations 1 and 2 amount to keeping only the first-order terms inr’.

Putting Eqs. 11.47 and 11.49 into the formula for V (Eq. 11.43), and again discarding
the second-order term:

approximation 2 : 7’ (11.50)

~ 1 / / f' / ' ’ i: d / / /
Vi, = —— p, t)dt' +—- | rp,n)de +--— | v'p@, tp)dt|.
4megr r c dt
The first integral is simply the total charge, Q, at time #y. Because charge is conserved,
however, @ is actually independent of time. The other two integrals represent the electric
dipole moment at time #y. Thus

V(r,t);L[Qer'pz(“’) +r'p(t°)}. (11.51)
dmeg | ¥ r rc

In the static case, the first two terms are the monopole and dipole contributions to the
multipole expansion for V; the third term, of course, would not be present.
Meanwhile, the vector potential is

A, 1) = %"/Mﬁ. (11.52)

As you’ll see in a moment, to first order in 7’ it suffices to replace 2 by r in the integrand:
~ MO ’ '
A(r, 1) = —/J(r ,t)dt'. (11.53)
4y

According to Prob. 5.7, the integral of J is the time derivative of the dipole moment, so

A(r. 1) 5_;1‘)(;0)' (11.54)

Now you see why it was unnecessary to carry the approximation of 2 beyond the zeroth
order (» = r): p is already first order in r/, and any refinements would be corrections of
second order.

Next we must calculate the fields. Once again, we are interested in the radiation zone
(that is, in the fields that survive at large distances from the source), so we keep only those
terms that go like 1/7:

approximation 3 : discard 1/ r? terms in E and B. (11.55)
For instance, the Coulomb field,
E 1 0.
= —=Tr,

4meg r?
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coming from the first term in Eq. 11.51, does not contribute to the electromagnetic radiation.
In fact, the radiation comes entirely from those terms in which we differentiate the argument
fo. From Eq. 11.48 it follows that

1
Vip= —-Vr =—F,
c c
and hence
1 t-p@ 1 I P 1 I plro)] .
VY~V r-plo)| I - p(to) Vip = — [r-po)l o
4mey rc e rc 47 egc? ¥
Similarly,
V x A2 POV )] = L [(Vig) x Blto)] = — 2L [F x plio)],
4rr 4rr 4mre
while .
9A _ o Bll0)
a  4x v
So
E(r, 1) = 2216 B)F — Bl = L [F x (F x )], (11.56)
4y 4y

where p is evaluated at time fo =t — r/c, and

B(r,1) =~ [} x . (11.57)
4rre
In particular, if we use spherical polar coordinates, with the z axis in the direction of
p(o), then
p (¢ inf\ a
E(r.6, 1 = PPt <—Sm ) 4,
4 r
(11.58)
p (¥ iné\
B(r,6, 1) = 100 <—Sm > é.
4mc r
The Poynting vector is
1 po .. o fsin?6Y .
S= —(ExB)= [D(to)] £, (11.59)
o 1672¢ r2
and the total radiated power is
po 2
PE/S-da: . (11.60)
6rc

Notice that E and B are mutually perpendicular, transverse to the direction of propagation
(F), and in the ratio E/B = c, as always for radiation fields.
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Example 11.2
(a) In the case of an oscillating electric dipole,
p(t) = pocos(at), p(t) = —w? pycos(at),

and we recover the results of Sect. 11.1.2.

(b) For a single point charge g, the dipole moment is
p() = qd(),
where d is the position of g with respect to the origin. Accordingly,
p@) = qa(),
where a is the acceleration of the charge. In this case the power radiated (Eq. 11.60) is

2,2
a
p- e

11.61
6rc ( )

This is the famous Larmor formula; I'll derive it again, by rather different means, in the next
section. Notice that the power radiated by a point charge is proportional to the square of its
acceleration.

What I have done in this section amounts to a multipole expansion of the retarded
potentials, carried to the lowest order in r/ that is capable of producing electromagnetic
radiation (fields that go like 1/r). This turns out to be the electric dipole term. Because
charge is conserved, an electric monopole does not radiate—if charge were not conserved,
the first term in Eq. 11.51 would read

1 Qo)

drey 1

Vmono -

and we would get a monopole field proportional to 1/7:

1 Q)

dmwepc v

Emono = r.

You might think that a charged sphere whose radius oscillates in and out would radiate, but
it doesn’t—the field outside, according to Gauss’s law, is exactly (Q /4w eor?)t, regardless
of the fluctuations in size. (In the acoustical analog, by the way, monopoles do radiate:
witness the croak of a bullfrog.)

If the electric dipole moment should happen to vanish (or, at any rate, if its second time
derivative is zero), then there is no electric dipole radiation, and one must look to the next
term: the one of second order in r’. As it happens, this term can be separated into two parts,
one of which is related to the magnetic dipole moment of the source, the other to its electric
quadrupole moment. (The fomier is a generalization of the magnetic dipole radiation we
considered in Sect. 11.1.3.) If the magnetic dipole and electric quadrupole contributions
vanish, the (+')® term must be considered. This yields magnetic quadrupole and electric
octopole radiation . .. and so it goes.
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Problem 11.8 Apply Eqgs. 11.59 and 11.60 to the rotating dipole of Prob. 11.4. Explain any
apparent discrepancies with your previous answer.

Problem 11.9 An insulating circular ring (radius b) lies in the x y plane, centered at the origin.
It carries a linear charge density A = Aq sin ¢, where A¢ is constant and ¢ is the usual azimuthal
angle. The ring is now set spinning at a constant angular velocity @ about the z axis. Calculate
the power radiated.

Problem 11.10 An electron is released from rest and falls under the influence of gravity. In
the first centimeter, what fraction of the potential energy lost is radiated away?

z P
2y
+pg cos
r
0 n_
d y
—pg cos thV

Figure 11.10

Problem 11.11 As a model for electric quadrupole radiation, consider two oppositely oriented
oscillating electric dipoles, separated by a distance d, as shown in Fig. 11.10. Use the results
of Sect. 11.1.2 for the potentials of each dipole, but note that they are not located at the origin.
Keeping only the terms of first orderin d:

(a) Find the scalar and vector potentials.
(b) Find the electric and magnetic fields.

(c) Find the Poynting vector and the power radiated. Sketch the intensity profile as a function
of .

Problem 11.12 A current /(1) flows around the circular ring in Fig. 11.8. Derive the general
formula for the power radiated (analogous to Eq. 11.60), expressing your answer in terms of
the magnetic dipole moment (m(z)) of the loop. [Answer: P = poi?/6mc?]
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Point Charges

11.2.1 Power Radiated by a Point Charge

In Chapter 10 we derived the fields of a point charge ¢ in arbitrary motion (Egs. 10.65 and
10.66):

Er, )= -1 2 (= vDutax@xa)l (11.62)
dreg (2 u)3
where u = ¢4 — v, and
1.
B(r,:) = Ea x E(r, 1). (11.63)

The first term in Eq. 11.62 is called the velocity field, and the second one (with the triple
cross-product) is called the acceleration field.

The Poynting vector is
1 1 . | O
S=—ExB)=—[Ex#xE)]=—[E2— (*-E)E] (11.64)
Ho Hoc Moc

However, not all of this energy flux constitutes radiation; some of it is just field energy
carried along by the particle as it moves. The radiated energy is the stuff that, in effect,
detaches itself from the charge and propagates off to infinity. (It’s like flies breeding on a
garbage truck: Some of them hover around the truck as it makes its rounds; others fly away
and never come back.) To calculate the total power radiated by the particle at time #,, we
draw a huge sphere of radius » (Fig. 11.11), centered at the position of the particle (at time
1), wait the appropriate interval

f—t =" (11.65)

c

for the radiation to reach the sphere, and at that moment integrate the Poynting vector over
the surface.® I have used the notation t, because, in fact, this is the retarded time for all
points on the sphere at time 7.

Now, the area of the sphere is proportional to 22, so any term in S that goes like 1 %
will yield a finite answer, but terms like 1/23 or 1/2* will contribute nothing in the limit
2 — 00. For this reason only the acceleration fields represent true radiation (hence their
other name, radiation fields):

1
d7eg (2 - 1)’

[2 x (u x a)]. (11.66)

Erad =

5Note the subtle change in strategy here: In Sect. 11.1 we worked from a fixed point (the origin), but here it is
more appropriate to use the (moving) location of the charge. The implications of this change in perspective will
become clearer in a moment.
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Figure 11.11

The velocity fields carry energy, to be sure, and as the charge moves this energy is dragged
along—but it’s not radiation. (It’s like the flies that stay with the garbage truck.) Now E,q
is perpendicular to %, so the second term in Eq. 11.64 vanishes:

1
Std = —EZ 4. (11.67)
Ta woc rad

If the charge is instantaneously at rest (at time #,), then u = c%, and

N ~ M N A
Eradzmicz;[ax(axa)]:——4;i[(a~a)a—a]. (11.68)
In that case
1 kg2 5 . 5. pogia® [sin?@) .
S — il — . — 11.69
ad = e (471/;) [a” — G-a)]2 16m2c 2 ) * ( )

where 6 is the angle between 2 and a. No power is radiated in the forward or backward
direction—rather, it is emitted in a donut about the direction of instantaneous acceleration
(Fig. 11.12).

Figure 11.12
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The total power radiated is evidently

2.2 )
sin” @
P=¢Srad.dazﬂoqa / azsinedé’d(t),
1672¢ 22

or

_ pog’a?

P
6mc

(11.70)

This, again, is the Larmor formula, which we obtained earlier by another route (Eq. 11.61).

Although I derived them on the assumption that v = 0, Egs. 11.69 and 11.70 actually
hold to good approximation as long as v <« ¢. An exact treatment of the case v # 0 is
more difficult,” both for the obvious reason that E,q is more complicated, and also for the
more subtle reason that Sp,4, the rate at which energy passes through the sphere, is not the
same as the rate at which energy left the particle. Suppose someone is firing a stream of
bullets out the window of a moving car (Fig.11.13). The rate N, at which the bullets strike
a stationary target is not the same as the rate N, at which they left the gun, because of the
motion of the car. In fact, you can easily check that N, = (1 —v/c) NV, if the car is moving

towards the target, and
rov
N, = (1 _ _> N,
c

for arbitrary directions (here v is the velocity of the car, c is that of the bullets—relative to
the ground—and % is a unit vector from car to target). In our case, if dW/dr is the rate at
which energy passes through the sphere at radius #, then the rate at which energy left the
charge was

dW _ dwjdr _ (a-u) dw

= e 11.71
dt, dt, 0t dt ( )

ac

Figure 11.13

7In the context of special relativity, the condition v = 0 simply represents an astute choice of reference system.
with no essential loss of generality. If you can decide how P transforms, you can deduce the general (Liénard)
result from the v = 0 (Larmor) formula (see Prob. 12.69).
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(I'used Eq. 10.71 to express dt,/3¢.) But

2-u a-v

ac (&

’

which is precisely the ratio of N, to N;; it’s a purely geometrical factor (the same as in the
Doppler effect).

The power radiated by the particle into a patch of area 2% sin 8 df d¢p = 2> d<2 on the
sphere is therefore given by

I 5 5 ¢ hx@xa)

dP_(dwll) (11.72)
d@  \ac /poe ™ T 1672¢g (R-u)pS '

where d2 = sin6 df d¢ is the solid angle into which this power is radiated. Integrating
over ¢ and ¢ to get the total power radiated is no picnic, and for once I shall simply quote

the answer:
2
) ) (11.73)

where y = 1/y/1 — v2/c2. This is Liénard’s generalization of the Larmor formula (to
which it reduces when v « ¢). The factor ¥® means that the radiated power increases
enormously as the particle velocity approaches the speed of light.

vXxa

6mc

2,,6
P:,uol]V (az_
c

Example 11.3

Suppose v and a are instantaneously collinear (at time #-), as, for example, in straight-line
motion. Find the angular distribution of the radiation (Eq. 11.72) and the total power emitted.
Solution: In this case (u x a) = ¢(% x a), so

AP g2 hx (xa)?

dQ  1672¢g (c~%-v)>

Now

2x(Rxa)y=(h-a)2—a, solpx Rxa)=da- (% a)
In particular, if we let the z axis point along v, then

dpP ,uoq2a2 sin2 g
dQ  16n2c (1 - Bcos0)>’

(11.74)

where 8 = v/c. This is consistent, of course, with Eq. 11.69, in the case v = 0. However, for
very large v (8 ~ 1) the donut of radiation (Fig. 11.12) is stretched out and pushed forward
by the factor (1 — S cos 0) >, as indicated in Fig. 11.14. Although there is still no radiation in
precisely the forward direction, most of it is concentrated within an increasingly narrow cone
about the forward direction (see Prob. 11.15).
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X

Figure 11.14

The total power emitted is found by integrating Eq. 11.74 over all angles:

o [9P 40 ;,Loqzaz/ sin? ¢
(1 — Bcos)’

= sinf@dode.
aQ 1672¢ ¢

The ¢ integral is 27; the @ integral is simplified by the substitution x = cos 6:

P=M042a2/+1 (1 —x?)
87c Jo1 (1-Bx)

Integration by parts yields %(l - ;‘32)_3, and I conclude that

_ nog’a’y®
6rc

P (11.75)
This result is cofisistent with the Liénard formula (Eq. 11.73), for the case of collinear v and a.
Notice that the angular distribution of the radiation is the same whether the particle is accel-
erating or decelerating; it only depends on the square of a, and is concentrated in the forward
direction (with respect to the velocity) in either case. When a high speed electron hits a metal
target it rapidly decelerates, giving off what is called bremsstrahlung, or “braking radiation.”
What I have described in this example is essentially the classical theory of bremsstrahlung.

Problem 11.13

(a) Suppose an electron decelerated at a constant rate a from some initial velocity vy down
to zero. What fraction of its initial kinetic energy is lost to radiation? (The rest is absorbed
by whatever mechanism keeps the acceleration constant.) Assume vy < ¢ so that the Larmor
formula can be used.

(b) To get a sense of the numbers involved, suppose the initial velocity is thermal (around 10°
m/s) and the distance the electron goes is 30 A. What can you conclude about radiation losses
for the electrons in an ordinary conductor?

Problem 11.14 In Bohr’s theory of hydrogen, the electron in its ground state was supposed to
travel in a circle of radius 5 x 10™11m, held in orbit by the Coulomb attraction of the proton.
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According to classical electrodynamics, this electron should radiate, and hence spiral in to
the nucleus. Show that v < ¢ for most of the trip (so you can use the Larmor formula), and
calculate the lifespan of Bohr’s atom. (Assume each revolution is essentially circular.)

Problem 11.15 Find the angle Oiax at which the maximum radiation is emitted, in Ex. 11.3
(see Fig. 11.14). Show that for ultrarelativistic speeds (v close to ¢), Omax = /(1 — B /2.
What is the intensity of the radiation in this maximal direction (in the ultrarelativistic case),
in proportion to the same quantity for a particle instantaneously at rest? Give your answer in
terms of y.

Figure 11.15 Figure 11.16

Problem 11.16 In Ex. 11.3 we assumed the velocity and acceleration were (instantaneously,
at least) collinear. Carry out the same analysis for the case where they are perpendicular.
Choose your axes so that v lies along the z axis and a along the x axis (Fig. 11.15), so that
v=via=ax, and% =sinfcos¢ X + sin0sing § + cos@ 2. Check that P is consistent
with the Liénard formula. [Answer:

dP _ uog’a® [(1 = Boos)? — (1 — pAsin*Gcos¢] _ poqa’y*
dQ  16x2c (1 — Bcosh)d ' T 6me

For relativistic velocities (8 ~ 1) the radiation is again sharply peaked in the forward direction
(Fig. 11.16). The most important application of these formulas is to circular motion—in this
case the radiation is called synchrotron radiation. For a relativistic electron the radiation
sweeps around like a locomotive’s headlight as the particle moves. ]

11.2.2 Radiation Reaction

According to the laws of classical electrodynamics, an accelerating charge radiates. This
radiation carries off energy, which must come at the expense of the particle’s kinetic energy.
Under the influence of a given force, therefore, a charged particle accelerates less than a
neutral one of the same mass. The radiation evidently exerts a force (Frag) back on the
charge—a recoil force, rather like that of a bullet on a gun. In this section we’ll derive the



466 CHAPTER 11. RADIATION

radiation reaction force from conservation of energy. Then in the next section I'll show
you the actual mechanism responsible, and derive the reaction force again in the context of
a simple model.

For a nonrelativistic particle (v < ¢) the total power radiated is given by the Larmor
formula (Eq. 11.70):
_ g’
- 6me
Conservation of energy suggests that this is also the rate at which the particle loses energy,
under the influence of the radiation reaction force Fq:

P (11.76)

tog2a’

11.77
6mc 17D

Frag-v=—

[ say “suggests” advisedly, because this equation is actually wrong. For we calculated the
radiated power by integrating the Poynting vector over a sphere of “infinite” radius; in this
calculation the velocity fields played no part, since they fall off too rapidly as a function of 2
to make any contribution. But the velocity fields do carry energy—they just don’t transport
it out to infinity. As the particle accelerates and decelerates energy is exchanged between
it and the velocity fields, at the same time as energy is irretrievably radiated away by the
acceleration fields. Equation 11.77 accounts only for the latter, but if we want to know the
recoil force exerted by the fields on the charge, we need to consider the total power lost
at any instant, not just the portion that eventually escapes in the form of radiation. (The
term “radiation reaction” is a misnomer. We should really call it the field reaction. In fact.
we’ll soon see that Fp,q is determined by the time derivative of the acceleration and can be
nonzero even when the acceleration itself is instantaneously zero, so that the particle is not
radiating.)

The energy lost by the particle in any given time interval, then, must equal the energy
catried away by the radiation plus whatever extra energy has been pumped into the velocity
fields.® However, if we agree to consider only intervals over which the system returns to its
initial state, then the energy in the velocity fields is the same at both ends, and the only ner
loss is in the form of radiation. Thus Eq. 11.77, while incorrect instantaneously, is valid on

the average:
t 2 I
/ Frad - vdi = —5‘63‘1—/ a*dt, (11.78)
n ]

T c

with the stipulation that the state of the system is identical at t| and t;. In the case of periodic
motion, for instance, we must integrate over an integral number of full cycles.” Now, the

8Actually, while the total field is the sum of velocity and acceleration fields, E = Ey + E,, the energy is
proportional to E 2= Eg +2E, - Eq + Et% and contains three terms: energy stored in the velocity fields alone
(E 3), energy radiated away (Eg), and a cross term E,, - E,. For the sake of simplicity, I'm referring to the
combination (ELz, + 2Ey - Ey) as “energy stored in the velocity fields” These terms go like 1/2% and 1/27.
respectively, so neither one contributes to the radiation.

9For nonperiodic motion the condition that the energy in the velocity fields be the same at 71 and t, is more
difficult to achieve. It is not enough that the instantaneous velocities and accelerations be equal, since the fields
farther out depend on v and a at earlier times. In principle, then, v and a and all higher derivatives must be
identical at #1 and #,. In practice, since the velocity fields fall off rapidly with 2, it is sufficient that v and a be the
same over a brief interval prior to #{ and ;.
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right side of Eq. 11.78 can be integrated by parts:

5] 5]
/ azdtzf <ﬂ>-<d—v> dr:<v~ﬂ>
f n \dt dt dt

The boundary term drops out, since the velocities and accelerations are identical at #; and
1, so Eq. 11.78 can be written equivalently as

t 2
/ (Frad - ’g’q a) vdt = 0. (11.79)
1 T C

Equation 11.79 will certainly be satisfied if

5] t d2V
[
y dt

3

MOQZ
6mc

Frag = a. (11.80)

This is the Abraham-Lorentz formula for the radiation reaction force.

Of course, Eq. 11.79 doesn’t prove Eq. 11.80. It tells you nothing whatever about the
component of Fr,g perpendicular to v; and it only tells you the time average of the parallel
component—the average, moreover, over very special time intervals. As we’ll see in the
next section, there are other reasons for believing in the Abraham-Lorentz formula, but for
now the best that can be said is that it represents the simplest form the radiation reaction
force could take, consistent with conservation of energy.

The Abraham-Lorentz formula has disturbing implications, which are not entirely un-
derstood nearly a century after the law was first proposed. For suppose a particle is subject
to no external forces; then Newton’s second law says

2
Fraa = Hog a =ma,
6mc
from which it follows that

a(t) = ape'’", (11.81)

where 5
=R (11.82)

6mme

(In the case of the electron, T = 6 x 107%*s.) The acceleration spontaneously increases
exponentially with time! This absurd conclusion can be avoided if we insist that ag = 0,
but it turns out that the systematic exclusion of such runaway solutions has an even more
unpleasant consequence: If you do apply an external force, the particle starts to respond
before the force acts! (See Prob. 11.19.) This acausal preacceleration jumps the gun
by only a short time 7; nevertheless, it is (to my mind) philosophically repugnant that the
theory should counteiance it at all.'”

10These difficulties persist in the relativistic version of the Abraham-Lorentz equation, which can be derived
by starting with Liénard’s formula instead of Larmor’s (see Prob. 12.70). Perhaps they are telling us that there
can be no such thing as a point charge in classical electrodynamics, or maybe they presage the onset of quantum
mechanics. For guides to the literature see Philip Pearle’s chapter in D. Teplitz, ed., Electromagnetism: Paths to
Research (New York: Plenum. 1982) and F. Rohrlich, Am. J. Phvs. 65. 1051 (1997).
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Example 114

Calculate the radiation damping of a charged particle attached to a spring of natural frequency
wp, driven at frequency .

Solution: The equation of motion is
.. 2
m¥ = Fopring + Frad + Friving = —mwyx + mt¥ + Fariving.-
With the system oscillating at frequency o,

x() = xgcos(wt + 8),

)
¥ = —wi.
Therefore
mi +myx 4+ mw(z)x = Friving» (11.83)
and the damping factor y is given by
y = w’T. (11.84)

[When I wrote Fyamping = —ymv, back in Chap. 9 (Eq. 9.152), [ assumed for simplicity that
the damping was proportional to the velocity. We now know that radiation damping, at least.
is proportional to #. But it hardly matters: for sinusoidal oscillations any even number of
derivatives of v would do, since they’re all proportional to v.]

Problem 11.17

(a) A particle of charge ¢ moves in a circle of radius R at a constant speed v. To sustain the
motion, you must, of course, provide a centripetal force mv? /R; what additional force (F,)
mtist you exert, in order to counteract the radiation reaction? [It’s easiest to express the answer
in terms of the instantaneous velocity v.] What power (P,) does this extra force deliver?
Compare P, with the power radiated (use the Larmor formula).

(b) Repeat part (a) for a particle in simple harmonic motion with amplitude A and angular
frequency w (w(r) = A cos(wt) Z). Explain the discrepancy.

(c) Consider the case of a particle in free fall (constant acceleration g). What is the radiation
reaction force? What is the power radiated? Comment on these resulits.

Problem 11.18

(a) Assuming (implausibly) that y is entirely attributable to radiation damping (Eq. 11.84),
show that for optical dispersion the damping is “small” (y <« wg). Assume that the relevant
resonances lie in or near the optical frequency range.

(b) Using your results from Prob. 9.24, estimate the width of the anomalous dispersion region,
for the model in Prob. 9.23.
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Problem 11.19 With the inclusion of the radiation reaction force (Eq. 11.80), Newton’s second
law for a charged particle becomes

. F
a=rta+ —,
m

where F is the external force acting on the particle,

(a) In contrast to the case of an uncharged particle (@ = F/m), acceleration (like position
and velocity) must now be a continuous function of time, even if the force changes abruptly.
(Physically, the radiation reaction damps out any rapid change ina.) Prove that a is continuous
at any time ¢, by integrating the equation of motion above from (f — ¢€) to (¢ + €) and taking
the limit ¢ — 0.

(b) A particle is subjected to a constant force F, beginning at time t = 0 and lasting until time
T. Find the most general solution a(t) to the equation of motion in each of the three periods:
Dt <00 <t <T;Gi)t>T.

(c) Impose the continuity condition (a) att = O and ¢ = 7. Show that you can either eliminate
the runaway in region (iii) or avoid preacceleration in region (i), but not both.

(d) If you choose to eliminate the runaway, what is the acceleration as a function of time, in
each interval? How about the velocity? (The latter must, of course, be continuous at t = 0
and t = T.) Assume the particle was originally at rest: v(—00) = 0.

(e) Plot a(z) and v(r), both for an uncharged particle and for a (nonrunaway) charged particle,
subject to this force.

11.2.3 The Physical Basis of the Radiation Reaction

In the last section I derived the Abraham-Lorentz formula for the radiation reaction, using
conservation of energy. I made no attempt to identify the actual mechanism responsible
for this force, except to point out that it must be a recoil effect of the particle’s own fields
acting back on the charge. Unfortunately, the fields of a point charge blow up right at
the particle, so it’s hard to see how one can calculate the force they exert.!! Let’s avoid
this problem by considering an extended charge distribution, for which the field is finite
everywhere; at the end, we’ll take the limit as the size of the charge goes to zero. In general,
the electromagnetic force of one part (A) on another part (B) is not equal and opposite to
the force of B on A (Fig. 11.17). If the distribution is divided up into infinitesimal chunks,
and the imbalances are added up for all such pairs, the result is a net force of the charge on
itself. It is this self-force, resulting from the breakdown of Newton’s third law within the
structure of the particle, that accounts for the radiation reaction.

Lorentz originally calculated the electromagnetic self-force using a spherical charge
distribution, which seems reasonable but makes the mathematics rather cumbersome.!?
Because I am only trying to elucidate the mechanism involved, I shall use a less realistic
model: a “dumbbell” in which the total charge ¢ is divided into two halves separated by

11t can be done by a suitable averaging of the field, but it’s not easy. See T. H. Boyer, Am. J. Phys. 40, 1843
(1972), and references cited there.
125¢e 1. D. Jackson, Classical Electrodynamics, 3rd ed., Sect. 16.3 (New York: John Wiley, 1999).



470 CHAPTER 11. RADIATION
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Figure 11.17 Figure 11.18

a fixed distance d (Fig. 11.18). This is the simplest possible arrangement of the charge
that permits the essential mechanism (imbalance of internal electromagnetic forces) to
function. Never mind that it’s an unlikely model for an elementary particle: in the point
limit (d — 0) any model must yield the Abraham-Lorentz formula, to the extent that
conservation of energy alone dictates that answer.

Let’s assume the dumbbell moves in the x direction, and is (instantaneously) at rest at
the retarded time. The electric field at (1) due to (2) is

Bl — (q/2) »

2 — .
1= ey & T U= (-wal (11.85)

(Eq. 10.65), where

~ ~ ~

u=c2 and 2=I[x+4dY, (11.86)
so that
ru=cr, 2-a=la, and 2=VI2+d?. (11.87)

Actually, we’re only interested in the x component of Ey, since the y components will
cancel when we add the forces on the two ends (for the same reason, we don’t need to worry
about the magnetic forces). Now

l
0y = = (11.88)
2
and hence
g (I —ad?
E|. = . 11.89
b= Breoc? (12 + 232 (11.89)
By symmetry, >, = Ej_, so the net force on the dumbbell is
2 2 2
q g (c”—ad”)
Foif = 2(E; + E») = X. 11.90)
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So far everything is exact. The idea now is to expand in powers of d; when the size of
the particle goes to zero, all positive powers will disappear. Using Taylor’s theorem
. 1., 1.
x(1) = x(t) + F)@ = ) + FF@)@ = 1)+ ZE @)= 1) 4+
we have,
1 5 1. ,
L=x(n) = x(t) = SaT? + 2T’ + -, (11.91)
where T =t — 1, for short. Now T is determined by the retarded time condition

(T)? =1* +d°, (11.92)

SO

T T2 2 2
d:\/(cT)2—12:cT\/1—(“—+a +> =cT—g—T3+( T4+
C

2¢c | 6c

This equation tells us d, in terms of T; we need to “solve” it for T as a function of d.
There’s a systematic procedure for doing this, known as reversion of series,!? but we can
get the first couple of terms more informally as follows: Ignoring all higher powers of T,

d=cT = T%g;
c

using this as an approximation for the cubic term,

dzer-CL L gl 0
= cc3 T 8¢5’
and so on. Evidently

1 a?

T=-d+—d+()d*+-- . (11.93)
c 8c

Returning to Eq. 11.91, we construct the power series for [ in terms of d:

a a

l=——d*+ —d> + ()d* +-- . 11.94

22 tezd +Od + ( )

Putting this into Eq. 11.90, I conclude that

2 .
q a a N
Ferr = - dt--| % 11.95
self 47160[ d2a T TOMH ]X (11.95)

Here a and a are evaluated at the rerarded time (z,), but it’s easy to rewrite the result in
terms of the present time t:

d
atr) =at) +a@)t —t)+---=a) —a)T +--- = a() —il(t); +--,

13See, for example, the CRC Standard Mathematical Tables (Cleveland: CRC Press).
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and it follows that

2 .
Feelf = 1 |: a(?) + M

—_— = d+--| x 11.96
ey | 4c2d - 3c3 +Od+ } ( )

The first term on the right is proportional to the acceleration of the charge; if we pull it
over to the other side of Newton’s second law, it simply adds to the dumbbell’s mass. In
effect, the total inertia of the charged dumbbell is

2

m=2mg+ —— 1

dmeg ddc’ (11.97)

where m is the mass of either end alone. In the context of special relativity it is not surprising
that the electrical repulsion of the charges should enhance the mass of the dumbbell. For
the potential energy of this configuration (in the static case) is

1 (q/2)?
drey d

(11.98)

and according to Einstein’s formula £ = mc?, this energy contributes to the inertia of the
object.!*
The second term in Eq. 11.96 is the radiation reaction:

int _ MOqzd
rad 127¢

(11.99)

It alone (apart from the mass correction!3) survives in the “point dumbbell” limit d — 0.

Unfortunately, it differs from the Abraham-Lorentz formula by a factor of 2. But then,

this is only the self-force associated with the interaction between 1 and 2—hence, the

superscript “int.”” There remains the force of each end on itself. When the latter is included

(see Prob. 11.20) the result is

tog’a
6mc

Frad = (11.100)
reproducing the Abraham-Lorentz formula exactly. Conclusion: The radiation reaction is
due to the force of the charge on itself—or, more elaborately, the net force exerted by the
fields generated by different parts of the charge distribution acting on one another.

14The fact that the numbers work out perfectly is a lucky feature of this configuration. If you do the same
calculation for the dumbbell in longitudinal motion, the mass correction is only half of what it “should” be (there’s
a 2, instead of a 4, in Eq. 11.97), and for a sphere it’s off by a factor of 3/4. This notorious paradox has been the
subject of much debate over the years. See D. J. Griffiths and R. E. Owen, Am. J. Phys. 51, 1120 (1983).

Sof course, the limit d — 0 has an embarrassing effect on the mass term. In a sense, it doesn’t matter, since
only the toral mass m is observable; maybe m( somehow has a compensating (negative!) infinity, so that m comes
out finite. This awkward problem persists in quanmum electrodynamics, where it is “swept under the rug” in a
process known as mass renormalization.
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Problem 11.20 Deduce Eq. 11.100 from Eq. 11.99, as follows:

(a) Use the Abraham-Lorentz formula to determine the radiation reaction on each end of the
dumbbell; add this to the interaction term (Eq. 11.99).

(b) Method (a) has the defect that it uses the Abraham-Lorentz formula—the very thing that
we were trying to derive. To avoid this, smear out the charge along a strip of length L oriented
perpendicular to the motion (the charge density, then, is A = ¢/L); find the cumulative
interaction force for all pairs of segments, using Eq. 11.99 (with the correspondence g /2 —
A dy, at one end and g/2 — Ady, at the other). Make sure you don’t count the same pair
twice.

More Problems on Chapter 11

Problem 11.21 A particle of mass m and charge g is attached to a spring with force constant k,
hanging from the ceiling (Fig. 11.19). Its equilibrium position is a distance / above the floor.
It is pulled down a distance d below equilibrium and released, at time ¢ = 0.

(a) Under the usual assumptions (d <« A < h), calculate the intensity of the radiation hitting the
floor, as a function of the distance R from the point directly below g. [Note: The intensity here
is the average power per unit area of floor.] At what R is the radiation most intense? Neglect
the radiative damping of the oscillator. [Answer: u0q2d2w4R2h/32n2c(R2 + h%)5/7

(b) As acheck on your formula, assume the floor is of infinite extent, and calculate the average
energy per unit time striking the entire floor. Is it what you'd expect?

(c) Because it is losing energy in the form of radiation, the amplitude of the oscillation will
gradually decrease. After what time t has the amplitude been reduced to d/e? (Assume the
fraction of the total energy lost in one cycle is very small.)

Problem 11.22 A radio tower rises to height & above flat horizontal ground. At the top is a
magnetic dipole antenna, of radius b, with its axis vertical. FM station KRUD broadcasts from
this antenna at angular frequency w, with a total radiated power P (that’s averaged, of course,
over a full cycle). Neighbors have complained about problems they attribute to excessive

Figure 11.19
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radiation from the tower—interference with their stereo systems, mechanical garage doors
opening and closing mysteriously, and a variety of suspicious medical problems. But the city
engineer who measured the radiation level at the base of the tower found it to be well below
the accepted standard. You have been hired by the Neighborhood Association to assess the
engineer’s report.

(a) In terms of the variables given (not all of which may be relevant, of course), find the
formula for the intensity of the radiation at ground level, a distance R from the base of the
tower. You may assume that a < ¢/w < h. [Note: we are interested only in the magnitude
of the radiation, not in its direction—when measurements are taken the detector will be aimed
directly at the antenna.]

(b) How far from the base of the tower should the engineer have made the measurement? What
is the formula for the intensity at this location?

(c) KRUD’s actual power output is 35 kilowatts, its frequency is 90 MHz, the antenna’s
radius is 6 cm, and the height of the tower is 200 m. The city’s radio-emission limit is 200
microwatts/cm?. Is KRUD in compliance?

Problem 11.23 As you know, the magnetic north pole of the earth does not coincide with the
geographic north pole—in fact, it’s off by about 11°. Relative to the fixed axis of rotation.
therefore, the magnetic dipole moment vector of the earth is changing with time, and the earth
must be giving off magnetic dipole radiation.

(a) Find the formula for the total power radiated, in terms of the following parameters: ¥
(the angle between the geographic and magnetic north poles), M (the magnitude of the earth’s
magnetic dipole moment), and w (the angular velocity of rotation of the earth). [Hint: refer to
Prob. 11.4 or Prob. 11.12.]

(b) Using the fact that the earth’s magnetic field is about half a gauss at the equator, estimate
the magnetic dipole moment M of the earth.

(c) Find the power radiated. [Answer: 4 x 1075 W]

(d) Pulsars are thought to be rotating neutron stars, with a ypical radius of 10 km, a rotational
period of 1035, and a surface magnetic field of 108 T. What sort of radiated power would you
expect from such a star? [See J. P. Ostriker and J. E. Gunn, Astrophys. J. 157, 1395 (1969).]
[Answer: 2 x 1036 W]

Problem 11.24 Suppose the (electrically neutral) y z plane carries a time-dependent but uni-
form surface current K (¢) z.

(a) Find the electric and magnetic fields at a height x above the plane if

(i) a constant current is turned on at t = O:

K@) =
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(b) Show that the retarded vector potential can be written in the form
o0
A(x, 1) = &i/ K(z—f —u) du,
2 0 c

and from this determine E and B.
(¢) Show that the total power radiated per unit area of surface is
Hoc
2
Explain what you mean by “radiation,” in this case, given that the source is not localized. [For

discussion and related problems, see B. R. Holstein, Am. J. Phys. 63,217 (1995), T. A. Abbott
and D. J. Griffiths, Am. J. Phys. 53, 1203 (1985).]

(K (1)]°.

Problem 11.25 When a charged particle approaches (or leaves) a conducting surface, radiation
is emitted, associated with the changing electric dipole moment of the charge and its image. If
the particle has mass m and charge g, find the total radiated power, as a function of its height
z above the plane. [Answer: (ﬂocq2/4n)3/6mzz4]

Problem 11.26 Use the duality transformation (Prob. 7.60) to construct the electric and mag-
netic fields of a magnetic monopole gy, in arbitrary motion, and find the “Larmor formula” for
the power radiated. [For related applications see J. A. Heras, Am. J. Phys. 63,242 (1995).]

Problem 11.27 Assuming you exclude the ranaway solution in Prob. 11.19, calculate
(a) the work done by the external force,
(b) the final kinetic energy (assume the initial kinetic energy was zero),

() the total energy radiated.

Check that energy is conserved in this process.16

Problem 11.28

(a) Repeat Prob. 11.19, but this time let the external force be a Dirac delta function: F(t) =
k&(t) (for some constant k).]7 [Note that the acceleration is now discontinuous at t = 0
(though the velocity must still be continuous); use the method of Prob. 11.19 (a) to show that
Aa = —k/mz. In this problem there are only fwo intervals to consider: (i) t < 0, and (ii)
t >0.]

(b) As in Prob. 11.27, check that energy is conserved in this process.

Problem 11.29 A charged particle, traveling in from —oo along the x axis, encounters a
rectangular potential energy barrier

Up, if0<x <L,
0, otherwise.

U(x):[

Show that, because of the radiation reaction, it is possible for the particle to tunnel through
the barrier—that is: even if the incident kinetic energy is less than Up, the particle can pass

16problems 11.27 and 11.28 were suggested by G. L. Pollack.
17 This example was first analyzed by P. A. M. Dirac, Proc. Roy. Soc. A167, 148 (1938).
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through. (See F. Denef et al., Phys. Rev. E 56, 3624 (1997).) [Hint: Your task is to solve the
equation
a=rta+ —,
m
subject to the force
F(x) = Up[—é(x) + 8(x — L)].
Refer to Probs. 11.19 and 11.28, but notice that this time the force is a specified function of
x, not t. There are three regions to consider: (i) x < 0, (i) 0 < x < L, (iii) x > L. Find
the general solution (for a(¢), v(t), and x(t)) in each region, exclude the runaway in region
(iii), and impose the appropriate boundary conditions at x = 0 and x = L. Show that the final
velocity (vy) is related to the time T spent traversing the barrier by the equation

L:va—”f]TOf(te—T/r—i—T—t),

and the initial velocity (at x = —o0) is
_ Uy | 1
Vi=vr T mv B Up T/t
f 1+ =% (e -1)
muv

f
To simplify these results (since all we're looking for is a specific example), suppose the final
kinetic energy is half the barrier height. Show that in this case
vf
T Loy

In particular, if you choose L = v £7/4, then v; = (4/3)vy, the initial kinetic energy is
(8/9)Up, and the particle makes it through, even though it didn’t have sufficient energy to get
over the barrier!]

Problem 11.30

(2) Find the radiation reaction force on a particle moving with arbitrary velocity in a straight
line, by reconstructing the argument in Sect. 11.2.3 without assuming v(t,) = 0. [Answer:
(og?y*/6mc)@ + 3y2aPv/c?)]

(b) Show that this result is consistent (in the sense of Eq. 11.78) with the power radiated by
such a particle (Eq. 11.75).

Problem 11.31

(@) Does a particle in hyperbolic motion (Eq. 10.45) radiate? (Use the exact formula (Eq. 11.75)
to calculate the power radiated.)

(b) Does a particle in hyperbolic motion experience aradiation reaction? (Use the exact formula
(Prob. 11.30) to determine the reaction force.)

[Comment: These famous questions carry important implications for the principle of equiv-
alence. See T. Fulton and F. Rohrlich, Annals of Physics 9, 499 (1960); I. Cohn, Am. J. Phys.
46,225 (1978); Chapter 8 of R. Peierls, Surprises in Theoretical Physics (Princeton: Princeton
University Press, 1979); and the article by P. Pearle in Electromagnetism: Paths to Research,
ed. D. Teplitz (New York: Plenum Press, 1982).]




