COLLISIONS

- 1. The strong physical interaction among bodies involving exchange of momentum is called a collision.
- 2. The time of duration of collision is very short
- 3. In the collision process, bodies need not get into physical contact.
- 4. If the colliding bodies move along a straight line joining their centers of mass before and after the collision; it is called head on collision or collision in one dimension.
- 5. When the bodies move in a plane either before or after the collision is called collision in two dimensions.
- 6. When no external force acts, the momentum of the system remains constant, this is called conservation of momentum;
- 7. A bullet of mass 'm' is fired from a gun of mass 'm' with a velocity 'v', the recoil velocity of the

gun is (V) $V = \frac{mv}{M}$

- 8. Two bodies of masses m_1 and m_2 are moving in the same direction with velocities $u_1 & u_2$; After collision they move in the same direction with velocities $v_1 & v_2 & m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$ If the two bodies stick together after impact, they
- 9.

move with common velocity $v = \frac{m_1 u_1 + m_2 u_2}{m_1 + m_2}$

10. A truck of mass 'M' moves with a velocity 'v'; A packet of mass 'm' is gently dropped into it, the velocity of the truck becomes

$$M_V = (M+m)v^1 \Longrightarrow v^1 = \frac{Mv}{m+M};$$

A shell of mass 'M' at rest explodes and breaks 11. into two pieces ; one piece of mass 'm' moves with a velocity 'v'. The other piece moves in the

opposite direction, with a velocity $v^1 = \frac{Mv}{m-M}$;

12. A shell of mass 'm' moving with a velocity 'v' explodes and breaks into '2' pieces; one piece of mass m_1 moves with a velocity v_1 and other piece of mass m₂ moves with a velocity v₂

$$n.v = m_1v_1 + m_2v_2$$

13. Two bodies each of mass 'm' moving at right angles with a velocity 'v' collide; After collision, if they move together, their common velocity is

$$2mv^1 = \sqrt{2}mv \implies v^1 = \frac{v}{\sqrt{2}}$$

14. A shell of mass 'M' exploded of rest and breaks into '3' pieces; Two pieces of masses m, and m move at right angles to each other with velocities v_1 and v_2 then the velocity of the third piece

$$m_3 v_3 = \sqrt{(m_1 v_1)^2 + (m_2 v_2)^2};$$

A body of mass m₁ moving with a velocity v 15. collided another body of mass m, at rest; After collision, the bodies move at right angles, θ and θ_{λ} to the original line of motion with velocities v and v, Applying conservation of momentum in the vertical direction $m_1 v_1 \sin \theta_1 = m_2 v_2 \sin \theta_2$ Applying conservation of momentum in the horizontal direction $m_1 v_1 = m_1 v_1 \cos\theta_1 + m_2 v_2 \cos\theta_2$

16. A shell of mass 'm' is projected with a velocity 'v' making an angle ' $\hat{\theta}$ ' with the horizontal ; At the highest point it explose and break into two pieces of equal mass; one piece retrace it path with same velocity; the range of the other piece from the point of projections

JR.PHYSICS

COLLISIONS

$$\frac{-m}{2} \cos \theta : \frac{m}{2} \nabla \cos \theta :$$
Range from the point of projection
$$\frac{R^{2}}{R^{2}} = \frac{R}{2} + \frac{3R}{2} = 2R$$
COEFFICIENT OF RESITIUTION
The ratio of relative velocity of separation after
collision to the relative velocities of approach
before collision is called coefficient of restitution
$$e^{-\frac{V^{2}}{R_{1}} - u_{2}}$$
Terming coefficient of restitution
$$e^{-\frac{V^{2}}{R_{1}} - u_{2}}$$
The ratio of relative velocities of approach
before collision is called coefficient of restitution
$$e^{-\frac{V^{2}}{R_{1}} - u_{2}}$$
The ratio of relative velocities of approach
before collision the netative of the materials of the
two colling bodies.
The ratio line before 0.8.1
A body is dropped from a height 'h' it rebounds to
a height 'h'; 'fh coefficient of restitution
$$e^{-\frac{V^{2}}{R_{1}} - u_{2}} = \frac{\sqrt{2gh}}{\sqrt{2gh}}$$
The time loop drom a height 'h' it rebounds to
a height h'; 'fh coefficient of restitution
$$e^{-\frac{V}{R_{1}} - u_{2}} = \frac{\sqrt{2gh}}{\sqrt{2gh}}$$
Total distance the rate of the materials of th
h = he^{4}
$$e^{-\frac{1}{R_{1}} - \frac{\sqrt{2gh}}{R_{1}}}$$
Total distance before 3rd rebound
h = he^{4}
$$\frac{1}{R_{1}} [Squaring on both sides]$$
First rebouncing height
h = he^{4}
Thind rebouncing height
h = he^{4}
Total distance travelled by the body before comming
to rest
$$S = h \left(\frac{1+e^{2}}{1-e^{2}}\right)$$
Total distance travelled by the body before comming
to rest
$$S = h \left(\frac{1+e^{2}}{1-e^{2}}\right)$$
Total distance travelled by the body before comming
to rest
$$S = h \left(\frac{1+e^{2}}{1-e^{2}}\right)$$
Total time taken by a body to come to rest
$$t = \sqrt{\frac{2\pi}{g}} \left(\frac{1+e}{1-e^{2}}\right);$$
Total time taken by a body to come to rest
$$t = \sqrt{\frac{2\pi}{g}} \left(\frac{1+e}{1-e^{2}}\right);$$
Total time taken by a body to come to rest
$$t = \sqrt{\frac{2\pi}{g}} \left(\frac{1+e}{1-e^{2}}\right);$$
Total time taken by a body to come to rest
$$t = \sqrt{\frac{2\pi}{g}} \left(\frac{1+e}{1-e^{2}}\right);$$
Total time taken by a body to come to rest
$$t = \sqrt{\frac{2\pi}{g}} \left(\frac{1+e}{1-e^{2}}\right);$$
Total time taken by a body to come to rest
$$t = \sqrt{$$

$$\mathbf{v}_{1} = \left(\frac{\mathbf{m}_{1} - \mathbf{m}_{2}}{\mathbf{m}_{1} + \mathbf{m}_{2}}\right) \mathbf{u}_{1} + \left(\frac{2\mathbf{m}_{2}}{\mathbf{m}_{1} + \mathbf{m}_{2}}\right) \mathbf{u}_{2}$$
$$\mathbf{v}_{2} = \left(\frac{2\mathbf{m}_{1}}{\mathbf{m}_{1} + \mathbf{m}_{2}}\right) \mathbf{u}_{1} + \left(\frac{\mathbf{m}_{2} - \mathbf{m}_{1}}{\mathbf{m}_{1} + \mathbf{m}_{2}}\right) \mathbf{u}_{2}$$
Case 1:

If $m_1 = m_2$

 $v_1 = u_2$; $v_2^2 = u_1$; i.e., A body moving with some velocity collide with another body moving with same mass and another direction; They interchange their velocities;

Case 2 :

If $m_1 = m_2$; $u_2 = 0$ $u_2 = v_1$; $u_2 = 0$

i.e., A body moving with some velocity collides with another body of same mass of rest; Then the first body comes to rest and second body moves with the velocity of the first body;

Case 3 :

 $v_1 = u_1;$ $v_2 = 2u_1;$ i.e., A large body moving with same velocity collides with a lighter body of rest; Then there is almost no change in the velocity of heavy body; But lighter body moves with double velocity of large body.

Case 4 :

$$v_1 = 0; v_2 = -u_1;$$

i.e., A lighter body moving with same velocity collided a large body at rest; Then the large body remaing at rest, but lighter body retrace its path with same velocity.

Ballistic Pendulum:

A particle of mass 'm' moving with some velocity collides elastically another body of same mass at rest, them they more at right angle with each other; A Block of mass 'M' is suspended by means of a rope 'l'; A bullet of mass 'm' moving with a velocity 'u' collides with the block and get embedded on it ; If the block raised to a height 'h'

$$mu = (M + m) v$$
[Θ law of conservation of momentum]
 $v = \sqrt{2gh}$ [conservation of energy]
 $mu = (M+m)\sqrt{2gh}$ $u = \left(\frac{M+m}{m}\right)\sqrt{2gh}$

Two bodies of masses m_1 and m_2 moving in the same directions with velocities $u_1 & u_2$ collide then the loss of K.E. is

If the collision is perfectly in elastic e = 0

K.E. =
$$\frac{m_1m_2(u_1-u_2)^2}{2(m_1+m_2)}$$
;

....hu

 \Rightarrow If the collision is perfectly inelastic and the second body is at rest then the loss of K.E.

$$\Delta K.E. = \frac{m_1 m_2 u_1^2}{2(m_1 + m_2)} + \frac{m_1 m_2 u_1^2}{2(m_1 + m_2)}$$

⇒ If the collision is perfectly inelastic and the second body is at rest then fractional loss of K.E.

$$\frac{\Delta \text{K.E.}}{\text{K.E.}} = \frac{m_1 m_2 u_1^2}{2(m_1 + m_2) \times \frac{1}{2} m_1 u_1^2}$$
$$\frac{\Delta \text{K.E.}}{\text{K.E.}} = \frac{m_2}{m_1 + m_2} ;$$

⇒ In the case of Elastic collision, the ratio of initial to final K.E. of the colliding body

$$=\frac{(m_1+m_2)^2}{(m_1-m_2)^2}$$

⇒ If the collision is perfectly elastic and second body is at rest. The fractional part of K.E. transferred to the second body

$$\frac{\Delta K.E.}{K.E.} = \frac{4m_1m_2}{(m_1 + m_2)^2}$$

 \Rightarrow Fraction of K.E. retained with the first body

$$1 - \frac{4m_1m_2}{(m_1 + m_2)^2} = \left(\frac{m_1 - m_2}{m_1 + m_2}\right)$$

⇒ A body of mass 'm' collides elastically with a body of mass nm of rest; the fraction of K.E. transferred to the second body

$$\frac{\Delta \text{K.E.}}{\text{K.E.}} = \frac{4\text{m}^2\text{n}}{\text{m}^2(1+\text{n})^2}$$

 \Rightarrow Fraction of energy retained with the first body

$$= 1 - \frac{4n}{\left(n+1\right)^2} = \left(\frac{n-1}{n+1}\right)$$

⇒ When shell explodes momentum remains constant but K.E increases

CO	NCEPTUAL OUESTIONS	10.	If a stationary bomb explodes into pieces, then
	ICEITORE QUESTIONS		1) momentum remains constant
1	Newton's first law of motion leads to the concept of		2) momentum decrease
1.	1) force 2) inertia		3) kinetic energy remains constant
	3) both 4) temperature		4) both (1) and (3)
2	When an athelete takes part in a long jump he	11.	If a stationary bomb explodes into two pieces of
۷.	runs for a while and then jumps. This is because		unequal masses, then
	1) inertia of motion helps him to take a longer jump		1) both will have the same kinetic energy
	2) running for a time makes him alert		2) bigger piece will have greater kinetic energy
	3) it is a rule that one should run before he jumps		3) smaller piece will have greater kinetic energy
	4) he wants to show his physical power		4) bigger piece will have greater momentum
3	A man is trying to swim across the river. Then he	12.	Conservation of linear momentum is equivalent to
5.	should spend maximum energy in		1) Newton's first law of motion
	1) first one third of the journey		2) Newton's second law of motion
	2) second one third of the journey		3) Newton's third law of motion
	3) last one third of the journey		4) Newton's law of gravitation
	4)Equal in all cases.	13.	The horizontal component of weight
4.	Newton's second law of motion give		1) is always zero
	1) magnitude of force 2) definition of force		2) is always equal to the weight
	3) concept of inertia 4) all the above		3) is less than the weight, but is not zero
5.	A boat with a sail has an electric fan inside. When		4) depends upon the angle of longitude
	the fan works, due to it the boat	14.	Jet plane works on the principal of conservation of
	1) cannot move 2) can move		1) mass 2) energy 3) linear momentum
	3) it depends on wind directions	1.5	4) angular momentum
	4) it depends on the speed of the fan	15.	A shell initially at rest explodes into two pieces of
6.	A cricketer draws his hands backwards to catch		1) fly in approximation with some velocity
	the ball, because		2) fly in opposite direction with same velocity
	1) by increasing the time in which he stops the		2) fly in opposite direction with same momentum
	ball, he reduces the force on his hands		4) fly in the same direction with same momentum
	2) by increasing the distance, he allows the ball to	16.	A bullet is fired into a wooden block. If the bullet
	travel a greater distance for more runs	101	gets embedded in wooden block, then
	3) it is an art to catch the ball		1) momentum alone is conserved
7	4) it is a rule in circket		2) kinetic energy alone is conserved
/.	Impulse is equal to		3) both momentum and kinetic energy are con-
	1) momentum 2) change in momentum		served
	(1) rate of change of former		4) neither momentum nor kinetic energy are con-
8	4) fate of change of force		served
0.	A body is projected vertically upwards. Its ino-	17.	The collision in which the relative velocity is zero
	1) it is a violation of law of conservation of linear		after collision is
	momentum		1) perfectly elastic 2) perfectly inelastic
	2) momentum of the body alone gets conserved		3) partially elastic
	3) momentum of the body earth and air molecules		4) sometimes elastic and sometimes inelastic
	together remains constant	18.	In one - dimensional elastic collision, the relative
I	4) violates law of conservation of energy.		velocity of approach before collision is equal to
9.	If a stationary bomb explodes into pieces, then		1) relative velocity of separation after collision
I	1) momentum increases		2) e times relative velocity of separation after collision
Í	2) momentum decreases		3) 1/e times relative velocity of separation after
Í	3) kinetic energy increases		$\begin{array}{c} \text{collision} \\ \text{(1)} \text{(1)} \text{(2)} \text{(2)} \text{(2)} \\ \text{(3)} \text{(2)} \text{(3)} \text{(3)} $
Í	4) kinetic energy decreases		4) sum of the velocities after collision

 19. Two identical bodies moving in opposite direction with same speed, collided with each other. If the collision is perfectly elastic then after the collision both comes to rest after the collision first comes to rest and second moves in the same direction with a speed 2v after collision they recoil with same speed all the above are possible 20. A body of mass 'm' moving with certain velocity collides with another identical body at rest. If the collision is perfectly elastic and after the collision, if both the bodies moves, they can move in the same direction 2) in opposite direction 	 26. The area of force and time graph represents impulse change in momentum both (1) and (2) 4) work 27. A metal ball and a rubber ball both having the same mass strikes a wall normally with the same velocity. The rubber ball rebounds and the metal ball does not rebound. It can be concluded that team the rubber ball suffers greater change in momentum the iron ball suffers greater change in momentum
 4) making 45° to each other 21. As shown in the figure six steel balls of identical size are lined up along a straight frictionless groove. Two similar balls moving with speed v along the groove collide with this row on the extreme left end. Then 	 4) none of the above 28. Choose the false statement In a perfect elastic collision the relative velocity of approach is equal to the relative velocity of separation In an inelastic collision the relative velocity of approach is less than the relative velocity of approach
 1) one ball from the right end will move on with speed 2v and all the remaining balls will be are rest 2) two balls from the extreme right end will move on with speed v and the remaining balls will be at rest 3) all the balls will start moving to the right will speed v/8 4) all the six balls originally at rest will move on with speed v/6 and the incident balls will come to rest 22. A lighter body moving a velocity v collides with a heavier body at rest. Then 1) the lighter body rebounces with twice the velocity of bigger body 2) the lighter body does not move practically 4) both (2) and (3) 23. A heavier body moving with certain velocity collides head on elastically with a lighter body at rest. then 1) smaller body starts to move in the same state of rest 2) smaller body starts to move with twice the velocity of the bigger body in the same direction with same velocity as that of bigger body 3) the semaller body comes to rest 24. The co - efficient of restitution for perfect elastic collision is 1) 1 2) 0 3) lies in between 0 and 1 4) infinity 	 separation 3) In an inelastic collision the relative velocity of separation is less than the relative velocity of approach 4) In perfect inellastic collision relative velocity of separation is zero. 29. A perfectly elastic ball p₁ of mass 'm' moving with velocity v collides elastically with three exactly similar balls p₂ p₃ p₄ lying on a smooth table. Velocities of the four balls after collision are Question (P_1) Question (P_2) V.V.V.V 3) v.V.V,0 4) 0,0,0,v 30. Two bodies P and Q of masses m₁ and m₂ (m₂ > m₁) are moving with velocity v₁ and v₂ respectively, collide with each other. Then the force exerted by P on Q during the collision is 1) greater that the force exerted by Q on P 2) less than the force exerted by P on Q but opposite in direction

\mathbf{H} 1) \mathbf{A} \mathbf{A} 1) \mathbf{A} 1) \mathbf{A} \mathbf{H}	 31. 32. 33. 34. 35. 36. 	Two particles of different masses collide head on. Then for the system 1) loss of KE is zero, if it were perfect elastic collision 2) if it were perfect inelastic collision, the loss of KE of the bodies moving in opposite directions is more than that of the bodies moving in the same direction 3) loss of momentum is zero for both elastic and inelastic collisions 4) all the above Coefficient of restitution depends upon, 1) The relative velocities of approach and sepa- ration 2) The masses of the colliding bodies 3) the materials of the colliding bodies 4) all the above A car and a lorry are moving with same momen- tum. If same brake force is applied then, 1) car comes to rest in shorter distance 2) lorry comes to rest in shorter distance 3) both tavels the same distance before coming to rest 4) In sufficient data A car and a lorry are moving with same momen- tum. If equal amount of brake force is applied, then 1) car comes to rest in shorter time 2) lorry comes to rest in shorter time 2) lorry comes to rest in shorter time 3) both takes same time to come to rest 4) In sufficient data A charged bead is capable of sliding freely on a string held vertically in tension. An electric field is applied parallel to the string so that the bead stays at rest at mid - point of the string. If the electric field is switched off momentarily and switched on 1) the bead moves downwards and stops as soon as the field is switched on 2) the bead moves downwards when the field is switched on 3) the bead moves downwards when the field is switched on 3) the bead moves downwards with constant acceleration till it reaches the bottom of the string 4) the bead moves downwards with constant acceleration till it reaches the bottom of the string 4) the bead moves downwards with constant acceleration till it reaches the bottom of the string 4) the bead moves downwards with constant acceleration till it reaches the bottom of the string 4) the bead moves downwards with constant velocity till it	 37. 38. 39. 40. 41. 42. 43. 	2) they travel with a velocity of 10 ms^{-1} in the same direction 3) they travel with a velocity of 10 ms^{-1} in opposite direction 4) they travel with a velocity of 5 ms^{-1} in opposite direction The coefficient of restitution (e) for a perfectly elastic collision is 1) -1 2) 0 3) \propto 4) 1 A ball of mass M moving with a velocity V collides head on elastically with another of same mass but moving with a velocity v in the opposite direction. After collision, 1) the velocities are exchanged between the two balls 2) both the balls come to rest 3) both of them move at right angles to the original line of motion 4) one ball comes to rest and another ball travels back with velocity 2V A ball is dropped from a height h on the ground. If the coefficient of restitution is e, the height to which the ball goes up after it rebounds for the nth time is 1) he^{2n} 2) he^n 3) e^{2n}/h 4) h/e^{2n} A sphere of mass m moving with a constant velocity u hits another stationary sphere of the same mass. If e is the coefficient of restitution, then the ratio of velocities of the two spheres after collision will be 1) $\frac{1-e}{1+e}$ 2) $\frac{1+e}{1-e}$ 3) $\frac{e+1}{e-1}$ 4) $\frac{e-1}{e+1}$ A neutron travelling with a velocity v and kinetic energy E collides perfectly elastically head on with the nucleus of an atom of mass number A at rest. The fraction of the total kinetic energy retained by the neutron is 1) $\left(\frac{A-1}{A+1}\right^2 2\left(\frac{A+1}{A-1}\right^2 3\left(\frac{A-1}{A}\right)^2 4\sqrt{\left(\frac{A+1}{A}\right)^2}$ A particle of mass m moving with a velocity v makes a head on elastic collision with another particle of the same mass initially at rest. The velocity of the first particle after collision is 1) v 2) v/2 3) 2v 4) 0 A ball of mass m moving with a speed u undergoes a head - on elastic collision with a ball of mass moving with a ball of mass moving with a ball of mass moving with a ball of the initially at rest. The velocity of the first particle after collision is
direction $1) \frac{n}{n+1} = 2) \frac{n}{(1+n)^2} = 3) \frac{2n}{(1+n)^2} = 4) \frac{4n}{(1+n)^2}$		direction		Kinetic energy transferred to the heavier ball is 1) $\frac{n}{n+1}$ 2) $\frac{n}{(1+n)^2}$ 3) $\frac{2n}{(1+n)^2}$ 4) $\frac{4n}{(1+n)^2}$

ΔΔ	A parachutist of weight w strikes the ground with		atelyafi	ter evnlos	ion is		
	his legs fixed and comes to rest with an upward		1) $3V_{c}$		2)	$1.5 V \cos$	ъA
	acceleration of magnitude 3g. The force exerted		1) 5 V C	.05 0	2)	(-)	. 0
	on him by the ground during landing is		3) 2V c	$\cos \theta$	4)	(√3/2)∖	$l\cos\theta$
	1) w 2) 2w 3) 3w 4) 4w	52.	In an in	elastic co	llision, th	ne kinetic	energy after
45.	The small bob A of a simple pendulum released		collision	1			
	from 30° to the vertical hits another bob of the same		1) is sar	ne as befo	ore collisi	on	
	mass and size lying at rest on the table vertically		2) is alv 2	vays less t	han that t	before col	lision
	below the point of suspension. After elastic colli-		(3) is alv	vays great	er than th	at before	collision
	sion, the angular amplitude of the bob A will be $1 \ge 20^{\circ}$ $2 \ge 60^{\circ}$ $2 \ge 15^{\circ}$ $4 \ge 70^{\circ}$	53	$\frac{4}{10}$ may	its the floor	greater in	an mai de	or an inelastic
16	A body of mass m moving with a constant veloc-	55.	collisio	n In this α	case	ounus and	an melastic
40.	ity V hits another body of the same mass moving		1) the m	omentum	of the ba	ll iust after	r the collision
	with the same velocity V but in opposite direction		is same	as that just	st before	the collisi	on
	and sticks to it. The velocity of the compound		2) The r	mechanic	al energy	of the bal	l remains the
	body after the collision is		same in	the collisi	ion		
	1) 2V 2) V 3) V/2 4) zero		3) the to	otal mome	entum of t	he ball an	d the earth is
47.	Which of the following is a non - conservative		conserv	ved		0.1 1	1.1 -
	force?		4) the to	otal kinetic	energy of	of the ball	and the earth
	1) force on a particle executing S.H.M	51	1s conse	erved		a harra an	alastia aslli
	2) gravitational force between two masses	54.	sion th	e target pa	same mas	ng initiall	vat rest If it
	5) centripetal force on a particle executing uni-		were no	t head on	collision	the two n	articles move
	4) electrostatic force between two charges		after col	llision	combion,	uie two p	
48.	An object is kept on a smooth inclined plane of 1		1) paral	llel to eacl	h other		
	in L can be kept stationary relative to the incline		2) anti -	- parallel t	to each ot	her	
	by giving a horizontal acceleration of		3) perpe	endicular	to each o	ther	
	g		4) maki	ing an ang	gle 120°		
	1) $\frac{s}{\Gamma^2 - 1}$ to the inclined plane	55.	An obje	ect initially	y at rest ex	xplodes in	to three frag-
			ments A	A,B and C	. The mo	mentum	of A is pi and
	2) $\frac{g}{2}$ to the inclined plane		that of]	B is √3pj	where p	is a posit	tive number.
	$L^{2} + 1$		The mo	mentum o	of C will b	be	
	g g		1) $(1 + \sqrt{1 + 1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	√3)pina	direction	makinga	n angle 120°
	3) $\sqrt{L^2 - 1}$ to the inclined plane 4) $\sqrt{L^2 + 1}$		with the	atofA			
	to the inclined plane		2)(1+3)	$\sqrt{3}$ in a	lirection m	aking 150°	° with that of B
49.	The coefficient of restitution is		$-)(1 + \sqrt{3}) 2n in$	a directic	n makin	a 150° wi	th that of Δ
	1) a number of which varies from - 1 to 1		$\frac{3}{2}$ p in 4) 2p in	a directio	on making	g 150° wi	th that of B
	2) a number which varies from 0 to 1		.) - P			5100 11	
	3) a number which varies from 0 to -1				KEY		
	4) a positive number		01) 3	02) 1	03) 1	04) 1	05)1
50.	Two spheres x and Y collide. After collision, of		06) 1	07) 2	08) 3	09) 3	10) 1
	the momentum of X is doubled, 1) the initial momentum of Y and Y are equal (2)		11)3	12) 3	13)1	14) 3	15) 3
	1) the initial momentum of X is greater than that of Y		16) l	17)2	18)1	19)3	20)3
	3) the initial momentum of Y is double that of X		21)2 26)2	22)4 27)1	23)3 28)2	24) I 20) 4	23)2 30)2
	4) the loss in momentum of Y is could to the initial		2013 31) A	27)1 32)3	2012 3312	2914 3413	30) 3 35)4
	momentum of X		36) 1	32/3 37) 4	38) 1	39)1	40) 1
51.	A shell is fired from a cannon with a velocity V at		41)1	42) 4	43)4	44) 4	45)4
	an angle θ with the horizontal. At the highest point		46) 4	47) 3	48) 3	49) 2	50) 4
	in its path it explodes into two pieces of equal		51)1	52)́ 4	53)3	54) 3	55) 4
	mass. One of the pieces retraced the path to the		-	-	-	·	
	cannon. The speed of the other piece immedi-						

Con & B	LEVEL - I servation of momentum allistic pendulum	9. A bullet weighing 200 gm and moving at 200 ms ⁻¹ strikes a 4kg block of ice at rest on a frictionless surface and drops dead. The speed of the block is				
1.	A wagon of mass 10 tons moving at a speed of 12 KMPH collides with another wagon of mass 8 tons moving on the same track in the same di- rection at a speed of 10 KMPH. If the speed of the first wagon decreases to 8 KMPH. Find the speed of the other after collision 1) 18 kmph2) 25 kmph3) 5 kmph 4) 15 kmph	 1) 200 m/s 2) 100 m/s 3) 50 m/s 4) 10 m/s 10. A body of mass m moving at a constant velocity v hits another body of the same mass moving at the same velocity but in the opposite direction and sticks to it. The common velocity after collision is v v v v 11 A 500 cm cm first a 2 cm project of a multiple of the same velocity but in the opposite direction and sticks to it. The common velocity after collision is v v v v 				
2.	A 5kg mass moving at a speed of 3 ms^{-1} collides head on with a body of mass 1 kg at rest, if they move with a common velocity after collision in the same direction, find the velocity.	res a 2 gill projectile with a muzzle velocity of 1600 ms^{-1} . The velocity of the gun is 1) -0.64 ms^{-1} 2) -6.4 ms^{-1} 3) 6.4 ms^{-1} 4) 0.64 ms^{-1}				
	1) 25 ms^{-1} 2) 250 ms^{-1} 3) 2.5 ms^{-1} 4) 20 ms^{-1}	12. The U^{238} nucleus is unstable and decays into a				
3.	The mass of a loaded truck 10 tones is going at a speed of 20 KMPH. A box of mass 2 tones slips from it and falls on the road. Find the final velocity of truck (assume that the power of the engine is constant)	Th ²³⁴ and an apina particle. The alpha particle is emitted with a speed of $1.4 \times 10^6 \text{ m/sec}$. The recoil speed of Th ²³⁴ is 1) $4 \times 1.4 \times 10^6 \text{ m/s}$ 2) $- \frac{4 \times 1.4 \times 10^6}{1.4 \times 10^6} \text{ m/s}$				
4.	1) 2.5 kmph 3) 5.5 kmph A bomb at rest explodes into two pieces of masses 20 kg and 30 kg if the first one move with a ve-	1) $\frac{234}{234}$ m/s 2) $-\frac{234}{234}$ m/s 3) $\frac{234}{4 \times 1.4 \times 10^6}$ ms ⁻¹ 4) 0 ms ⁻¹ 13. An 8 gm bullet is fired horizontally into a 9 kg				
5.	locity of 30 ms^{-1} . Find the velocity of the other 1) -20 ms^{-1} 2) 0.5 ms^{-1} 3) $+20 \text{ ms}^{-1}$ 4) 0.3 ms^{-1} A bullet of mass 20 gm is fired from a riffle of	block of wood and sticks in it. The block which is free to move, has a velocity of 40 cm/s after impact. The initial velocity of the bullet is 1) 450 m/s 2) 450 cm/s 3) 220 m/s 4) 220 cm/s				
	mass 20 kg. with a muzzle velocity of 200 ms^{-1} . Find the velocity of recoil of the rifle. 1) 0.4 ms^{-1} 2) 0.5 ms^{-1}	 14. A 16 gm mass is moving in the +x direction at 30 cm/s while a 4 gm is moving in the -x direction at 50 cm/s. They collides head - on and stick together. Their common velocity after impact is 				
6.	3) 0.2 ms^{-1} 4) 0.3 ms^{-1} A bullet of mass 125 gm. leaves a rifle with a velocity of 500 ms ⁻¹ . The riffle recoils with a ve-	1) 0.14 cm/s 2) 0.14 m/s 3) 0 ms^{-1} 4) 0.3 m/s 15. A bullet of mass 50 grams going at a speed of				
7.	locity 5 ms ⁻¹ . Find the mass of the rifle. 1) 100 kg 2) 12.5 kg 3) 1.25 kg 4) 125 kg A boy of mass 40 kg jumps off a boat with a ve-	200 ms^{-1} strikes a wood block of mass 950 gm and gets embedded in it. Find the velocity o the block after the impact				
	boat move ? 1) -210 kg.ms^{-1} 2) -120 kg.ms^{-1}	 1) 5 ms⁻¹ 2) 10 ms⁻¹ 3) 20 ms⁻¹ 4) 50 ms⁻¹ 16. A block of wood of mass 9.8 kg is suspended by a string. A bullet of mass 200 gm strikes horizon- 				
8.	3) -125 kg.ms^{-1} 4) -215 kg.ms^{-1} A bullet is fired from a gun with a velocity 600 m/ s. The recoil velocity of the gun is 3m/s. What is the ratio of the mass of the gun and bullet ? 1) 100 2) 400 3) 200 4) 300	tally with a velocity of 100 ms^{-1} and gets imbed- ded in it. To what height will the block rise ? $(g = 10 \text{ ms}^{-2})$ 1) 0.1 m 2) $0.2 m$ 3) $0.3 m$ 4) 0				

17.	A 15 gm bullet is fired horizontally into a 3 kg block of wood suspended by a string. The bullet sticks in the block, and the impact causes the block	27.
	to swing 10 cm above the initial level. The veloc- ity of the bullet nearly is	28.
	1) 281 ms^{-1} 2) 326 ms^{-1} 3) 184 ms^{-1} 4) 58 ms^{-1}	
18.	A truck of mass 10 metric ton runs at 3 ms ^{-1} along	
101	a level track and collides with a loaded truck of mass 20 metric ton, standing at rest. If the trucks couple together, the common speed after colli- sion is	29.
	1) 1 ms^{-1} 2) 1 ms^{-1} 3) 0.5 ms^{-1} 4) 0.3 ms^{-1}	
19.	A nucleus of mass number 'A' originally at rest emits an α particle with a speed 'v' the recoil speed of the daughter nucleus is	
	1) $\frac{2\nu}{4-A}$ 2) $\frac{4\nu}{A+4}$ 3) $\frac{\nu}{A+4}$ 4) $\frac{4\nu}{A-4}$	30.
	COFFEIGIENT OF DESTITUTION &	
	ELASTIC, INELASTIC COLLISIONS	
20.	A rubber ball drops from a height h and after re-	
	bounding twice from the ground, it rises to $h/2$. The cone efficient of restitution is	21
	1/2. The co-efficient of restriction is	31.
	1) $1/2$ 2) $\left(\frac{1}{2}\right)$ 3) $\left(\frac{1}{2}\right)$ 4) $\left(\frac{1}{2}\right)$	
21.	In the above problem if the ball rises to $h/2$ after rebounding three times e, is	32.
	1) 1 / 2 2) $\left(\frac{1}{2}\right)^{1/2}$ 3) $\left(\frac{1}{2}\right)^{1/4}$ 4) $\left(\frac{1}{2}\right)^{1/6}$	
22.	A body dropped freely from a height h on to a	
	horizontal plane, bounces up and down and fi- nally comes to rest. The coefficient of restitution	33.
	is e. The ratio of velocities at the beginning and	
	after two rebounds is	
23	1) 1: e 2) e: 1 3) 1: e^2 4) e^2 : 1 In the above problem, the ratio of times of two	
23.	consequtive rebounds	
	1) 1 : e^{2} 2) $e : 1$ 3) 1 : e^{2} 4) $e^{2} : 1$	34.
24.	In the above problem the ratio of distance trav-	
	ened in two consequence rebounds 1) $1 \cdot e^{-2}$ (1) $e^{2} \cdot 1$ (1) $e^{2} \cdot 1$	
25.	A metal ball falls from a height of 1m on to a steel	
	plate and jumps up to a height of 81 cm. Find the	~ -
	coefficient of restitution of the ball material. 1) 0.2 2) 9 3) 0.9 4) 90	35.
26.	A ball is dropped on to a horizontal floor. It	
	reaches a height of 144 cm on the first bounce	36.
	and 81 cm on the second bounce. The coeffi- cient of restitution is	27
	1) 0 2) 0.75 3) 81/144 4) 1	57.

- 27. In the above problem, the height it attains on the third bounce is
- 1) 45.6 cm 2) 81 cm 3) 144 cm 4) 0 cm
 A ball is dropped from a height h above a tile floor and rebounds to a height of 0.64h. The coefficient of restitution between the ball and the floor is

 0.64
 0.8
 1/0.64
 1/0.8
- A ball is dropped from height 'H' on to a horizontal surface. If the coefficient of restitution is 'e' then the total time after which it comes to rest is

1)
$$\sqrt{\frac{2H}{g}} \left(\frac{1-e}{1+e}\right)$$
 2) $\sqrt{\frac{2H}{g}} \left(\frac{1+e}{1-e}\right)$
3) $\sqrt{\frac{2H}{g}} \left(\frac{1+e^2}{1-e^2}\right)$ 4) $\sqrt{\frac{2H}{g}} \left(\frac{1-e^2}{1+e^2}\right)$

- 30. A ball falls from a height of 10m on to a horizontal plane. If the coefficient of restitution is 0.4 the velocity with which it rebounds from the plane after second collision is
 - 1) 2.24 ms^{-1} 2) 5.6 ms^{-1}
 - 3) 2.8 ms^{-1}
- 31. A ball is dropped from a height of 3 m. If coefficient of restitution between the surface and ball is 0.5 the total distance covered by the ball before it comes to rest is

4) 0.9 ms^{-1}

will rise to a height of 1) 0.075 m 2) 0.75 m 3) 7.5 m 4) 75 m

33. A body of mass 20 gms is moving with a certain velocity. It collides with another body of mass 80 gm at rest. The collision is perfectly inelastic. Find the ratio of the kinetic energies before and after collision of the system is

1)
$$2:1$$
 2) $4:1$ 3) $5:1$ 4) $3:2$

34. A truck of mass 15 tons moving with 1 ms^{-1} collides with a stationary truck of mass 10 tons and automatically connected to move together. The common velocity is

1) 1 ms^{-1} 2) 0 ms^{-1} 3) 0.4 ms^{-1} 4) 0.6 ms^{-1}

35. In the above problem the total K.E before collision is

1) 4500 J 2) 7500 J 3) 3000 J 4) 0 J

- 36. In the above problem the total K.E after collision1) 4500 J2) 7500 J3) 3000 J4) 0 J
- 37. In the above problem loss of K.E during collision is
 1) 4500 J
 2) 7500 J
 3) 3000 J
 4) 0 J

JR.PHYSICS

COLLISIONS

38.	A block of mass 1 kg moving with a spee 4 ms^{-1} , collides with another block of mass	d of 2 kg 48.	A ball of 4 kg mass and a speed of 3 ms^{-1} has a head on elastic collision with a 6 kg mass initially
	which is at rest. The lighter block comes to after collision. The loss in the K.E of the sys	rest tem.	at rest. The speeds of both the bodies after colli- sion are respectively
	1) 8 J 2) 4×10^{-7} J 3) 4 J 5) 0 J		1) $0.6 \text{ ms}^{-1} 2.4 \text{ ms}^{-1}$
39.	A car of mass 10 metric ton rolls at 2 ms^{-1} alo	nga	2) $-0.6 \text{ ms}^{-1} - 2.4 \text{ ms}^{-1}$
	level track and collides with a loaded car of r 20 metric ton, standing at rest. If the cars co	nass uple	3) $-0.6 \text{ ms}^{-1} 2.4 \text{ ms}^{-1}$
	together, the common speed after collision is	1	4) $-0.6 \text{ ms}^{-1} - 2.4 \text{ ms}^{-1}$
40	1)1 ms ⁻¹ 2)0.67 ms ⁻¹ 3)0.5 ms ⁻¹ 4)0.3 m In the above problem loss in K E during collicit	hs^{-1} 49.	A proton collides with a helium atom at rest. The helium atom has mass 4 time of proton and moves
40.	1) 1 KJ 2) 1.33 J	JII IS	forward at speed of $5 \times 10^5 \text{ ms}^{-1}$. If the collision
	3) 1.33 KJ 4) 1.33×10^4 J		is elastic, the initial speed of proton before colli-
41.	In the above problem the speed of the heavy in the opposite direction so that after collision	/ car they	1) 12 5×10 ⁶ ms ⁻¹ 2) 125×10 ⁶ ms ⁻¹
	come to rest	uley	$3) 25 \times 10^{6} \text{ ms}^{-1} \qquad 4) 0 \text{ ms}^{-1}$
	1) 1 ms^{-1} 2) 0.67 ms^{-1}	50.	In the above problem the velocity of proton after
	3) 0.5 ms^{-1} 4) 0.3 ms^{-1}		collision is
42.	A moving body makes a perfectly inelastic colli	sion	1) $0.75 \times 10^5 \text{ ms}^{-1}$ 2) $7.5 \times 10^5 \text{ ms}^{-1}$
	during collision is of initial K.E	lost	3) $-7.5 \times 10^5 \text{ ms}^{-1}$ 4) 0 ms ⁻¹
	1) $1/4$ 2) $1/2$ 3) 1 4) 0	51.	In the above problem the fraction of K.E trans- ferred from proton to belium is
43.	A 6 kg mass travelling at 2.5 ms^{-1} collides l	nead	1) 0.64 2) 0.36 3) 0.48 4) 1
	on with a stationary 4 kg mass. After the colli the 6 kg mass travels in its original direction w	sion 52.	A body of mass 2kg makes an elastic collision with
	speed of 1 ms^{-1} . The final velocity of 4 kg ma	iss is	original direction at a speed equal to 1/3 of its original
	1) 1 m/s 2) 2.25 ms ⁻¹ 3) 2 ms ⁻¹ 4) 0 ms	-1	speed. The mass of the second body is 1) $2 k \alpha$ (1) $3 k \alpha$ (2) $1 k \alpha$ (4) $4 k \alpha$
44.	In the above problem, coefficient of restitution	on is 53.	A body of mass 10 gm. moving with a velocity of
45	1) 1/4 2) 1/2 3) 3/4 4) 5/8	л	20 cm^{-1} collides a stationary mass of 90 gm. The
45.	A marble going at a speed of 2 ms^{-1} hits and marble of equal mass at rest. If the collision	other on is	collusion is perfectly elastic. Find the percentage
	perfectly elastic. Find the velocity of the first	after	1) 36 2) 48 3) 64 4) 0
	collision. $(1) 4 (2) 0 (3) 2 (4) 3$	54.	A 90 gm ball moving with 100 cm/s collides with
46.	A body of mass 10 kg moving with a velocit	yof	their respective velocities are
	5 ms^{-1} hits a body of 1 gm at rest. Find the	eve-	1) 80 cm/s; 180 cm/s 2) 180 cm/s; 80 cm/s
	locity of the second body after collision assur it to be perfectly elastic	ning 55.	3) 50 cm/s; 120 cm/s 4) 120 cm/s; 50 cm/s Two identical balls collide head on. The initial
	1) 10 ms^{-1} 2) 5 ms^{-1}		velocity of one is 0.75 cm^{-1} . While that of the
	3) 15 ms^{-1} 4) 0.10 ms^{-1}		other is -0.43 ms^{-1} . If the collision is perfectly
47.	A ping - pong ball strikes a wall with a veloci	tyof	elastic. Their respective final velocities are
	$10\ ms^{-1}$. If the collision is perfectly elastic	Find	1) 0.75 ms^{-1} ; -0.43 ms^{-1}
	the velocity of ball after impact		2) -0.43 ms^{-1} ; 0.75 ms $^{-1}$
	1) -20 ms^{-1} 2) -5 ms^{-1}		3) -0.75 ms^{-1} ; 0.43 ms ⁻¹
	3) 1.0 ms^{-1} 4) -10 ms^{-1}		4) 0.43 ms^{-1} ; 0.75 ms^{-1}

56. A particle of mass m1 moving with certain velocity collides with elastically head on with a particle of mass m_2 at rest. After collision their velocities will be in the ratio of 2) $\frac{m_1 - m_2}{2(m_1 + m_2)}$ 1) $\frac{m_1 - m_2}{m_1 - m_2}$

$$(1) m_1 + m_2$$
 $(2) 2(m_1 + m_2)$

$$\frac{2m_1}{m_1 - m_2}$$
 4) $\frac{m_1 - m_2}{2m_1}$

3)

		KEY			
01) 4	02) 3	03) 2	04) 1	05)3	
06) 2	07) 2	08) 3	09) 4	10) 2	
11)2	12) 1	13)1	14) 2	15)2	
16) 2	17) 1	18) 1	19) 4	20) 3	
21) 4	22) 3	23) 1	24) 3	25)3	
26) 2	27) 1	28) 2	29) 2	30) 1	
31) 3	32) 2	33) 3	34) 4	35)2	
36) 1	37) 3	38) 3	39) 2	40)4	
41) 1	42) 2	43) 2	44) 2	45)2	
46) 2	47) 4	48) 3	49) 2	50) 3	
51) 1	52) 3	53) 3	54) 1	55)2	
56) 4					

LEVEL II

1. A body of mass 5kg moving with a speed of 3ms⁻¹ collides head on with a body of mass 3kg moving in the opposite direction at a speed of 2ms-¹. The first body stops after the collision. Find the final velocity of the second body.

> $3) - 9ms^{-1}$ 1) 3ms⁻¹ 2) 5ms⁻¹ 4) 30ms⁻¹

2. A boy weighing 50kg throws a stone of mass 10kg horizontally with a velocity of 8ms⁻¹. With what velocity does he move?

16ms ⁻¹

3)
$$-160 \text{ms}^{-1}$$
 4) -1.9ms^{-1}

3. A shell is fired from gun with a velocity of 300ms^{-1} making an angle 60° with the horizontal. It explodes into two fragments when it reaches the highest position. The ratio of the masses of the two pieces is 1:3. If the smaller piece stops immediately after the collision. Find velocity of the other.

1) 0ms ⁻¹	2) 200ms ⁻¹
3) 250ms ⁻¹	4) 300ms ⁻¹

3) 250ms⁻¹

4. Ashell is fired from gun with a velocity of 300 ms⁻¹ making an angle 60° with the horizontal it bursts into two pieces whose masses are in the ratio 1: 3. The smaller piece retraces its path after the explosion and enters the gun. Find the velocity of the larger piece, immediately after the explosion. 2) 200ms⁻¹ 3) 250ms⁻¹ 4) 300ms⁻¹ $1) 0 m s^{-1}$ 5. A bomb of mass 4m at rest explodes into three pieces of masses in the ratio 1:1:2 Two identical pieces fly in mutually perpendicular directions each with a velocity

1) v 2) v/2 3)
$$\frac{v}{\sqrt{2}}$$
 4) $\frac{v}{\sqrt{3}}$

6. In the above problem third piece is making---angle with the motion of each piece.

v. The magnitude of velocity of third piece is

$$1) 45^{0} \qquad 2) 90^{0} \qquad 3) 135^{0} \qquad 4) 180^{0}$$

7. In the above problem the total K.E. produced in the explosion is

1)
$$1/2 \text{ mv}^2$$
 2) $3/2\text{mv}^2$ 3) mv^2 4) $2/3\text{mv}^2$

- 8. A projectile of mass 50 kg is shot vertically upwards with an initial velocity of 100ms⁻¹. After 5 seconds it explodes into two fragments, one of which having mass 20 kg, travels vertically up with a velocity of 150ms⁻¹. The velocity of the other fragment at that instant is
- 1) 100ms⁻¹ 2) 150ms⁻¹ 3) -150ms⁻¹ 4) -15ms⁻¹ 9. From the top of a tower of height 100m a 10 gm block is dropped freely and a 6gm bullet is fired vertically upwards from the foot of the tower with velocity 100ms⁻¹ simultaneously. They collide and stick together. The common velocity after collision is $(g=10ms^{-2})$

1) 27.5ms⁻¹ 2) 150ms⁻¹ 3) 40ms⁻¹ 4) 100ms⁻¹

- 10. A block of mass 19M is suspended by a string of length 1m. A bullet of mass M hits it and gets embedded in it. The block just complete the circle in the vertical plane. Find the velocity of the bullet.
 - 1) 140ms⁻¹ 2) $20\sqrt{19.6} \text{ ms}^{-1}$

3) $20\sqrt{9.8} \text{ ms}^{-1}$

- 4) 20ms⁻¹
- 11. A bullet of mass 50gm moving with velocity of 10m/s strikes a ballistic pendulum of mass 950gm at rest and gets embedde in it. The loss in K.E. of system is

1)100% 2) 95% 3) 5% 4) 50%

12.	A particle is projected with a velocity of 20ms ⁻¹ at an	22.	A body of	fmass 10gm	moving wi	th a velocity of
	angle 60 ⁰ with the horizontal. At the maximum height		$20\mathrm{cms}^{-1}\mathrm{c}$	ollides with	a stationary	mass of 90gm.
			The colli	sion is perf	fectly inela	stic. Find the
	it splits into two parts of equal masses. If one part		nercentao	e loss of kin	eticenerou	of the system
	just drops down, the velocity of the other part is			c 1055 01 km		
	1) 10ms^{-1} 2) 20ms^{-1}		1)0	2) 50	3)90	4) 100
		23.	A 90gm b	all moving a	t 100 cm/s σ	collide head on
	3) $10\sqrt{3} \text{ ms}^{-1}$ 4) $20\sqrt{3} \text{ ms}^{-1}$		with a sta	tionary 10g	m ball. The	coefficient of
13	A simple pendulum of length 0.2m has bob of mass		restitution	is 0.5. Thei	r respective	velocities after
101	5 = 1 +		collision a	re	1	
	Sgm, it is pulled aside through an angle 60° from		1) 125 or	10 $85 am/s$	2) 85 cm	125 cm/s
	the vertical. A spherical body of mass 2.5 gm is		1)135 cm	1/8, 85 011/8	2) 85 Cm/	s, 155 cm/s
	placed at the lowest position of the bob. When		3)-85 cm	1/s, 135 cm/s	5 4) 85 cm	/s,-135 cm/s
	the bob is released it strikes the spherical body	24.	In the abo	ve problem o	collision is	
	the bob is released it surkes the spherical body		1) elastic		2) inelasti	c
	and comes to rest. What is the velocity of the		3) perfect	inelastic	4) none	
	spherical body? (g=9.8ms ⁻²) (in m/s)	25	In the abc	ve problem	loss of K.E	is
	1) 1.4 2) 2.8 3) 3.5 4) 4.9		1) 45 000	lera	2) 22 500) era
14	A tennis ball bounces down a flight of stoirs striking		2) 22 750	era	(4) 0 erg	· • · 5
17.	a sh star in turn and relieve the total star in the	26	Λ on hore	fmass mma	ving with a	onstant volooity
	each step in turn and rebounding to the half of	<i>2</i> 0.	A sphere (л 111a88 111 1110	f ann a star	a at most If = :=
	height of the step. The coefficient of restitution is		nits anour	ier sphere of	i same mas	s at rest. If e is
	$(1)^{1/2}$ $(1)^{1/4}$		the coeffi	cient of rest	itution. Th	e ratio of their
	$(1) \frac{1}{2} (2) \frac{1}{2} (3) \left(\frac{1}{2}\right) (4) \left(\frac{1}{2}\right)$		velocities	after collision	nis	
	$\sqrt{2}$			1+e	$1 \pm 2e$	1-е
15	A ball hits the ground and loses 20% of its		1)1	2) $\frac{1+c}{2}$	3) $\frac{1+2c}{1-2}$	4) $\frac{1}{1}$
10.	momentum Coefficient of restitution is		,	2	/ 1-2e	∫ l+e
	1) 0 2 2) 0 4 3) 0 6 4) 0 8	27.	When tw	o perfectly e	elastic sphe	res collide the
16	A plastic ball falling from a beight 4 0m rebounds		impulse of	f the blow on	the sphere	is, if their initial
10.	A plastic ball failing from a for second collision		velocities	are u, and	u, in same	direction and
	is? A see then as afficient of restitution is		masses m	and m ¹	Z	
	$1 \ge 2 \ge 2 \ge 0.4 = 2 \ge 0.7 = 4 \ge 0.6$					
17	1) 0.5 2) 0.4 5) 0.7 4) 0.0		2mn	1 ¹ (11 11)	2mr	n^{1} (1) (1)
1/.	Asteel ball of radius 2 cm is initially at rest. It is		1) $\frac{1}{(m+r)}$	$\frac{1}{n^{1}}(u_{1} - u_{2})$	$(m-1)^{-2}$	$\frac{1}{m^{1}}(u_{1}-u_{2})$
	struck head on by another steel ball of radius 4cm		(. ,	(
	travelling with a velocity of 81 cm/s. If the collision		2mn	\mathbf{n}^1 , .	2mm	\mathbf{n}^1 , .
	is elastic their respective final velocities are		3) $\frac{1}{(m+m)}$	$\frac{1}{u_1^{1}}(u_1 + u_2)$	$(4) \frac{1}{(m-n)}$	$\frac{1}{(u_1 + u_2)}$
	1) 63 cm/s , 144 cm/s 2) 144 cm/s , 63 cm/s		(III + I)	n)	(m-n	n)
	2) 19 cm/s, 100 cm/s 4) 100 cm/s, 19 cm/s	28.	A body o	f mass 50gn	n collides e	lastically with
18	In the above problem, the common velocity if it is		another b	ody of mas	s 30 gm at	rest. Then the
	perfectly inelastic collision		percentage	e loss of the v	elocity of the	e colliding body
	1) 144cm/s 2) 61 cm/s 3) 81 cm/s 4) 72 cm/s		during col	lision is	J	6 1
19.	A hail stone falling freely from a height h strikes		1) 25%	2) 75%	3) 50%	4) 67%
	the roof of a parked car with aspeed of 10ms ⁻¹		1/23/0	211570	5,5070	T) 0770
	and rebounds to a height of 0.2m the fraction of			T ZEV		
	K.E. lost in the impact is $(g=10 \text{ ms}^{-1})$		• •	<u>KE</u>	<u>Y</u>	
	1) 0.04 2) 0.96 3) 0.5 4) 0		1) 1	2)1	3) 2	4) 3
20.	If two perfectly elastic balls of masses 2gm and		5) 3	6) 3	7) 2	8) 4
	3gm moving in opposite directions with speeds of		9) 1	10) 1	11) 2	12) 2
	8 m/s and 6 m/s respectively collide elastically		13) 2	14) 2	15) 4	16) 3
	their final velocities are respectively		17) 2	18) 4	19) 2	20) 4
	1) 5 2 ms ⁻¹ 8 8 ms ⁻¹ 2) 8 8 ms ⁻¹ 5 2 ms ⁻¹		21) 2	22) 3	23) 2	24) 2
	3) -88 ms^{-1} -52 ms^{-1} $4) -88 \text{ ms}^{-1}$ 52 ms^{-1}		21) 2 25) 2	22, 3 26) 4	2372 27) 1	27) 2 28) 2
21	Δ hall of mass 0.1 kg makes on alastic collision		23) 3	20) 4	21) I	20) Z
21.	with a ball of unknown mass initially of rest and					
	while a ball of unknown mass initially at rest and					
Í	rebounds with 1/5 of its original speed. The mass					
1	of the other ball is					

1) 0.1 kg 2) 0.2 kg 3) 0.3 kg 4) 0.4 kg JR.PHYSICS

HINTS FOR LEVEL II

1.
$$m_1u_1 - m_2u_2 = m_1v_1 + m_2v_2$$

 $15 - 6 = 0 + 3V_2 \Rightarrow V_2 = 3ms^{-1}$
2. $m_2V_2 = -m_1v_1$
 $50 v_2 = -10(8) \Rightarrow V_2 = -1.6ms^{-1}$
3. $4 \not m (u \cos \theta) = 3 \not m V$
 $4 \times 300 \times \frac{1}{2} = 3 \Rightarrow V = 200 ms^{-1}$
4. $4m(u \cos \theta) = m(-u \cos \theta) + 3mV$
 $3V = 5u \cos \theta$
5. $\sqrt{2}mV = 2mV_1 \Rightarrow V_1 = \frac{V}{\sqrt{2}}$
7. $KE = \frac{1}{2}mV^2 + \frac{1}{2}mV^2 + \frac{1}{2}(2m)V_1^2 = \frac{3}{2}mV^2$
8. $V = u - g/-$
 $= 100 - (9.8)5$
 $= 100 - 49$
 $= 51 and$
 $MV = m_1v_1 + m_2v_2$
 $50 \times 51 = 20 \times 150 + 30V_2$
 $2550 - 3000 = 30V_2$
 $-45 \not b = 3 \not b V_2 \Rightarrow V_2 = -15ms^{-1}$
9. $time, t = \frac{h}{u} = \frac{100}{100} = 1 \sec$
 $freely falling : u_1 = gt = 10ms^{-1}$
 $upward projected, u_2 = u - gt = 90ms^{-1}$
 $-m_1u_1 + m_2u_2 = (m_1 + m_2)V$
 $-10(10) + 6(90) = 16 V \Rightarrow 16V = 440$
 $V = 27.5 ms^{-1}$
10. $m_1u_1 + m_2u_2 = (m_1 + m_2)\sqrt{5gr}$
11. % loss of $KE = \frac{m_2}{m_1 + m_2}(100)$
12. $2m (u \cos \theta) = mV \Rightarrow V = 2u \cos \theta$
13. $Velocity of bob at mean u = \sqrt{2gl(1 - \cos \theta)}$

$$5\left[\sqrt{2gl(1-\cos\theta)}\right] = 2.5V \implies V = 2.8ms^{-1}$$

$$14. e = \sqrt{\frac{h_2}{h_1}} = \sqrt{\frac{\frac{1}{2}}{h}} = \frac{1}{\sqrt{2}}$$

$$15. 80\% mu = mv \frac{80}{100} = \frac{v}{u} \implies e = 0.8$$

$$16. T = t + 2t_1$$

$$= \sqrt{\frac{2h}{g}} [1+2e]$$

$$2.4 = 1+2e \implies e = 0.7$$

$$17. As mass, m = d(volume) = d\frac{4}{3}\pi r^3$$

$$m \alpha r^3 so, V_1 = \left(\frac{r_1^3 - r_2^3}{r_1^3 + r_2^3}\right)u_1 and V_2 = \frac{2r_1^3 u_1}{r_1^3 + r_2^3}$$

$$18. r_1^3 u_1 + r_2^3 u_2 = (r_1^3 + r_2^3) V$$

$$19. \frac{KE - PE}{KE} = \frac{\frac{1}{2}mv^2 - mgh}{\frac{1}{2}mv^2} = \frac{v^2 - 2gh}{v^2}$$

$$20. V_1 = \left(\frac{m_1 - m_2}{m_1 + m_2}\right)u_1 + \frac{2m_2 u_2}{m_1 + m_2} and$$

$$V_2 = \left(\frac{m_2 - m_1}{m_1 + m_2}\right)u_2 + \frac{2m_1 u_1}{m_1 + m_2}$$

$$21. -\frac{u}{3} = \left(\frac{m_1 - m_2}{m_1 + m_2}\right)u \implies m_2 = 2m_1$$

$$22. \% \text{ loss of KE } = \frac{m_2}{m_1 + m_2} (100)$$

$$= \frac{90}{100} (100) = 90$$

$$23. mu_1 + mu_2 = mv_1 + mu_2$$

$$go \times 100 = 90v_1 + 10v_2$$

$$gv_1 + v_2 = 90 \longrightarrow 1$$

$$and 0.5 = \frac{v_2 - v_1}{100 - 0} \implies v_2 - v_1 = 50 \longrightarrow 2$$

$$v_1 and v_2 values are calculated by solving equations 1\&2$$

 $m_1 u + m_2(0) = m_1(0) + m_2 V$

JR.PHYSICS

COLLISIONS

24. As
$$e = 0.5$$
 so it is an inelastic.
25. loss of $KE = KE_1 - KE_2$
26. $mu = m v_1 + m v_2 \Rightarrow v_2 + v_1 = u \rightarrow 1$
 $e = \frac{v_2 - v_1}{u - 0} \Rightarrow v_2 - v_1 = eu \rightarrow 2$
by solving 1 and 2, $v_1 = \frac{(1 - e)}{2}u$
 $v_2 = \frac{(1 + e)}{2}u$

27. Im pulse,
$$I = m(u_1 - v_1)$$

= $m \left\{ u_1 - \left[\left(\frac{m - m^1}{m + m^1} \right) u_1 + \frac{2m^1 u_2}{m + m^1} \right] \right\}$
= $\frac{2mm^1}{m + m^1} (u_1 - u_2)$

 1^{st} body = $\frac{u_1 - v_1}{(100)}$

28. Colliding body is first body so, % loss of velocity of

$$= \left[u_{1} - \left[\frac{m_{1} - m_{2}}{m_{1} + m_{2}} \right] u_{1} \right] 100$$
$$= \left[1 - \left[\frac{m_{1} - m_{2}}{m_{1} + m_{2}} \right] \right] 100$$
$$= \frac{2m_{2}}{m_{1} + m_{2}} (100)$$
$$= \frac{2 \times 30}{80} \times 100 = 75\%$$

LEVEL III

1. A block of wood of mass 3M is suspended by a string of length 10/3m. A bullet of mass M hits is with acertain velocity and gets embedded it. The block and the bullet swing to one side till the string makes 120° with the initial position. Find the velocity of the bullet (g=10ms⁻²)

1)
$$\frac{40}{\sqrt{3}}$$
 ms⁻¹ 2) 20ms⁻¹ 3) 30ms⁻¹ 4) 40ms⁻¹

2. The pendulum ball of mass m_1 let swing from height h, strikes and sticks to the pendulum ball m_2 at rest. The combination then swings to a height h/ 3. m_2 in terms of m_1 is 1) 1.732 m_2 0.732m_3) 0.732m_4)m_1 3. Three identical particles with velocities $v_0\bar{i}$, $-3v_0\bar{j}$ and $5v_0\bar{k}$ collide successively with each other in such a way that they form a single particle. The velocity of resultant particle in i, j, k form is

1)
$$v_0(\overline{i}-3\overline{j}+5\overline{k})$$
 2) $\frac{v_0}{3}(\overline{i}-3\overline{j}+5\overline{k})$
3) $\overline{i}-3\overline{j}+5\overline{k}$ 4) $\frac{1}{3}(\overline{i}-3\overline{j}+5\overline{k})$

4. A particle of mass m has a velocity $-v_0 i$, while a second particle of same mass has a velocity $v_0 j$. After the particles collide, first particle is found to have a velocity $\frac{-1}{2}v_0\overline{i}$ then the velocity of other

particle is

1)
$$\frac{-1}{2} v_0^{\rho} i + v_0^{\rho} j$$

2) $\frac{1}{2} v_0^{\rho} i + v_0^{\rho} j$
3) $v_0^{\mu} v_0^{\mu} v_0^{\mu} j$
4) $-v_0^{\mu} v_0^{\mu} v_0^{\mu} j$

- 5. Fivespheres of masses 1, 2, 3, 4, 5 kg are moving along a straight line in the same direction with velocities 5, 4, 3, 2, 1 m/s respectively. The first sphere collides with the second and both stick together. The compound mass collides with the third sphere and so on. The velocity of the compound mass when all stick together is 1) 3/7 m/s 2) 7/3 m/s 3) 1 m/s 4) none
- 6. A 50 gm ball collides with another ball of mass 150 gm, moving in its direction of motion, After collision the tow balls move at a an angle 30° with their initial direction. Ratio of their velocities after collision is 1) 3 : 1 2) 1 : 3 3) 2 : 3 4) 1 : 1
- Particles A and B of masses 20 gm and 40 gm are simultaneously projected at angles 45° and 135° from two points P and Q with a velocity 49 m/s each. They collide in their path, after collision if A retraces its path, velocity of B is

1) 49 m/s 2) 24. 5 m/s 3) zero 4) 98 m/s At high altitude a body at rest explodes into two fragments of equal masses with one fragment receiving horizontal velocity of 10 ms⁻¹. Time taken by the two radius vectors connecting point of explosion to fragment to make 90° is (g=10 ms⁻²) 1) 10 s 2) 4 s 3) 2 s 4) 1 s

JR.PHYSICS

8.

		1.7	
9.	A wooden block of mass 10gm is dropped from	15.	A 1 kg ball moving at $12ms^{-1}$ collides head-on
	the top of a cliff 100m high simultaneously a bullet		with a 2kg, ball moving in the opposite direction
	of same mass is fired from the foot of the clif		at 24 ms^{-1} . If $e=2/3$ the velocities after impact are
	vertically upwards with a velocity of 100ms ⁻¹ . If		respectively.
	thebullet after collision gets embedded in the block,		1) $-28ms^{-1}$, $-4ms^{-1}$ 2) $28ms^{-1}$, $-4ms^{-1}$
	the common velocity of the bullet and the block		$3) -28 \text{ms}^{-1}, 4 \text{ms}^{-1} \qquad 4) 28 \text{ms}^{-1}, 4 \text{ms}^{-1}$
	immediately after collision is $(\alpha = 10 \text{ ms}^{-2})$	16.	A moving sphere P collides another sphere Q at
	1) 40 mc ⁻¹ downword 2) 40 mc ⁻¹ unword		rest. If the collision takes place along the line joining
	$\frac{1}{40} \frac{1}{100} \frac{1}{$		their centres of mass such that their total kinetic
	3) 80ms ⁻¹ upward 4) zero		energy is conserved and the fraction of K.E.
10.	A ball of mass 100 gm is projected vertically		8
	upward from theground with a velocity of		transferred by the colliding particle is $\frac{3}{9}$, the mass
	50ms ⁻¹ . At the same time another identical ball is		of P and the mass of Q bear a ratio
	dropped from a height of 100m to fall freely along		1) $\sqrt{8} \cdot 3$ 2) 9 : 8 3) 2 : 3 4) 1 : 2
	the same path as that followed by the first ball.	17.	A 3kg ball moving to the right at 4 m/sec collides
			with a 4kg ball moving to the right at 2 m/sec.
	and finally fall to the ground. The time taken by		Find the final velocities of the balls in m/sec if the
	the combined mass to fall to the ground is		coefficient of restitution is 0.6
	approximately (g=10ms ⁻²)		1) 2.2, 3.4 2) 1, 2 3) 4, 5 4) 6,8
	1) 4.5 s 2) 6.5 s 3) 9 s 4) 13 s	18.	A ball strikes a horizontal floor at an angle 45°.
11.	A test tube of mass 20 gm is filled with a gas and		The value of 'e' between the ball and the floor is
	fitted with a stopper of 2gm. It is suspended		1/2. Find the fraction of K.E. loss during the
	horizontally by means of a thread of 1m length		collision
	and heated. When the stopper kicks out, the tube		5 3 7 3
	just completes a circle in verticle plane. The		1) $\frac{3}{8}$ 2) $\frac{3}{8}$ 3) $\frac{7}{8}$ 4) $\frac{3}{4}$
	velocity with which the stopper is kicked out is	19	A smooth steel ball strikes a fixed smooth steel
	1) 7ms^{-1} 2) 10ms^{-1} 3) 70ms^{-1} 4) 0.1ms^{-1}	17.	plate at an angle ' Θ ' with the vertical If 'e' is the
12.	A block of mass m moving at a speed v collides		coefficient of restitution, the angle at which the
	with another block of mass 3 m at rest. If the light		rebounce will take place with the vertical is
	block comes to rest after collision, the coefficient		$(\operatorname{Tan} A)$ $(\operatorname{Cot} A)$
	of restitution is		1) $\alpha = \operatorname{Tan}^{-1} \left \frac{\operatorname{Tan}^{-1}}{2} \right $ 2) $\alpha = \operatorname{Tan}^{-1} \left \frac{\operatorname{Coto}}{2} \right $
	1 1 1 1		
	1) $\frac{1}{3}$ 2) $\frac{1}{6}$ 3) $\frac{1}{2}$ 4) $\frac{1}{4}$		3) $\alpha = \operatorname{Tan}^{-1}\left(\frac{\sin\theta}{\cos\theta}\right)$ A) $\alpha = \operatorname{Tan}^{-1}\left(\frac{e}{\cos\theta}\right)$
13	Two bodies move towards each other and collide		(e) $(Tan\theta)$
1.5.	in elastically. The velocity of the first body before	20.	A particle strikes a horizontal friction less floor
	impact is $2m/s$ and of the second is $4m/sec$. The		with a speed 'u' at an angle ' θ ' with the verticle
	common velocity after collision is 1m/s in the		and rebounds with a speed 'v' at an angle ' α '
	direction of the first body. How many times did		with the verticle. Find the value of 'v' if 'e' is the
	the K.E. of the first body exceed that of the second		coefficient of restitution.
	body before collision.		1) $y = u_0 \sqrt{e^2 \sin^2 \theta + \cos^2 \theta}$
	1) 4.25 2) 3.25 3) 2.25 4) 1.25		$2) \qquad \sqrt{2 + 2 + 2}$
14.	A moving particle of mass 'm' makes head-on		$2 v = u\sqrt{e^2}\cos^2\theta + \sin^2\theta$
	elastic collision with a particle of mass '2m' which		3) $v = u\sqrt{e^2 \cos^2 \theta + \tan^2 \theta}$
	is initially at rest. The fraction of K.E. lost by		4) $y = y_{1}\sqrt{a_{0}a_{1}^{2} + a_{1}^{2} + a_{2}^{2} + a_{2}^{2} + a_{2}^{2} + a_{1}^{2} + a_{2}^{2} + a_{2}^{2}$
	conding particle is $1 \times 1/2$ $2 \times 1/0$ $2 \times 8/0$ $4 \times 2/2$		$v = u \sqrt{\cot \theta} + e \cos \theta$
	1) 1/3 2) 1/9 3) 8/9 4) 2/3		
JR.PI	TYSICS 14	44	COLLISIONS

21. Hail stones are observed to strike the surface of 27. A ball is thrown at an angle of incidence ' θ ' on a frozenlake at 30° to the verticle and rebound at horizontal plane such that the incident direction 60° to the vertical. The coefficient of restitution is and the reflected direction are at right angles to each other if the coefficient of restitution is 'e' then 1) $\frac{2}{3}$ 2) $\frac{1}{\sqrt{3}}$ 3) $\frac{1}{3}$ 4) $\frac{\sqrt{3}}{2}$ θ' is equal to 2) $Tan^{-1}(2e)$ 1) $Tan^{-1}(e)$ 22. A bullet of mass 0.01 kg moves at a speed of 500 3) Tan⁻¹ ($\sqrt{2}$ e) 4) Tan⁻¹ (\sqrt{e}) m/sec, strikes a block of 2 kg suspended by a rope of length 5m. The block raises to a height of KEY 0.1m, with what velocity the bullet emerges from 2) 2 3) 2 4) 1 1) 4 7) 3 8) 3 9) 2 6)1 the block. 11) 3 12)1 13)4 14) 3 1) 220 m/sec 2) 340 m/sec 16) 4 17) 1 18) 2 19) 1 4) 250 m/sec 3) 120 m/sec21) 3 22) 1 23) 3 24) 1 23. Two bodies of masses m₁ and m₂ moving on the 26) 2 27) 4 same direction with velocities u₁ and u₂ collide. The **HINTS FOR LEVEL -III** velocities after collision are v_1 and v_2 . If each sphere loses the same amount of kinetic energy, then 1. $M \times u = (3M + M)\sqrt{2gl(1 - \cos\theta)}$ 1) $u_1 + u_2 + v_1 - v_2 = 0$ 2. $m_1 \times \sqrt{2gh} = (m_1 + m_2) \sqrt{2gh/3}$ 2) $u_1 - u_2 + v_1 + v_2 = 0$ 3. $mV_0\bar{i}-3mV_0\bar{j}+5mV_0\bar{K}=(m+m+m)V$ $\therefore V = \frac{mV_o(\overline{i} - 3\overline{j} + 5\overline{K})}{2}$ 3) $u_1 + u_2 + v_1 + v_2 = 0$ 4) $u_1 + u_2 - v_1 - v_2 = 0$ 4. $\binom{Total \ momentum}{before \ collision} = \binom{Total \ momentum}{after \ collision}$ 24. Two spheres A and B of equal mass lie on the smooth horizantal circular groove at opposit ends $5. \begin{pmatrix} Total momentum \\ before \ collision \end{pmatrix} = \begin{pmatrix} Total momentum \\ after \ collision \end{pmatrix}$ of diameter and at the end of time 't' impinges on B. If 'e' is the coefficient of restitution, the second impinge will occur after a time 6. Applying law of conservation of 1) $\frac{2t}{2}$ 2) $\frac{t}{2}$ 3) $\frac{\pi t}{2}$ 4) $\frac{2\pi t}{2}$ momentum in the vertical direction $0=m_1v_1Sin30^{\circ}-m_2v_2sin30^{\circ}$ A ball moving with a speed of 2.2 m/sec strikes 25. an identical stationary ball. After collision the $\Rightarrow \frac{V_1}{V_2} = \frac{m_2}{m_1} = \frac{150}{50} = \frac{3}{1}$ first ball moves at 1.1 m/sec at 60° with the original line of motion. The magnitude and 9 Time after which collision takes place direction of the after ball is $t = \frac{h}{u} = \frac{100}{100} = 1 \sec \theta$ 1) 5 m/sec, 90° 2) 2 m/sec, 60° 3) $\sqrt{3}(1.1)$ m/sec, 30°4) 10 m/sec, 60° Initial velocity of the wooden block (u_1) 26. A body of mass 0.2 kg dropped from a height $= gt = 10 \times 1 = 10m/s$ Initial velocity of the bullet (u_2) '6m'. If $e = \frac{1}{\sqrt{6}}$ then K.E. last during its first = u-gt $=100-10\times 1=90m/s$ bounce from the ground is $= m_1 u_1 - m_2 u_2 = (m_1 + m_2)V$ 1) 1.96 J 2) 9.8 J 3) 19.6 J 4) zero $\therefore V = 40m/s$

JR.PHYSICS

5) 2

10)1

15) 1

20) 2

25) 3

11.

$$\begin{array}{c}
11.\\
(M+m)0 = m \times v - M \sqrt{5gl} \\
(M+m)0 = m \times v - M \sqrt{5gl} \\
(M=20 \times 10^{-3} Kg, m=2 \times 10^{-3} Kg)
\end{array}$$
15.

$$\begin{array}{c}
mu_1 + m_2 u_2 = mv_1 + m_2 v_2 \\
e = \frac{v_2 - v_1}{u_1 - u_2} \\
on solving v_1 and v_2 can be calculated.
\end{aligned}$$
19.

$$e = \frac{V \cos \theta}{u \cos \theta} \\
u \sin \theta = V \sin \alpha$$
20.

$$V = \sqrt{(V \sin \alpha)^2 + (V \cos \alpha)^2} \\
V = \sqrt{(u \sin \theta)^2 + (eu \cos \theta)^2} \\
u \sqrt{e^2 \cos^2 \theta + \sin^2 \theta}$$
21.

$$Tan\alpha = \frac{Tan\theta}{e}$$
23.

$$\frac{1}{2}m_1 u_1^2 - \frac{1}{2}m_1 V_1^2 = \frac{1}{2}m_2 u_2^2 - \frac{1}{2}m_2 V_2^2 \\
m_1 u_1 + m_2 u_2 = m_1 V_1 + m_2 V_2 \\
\Rightarrow u_1 + V_1 = -(V_2 + u_2) \\
u_1 + V_1 + V_2 + u_2 = 0$$
24.

$$e = \frac{V_2 - V_1}{u} \\
V_{net} = V_2 - V_1 = eu \\
at sec ond impact t_1 = \frac{2\pi r}{V_{net}} = \frac{2\pi r}{eu}$$
25.
In obligue collision along x - direction from law of consevation of linear momentum

$$u_1 = V_1 \cos 60 + V_2 \cos \alpha \\
along Y - direction \\
0 = V_1 \sin 60 - V_2 \sin \alpha$$

$$e = \sqrt{\frac{h_2}{h_1}} find mg(h_1 - h_2)$$
7. *T* a n α = e *T* a n θ
g iv e n θ + α = 90°
ew **Type of Questions**
7. Two spheres of different masses moving in the same direction undergo perfect head on elastic collision. Then,
7. a) Their velocities are interchanged if they are of same mass
7. b) If the heavier sphere were at rest before collision. it continues to be at rest after collision and the lighter sphere retraces its path will the same velocity
7. c) If the lighter sphere were at rest before collision, it moves with the velocity of the heavier sphere and the heavier sphere continues to move with its original velocity after collision.
7. d) If the lighter sphere were at rest before collision, it moves with double the velocity of the heavier sphere and the heavier sphere continues to move with its original velocity, after collision.
7. a, b, c are correct
7. A, small metal sphere falls from a height h onto a plane surface strikes it with velocity v and rebounds. If e is the coefficient of restitution
7. a) the height to which it rebounds after 1 collisions is e^n h
7. b) the height to which it rebounds after 4 th collision is e^4 v
7. d) the velocity with which it strikes the surface for the second collision is e^{v}
7. i) only a and b are correct
7. Jondy b and c are correct
7. Jondy b and c are correct
7. Jondy b and c are correct
7. A shall care true
7. When a bullet is fired from a gun
7. KE of bullet is m

COLLISIONS

05.	 d) velocity of bullet is more than that of gun 1) only a & b are true 2) only b & c are true 3) a, b & d are true 4) a, b, c & d are true About a collision which are not correct a) physical contact is must b) colliding particles cannot change c) the effect of external force is not considered 	11.	 shape keeping the total energy constant 1) only "a" is true 2) a, b, d are true 3) b, c, d are true 4) a, b, c are true Identify the correct statements from the following a) The collisions between the nuclei and fundamental particles are considered as elastic collisions b) Emission of an alpha particle by U²³⁵ is an
06.	 a) linear momentum does not conserve 1) only a & d 2) only a & b 3) a, b, c 4) a, b, d During collision a) The colliding bodies experience large force during small interval of time b) The colliding bodies need not touch each other c) The kinetic energy conserves d) The linear 	12	 "elastic collision" c) The collision between two ivory balls is considered as "elastic collision" d) A running man jumps into a train. It is an "elastic collision" 1) only a & b are true 2) only b & c are true 3) a, b & c are true 4) b, c & d are true
07.	 momentum conserves 1) only a & b happen 2) only b and c happen 3) a , b & c happen 4) a, b & d happen During collision a) There is a change in momenta of individual bodies b) The change in total momentum of the system of colliding particle is zero c) The change in total energy is zero d) The law of conservation of momentum is not 	12.	 a) A bullet is fired into a wooden block is an "inelastic collision" b) A running man jumps into a train is an "inelastic collision" c) If the coefficient of restitution is zero the collision is perfectly "inelastic" d) There is no loss of kinetic energy during inelastic collision. 1) a & h are true
08.	 valid 1) only a & b are true 2) only b & c are true 3) a, b & c are true 4) b, c & d are true During one dimensional collision or head on collision a) The bodies move along the line joining their centre of mass before and after collision b) The bodies should move in opposite direction 	13.	3) a, b & c are true 4) a, b, c & d are true A body of mass m_1 moving with a velocity "u" collides elastically with another body of mass m_2 at rest. a) The fraction of kinetic energy transferred to $4m_1m_2$
	c) The bodies change their direction after collision d) The bodies move along the line joining their centre of mass before and after collision either in same direction or in opposite direction 1) only a is correct 2) only a & b are correct 3) a, b & c are correct		second body is $\overline{(m_1 + m_2)^2}$ b) The fraction of energy retained by the first body is $\left(\frac{m_1 - m_2}{m_1 + m_2}\right)^2$
09.	 a) There is a loss of kinetic energy b) some of the kinetic energy is used to deform the body c) some of the kinetic energy is liberated as heat d) There is a loss of mass energy l) only a is true (2) only h and c are true 	14.	c) If $m_1 = m_2$ the energy transferred is 100 % d) The energy lost during the collision is found as heat 1) only a & b are true 2) only b & c are true 3) b, c & d are true 4) a, b, c & d are true Statement A : A bomb of mass M at rest explodes into two parts of mass " m_1 " and " m_2 ". The total energy released is F. The energy corriad by
10.	 a) a,b & c are true 4) b, c & d are true During "elastic collision" a) there is no loss of kinetic energy 2) the bodies are perfectly elastic c) temporarily some of the kinetic energy is used to deform the bodies d) after collision the bodies regain the original 		mass m_1 is $\frac{Em_2}{M}$ Statement B : The kinetic energy is not conserved during inelastic collision 1) A and B are true 2) A is true but B is false 3) A is false but B is true 4) A and B are false

15. Statement A : A neutro collides head on an ato A at rest. The fraction by neutron is $\left(\frac{A-1}{A+1}\right)$ Statement B : The kino ing an elastic collision 1) A and B are true 3) A is false but B is tr	n travelling with a velocity om of atomic mass number of the total energy retained 2 etic energy conserves dur- 2) A is true but B is false ue 4) A and B	19.	the momentum of the bullet is conserved. Reason (R) : Law of conservation of momentum holds good only for any collision. Assertion (A) : When a particle of certain mass collides with identical particle at rest, the two par- ticles move after perfectly elastic collision in mu- tually perpendicular direction, if it were not head on collision Reason (R) : Both momentum and KE are con- served in the case of perfectly elastic collision Assertion (A) : The value of coefficient of restitu-
16. Match the following List - I	List - II		tion is independent of the masses and velocities of the colliding bodies but depends on their materials Reson(R): Coefficient of restitution is the ratio
 a) Perfectly inelastic collision b) perfectly elastic collision c) Law of conservation of linear momentum d) Impulse 	e) KE of the system conserved f) $0 \le e \le 1$ g) Change of momentum h) Coefficient of restitution = zero i) Coefficient of restitution > 1	21.	Reason (R): Coefficient of restitution is the ratio of the relative velocity of separation or the rela- tive velocity of approach Assertion (A): When a body moving with certain velocity collides with another body of same mass at rest, the collision being perfectly elastic head on col- lision, 100% of its K.E is transferred to the latter Reason (R): Both momentum and K.E are con- served in the case of perfectly elastic collision
1) a - f; b - e; c - h; 2) a - h; b - e; c - f; 3) a - e; b - h; c - g; 4) a - g; b - f; c - e; 17. Match the following	d -g d -g d -i d -h	22. 23.	Assertion (A): If the momentum of a body increases by 20 %, then its K.E also increases by 20 % Reason (R) : The K.E of a body is directly proportional to the square of its momentum Assertion (A): When a ball hits a floor obliquely
List - I a) Relative velocity before collision = Relative velocity after collision	List - II e) Newton's II law of motion		and gets reflected after inelastic collision, only the vertical component of its velocity gets changed. Reason (R) : During collision the floor exerts a force on the ball only along the normal but not
b) Bodies stick together after collision motion c) Force	f) Newton's III lawg) Coefficient of restitution = 1	24.	Assertion (A): Newton's laws can be applied to bigger bodies Reason (R): During any kind of collision the cen-
d) Recoil of the gun	h) Coefficient of restitution = 0 i) Binding energy	25.	tre of mass of the system is not accelerated Assertion (A): A freely falling body experiences a constant horizontal force due to wind velocity, its path is a straight line
1) a - g; b - h; c - e; 2) a - h; b - g; c - f; 3) a - g; b - e; c - f;	d - 1 d -e d -h		Reason (R): The motion is decided by the unbal- anced force acting on it
4) a - e ; b - f ; c - g ;	d -i	26.	Assertion (A): A body of mass " m_1 " collides elas-
Assertion & Reason Type While answering the Assertion and Reason ques- tions you are required to choose any one of the type following responses.			tically with another body of mass " m_2 " at rest the ratio of the the final energy of the first body to the final energy of the second body is $\frac{(m_1 - m_2)^2}{m_1^2}$
 Both Assertion (A) and R is the correct exp Both Assertion (A) and reason does not give the correct exp 	and Reason (R) are correct lanation Reason (R) are correct but the prrect explanation		Reason (R): The collision is perfectly elastic and the coefficient of restitution si 1
3) A is true but R is fals 18. Assertion (A): When	se 4) A is false but R is true a bullet is fired from a gun,		
JR.PHYSICS	1	48	COLLISIONS

Assertion (A): A body of " m_1 " collides another body of mass " m_2 " at rest elastically. The fraction	04.	A stationary body of mass 3 kg explodes into three equal pieces. Two of the pieces fly off at right angles to each other, one with a velocity $2\overline{i}$ m/s
of energy transferred to the second body is $\frac{m_1}{m_1 + m_2}$		and the other with velocity $3\overline{j}$ m/s. If the explo-
Reason (R) : In an "inelastic collision" only linear momentum is conserved Assertion (A) : A body of mass 'm' collides an- other body of mass "nm' at rest. The energy trans-		sion takes place in 10^{-5} s, the average force act- ing on the third piece in newtons is [2003 - M] 1) $(2i+3j)\times10^{-5}$ 2) $-(2i+3j)\times10^{5}$ 3) $(3i-2i)\times10^{5}$ 4) $(2i-3i)\times10^{-5}$
ferred to the second body is $\frac{4n}{(n+1)^2}$ Reason (R) : The above collision is a perfectly inelastic collision	05.	Two identical blocks A and B, each of mass m, rest- ing on smooth floor are connected by a light spring of natural length L and the spring constant k, with the spring at its natural length. A third identical block C
KEY 01) 4 02) 3 03) 4 04) 3 05) 4 06) 4 07) 3 08) 4 09) 3 10) 4 11) 3 12) 2 13) 3 14) 1 15) 1 16) 2 17) 1 18) 4 19) 1 20) 2 21) 1 22) 4 23) 1 24) 4 25) 1 26) 1 27) 4 28) 3	06.	(mass m) moving with a speed v along the line join- ing A and B collides inelastically with A. The maxi- mum compression in the spring is [2003 -E] 1) $v\sqrt{\frac{m}{2k}}$ 2) $m\sqrt{\frac{v}{2k}}$ 3) $\sqrt{\frac{mv}{k}}$ 4) $\frac{mv}{2k}$ Two particles having position vectors $\bar{r}_1 = (3\bar{i} + 5\bar{j})$ mand $\bar{r}_2 = (-5\bar{i} + 3\bar{j})$ m are mov-
<u>QUESTIONS FROM</u> PREVIOUS EAMCET EXAM		ing with velocities $\overline{v}_1 = (-4\overline{i} + 3\overline{j})$ m/s and $\overline{v}_2 = (-a\overline{i} + 7\overline{j})$ m/s. If they collide after 2 sec-
A body x with a momentum p collides with another identical stationary body y one dimensionally. During the collision y gives an impulse J to the body x. Then the coefficient of restitution is $[2004 - M]$ 2J J J J J J J J	07.	onds, the value of 'a' is $[2003 E]$ 1) 22) 43) 64) 8A body of mass 2 kg moving with a velocity of $6 ms^{-1}$ strikes inelastically with another body ofsame mass at rest. The amount of heat evolved
1) $\frac{1}{P}$ -1 2) $\frac{1}{P}$ +1 3) $\frac{1}{P}$ -1 4) $\frac{1}{2P}$ -1 A 2 kg ball moving at 24 ms ⁻¹ undergoes head on elastic collision with a 4 kg ball moving in the opposite direction at 48 ms ⁻¹ . If the coefficient	08.	during collision is [2002 - M] 1) 36 J 2) 18 J 3) 9 J 4) 3 J A body'A' experience perfectly elastic collision with a stationary body 'B'. If after collision the bodies fly apart in the opposite directions with equal ve- locities, the mass ratio of 'A' and 'B' is [2001 - M]
or restruction is $2/3$, their velocities, in ms ⁻¹ after impact are [2004 - E] 1) - 56, - 82) - 28, - 43) - 14, - 24) -7, -1 Consider the following statements A and B. Identify the correct choice in the given answer :[2003 - M] A : In a one - dimensional perfectly elastic collision between two moving bodies of equal masses, the	09.	1) $\frac{1}{2}$ 2) $\frac{1}{3}$ 3) $\frac{1}{4}$ 4) $\frac{1}{5}$ A particle falls from a height 'h' upon a fixed horizontal plane and rebounds. If 'e' is the coefficient of restitution, the total distance travelled before it comes to rest is [2001 - E]

1)
$$h\left(\frac{1+e^2}{1-e^2}\right)$$

2) $h\left(\frac{1-e^2}{1+e^2}\right)$
3) $\frac{h}{2}\left(\frac{1-e^2}{1+e^2}\right)$
4) $\frac{h}{2}\left(\frac{1+e^2}{1-e^2}\right)$

27.

28.

1) A and B are correct 2) Both A and B are wrong 3) A is correct B is wrong 4) A is wrong B is correct

bodies merely exchange their velocities after collision B: If a lighter body at rest suffers perfectly elastic collision with a very heavy body moving with a certain velocity, after collision both travel with same velocity

01.

02.

03.

149

10.11.11.	A body of mass m_1 moving with a velocity 10 ms ⁻¹ collides with another body at rest of mass m_2 . Af- ter collision the velocities of the two bodies are 2 ms ⁻¹ and 5 ms ⁻¹ respectively along the direction of motion of m_1 . The ratio of $\frac{m_1}{m_2}$ is [2000 - E] 1) $\frac{5}{12}$ 2) $\frac{5}{8}$ 3) $\frac{8}{5}$ 4) $\frac{12}{5}$ An object initially at rest explodes into three frag- ments A, B & C. The momentum of A is P and that of B is $\sqrt{3}$ P where P is a positive number. Which are moving perpendicular to each other. The momentum of C will be [1999 - E] 1) $(1 + \sqrt{3})$ P in a direction making 120° with that of B 3) 2P in a direction making 150° with that of B A car of mass 400 kg travelling at 72 kmph crashes a truck of mass 4000 kg and travelling at 9 kmph in the same direction. The car bounces back with a speed of 18 kmph. The speed of the truck after the impact is [98 - E]	17.18.19.20.	A mass of 12 kg initially at rest bursts into two frag- ments of 8 kg and 4 kg. If the velocity of 8 kg mass is 16 ms ⁻¹ , the KE of 4 kg mass is [1997 - M] 1) 2048 J 2) 128 J 3) 144 J 4) 64 J A solid wooden block resting on a friction less surface is hit by a bullet. The bullet gets embed- ded. During this process [1996 - E] 1) only kinetic energy is conserved 2) only mo- mentum is conserved 3) both kinetic energy and momentum are con- served 4) neither momentum nor energy are conserved A body P moving with a velocity of 20 ms ⁻¹ col- lides with another body Q of same mass at rest. After collision P comes to rest. What is the ve- locity of the body Q? [1996 - M] 1) 10 ms ⁻¹ 2) 20 ms ⁻¹ 3) 30 ms ⁻¹ 4) 5 ms ⁻¹ A 5 kg body moving with 10 ms ⁻¹ strikes a 20 kg body at rest. The collision is elastic and the 5 kg body comes to rest. and the 20 kg body is set into motion. The velocity of the second body [1994-M] 1) 2.5 ms ⁻¹ in the original direction of motion 2) 2.5 ms ⁻¹ in the original direction of motion
13.	A ball 'A' moving with a speed of 90 ms ⁻¹ collides directly with another identical ball B moving with a speed 'v' in the opposite direction. A comes to rest after collision. If the coefficients of restitution is 0.8, the speed of B before collision is [1998 - E] 1) 10 ms ⁻¹ 2) 81 ms ⁻¹	21.	4) 5 ms^{-1} in the opposite direction of motion A 2 Kg ball is moving at 10 ms^{-1} and collides with another 2 Kg ball at rest. After collision they move together with [1994 - E] 1) 5 ms ⁻¹ in the opposite direction
	3) 22.5 ms^{-1} 4) 90 ms^{-1}		2) 5 ms ^{-1} in the same direction
14.15.16.	In the inelastic collision between two bodies, the physical quantity that is conserved [1999 - M] 1) KE 2) Momentum 3) PE 4) KE and Momentum The quantities that are conserved in elastic colli- sion are [1998 - M] 1) momentum, kinetic energy and temperature 2) momentum and kinetic energy 3) momentum only 4) kinetic energy only A gun mounted on the top of a moving truck is aimed in the backward direction at an angle of 30° to the vertical. If the muzzle velocity of the gun is 4 ms ⁻¹ the value of the speed of the truck that will make the bullet come out vertically is [1998 - M]	22. 23.	3) 10 ms ⁻¹ in the opposite direction 4) 10 ms ⁻¹ in the same direction A bullet of mass 'x' moves with a velocity y, hits a wooden block of mass z at rest and gets embed- ded in it. After collision, the wooden block and bullet in it moves, the velocity is [1993 - E] 1) $\frac{x}{x+z}y$ 2) $\frac{x+y}{x}y$ 3) $\frac{z}{x+y}y$ 4) $\frac{x+y}{z}y$ A ball is dropped from a height 'h' to the ground. If the coefficient of restitution is 'e' the height to which the ball goes up after it rebounded for the n th time is [1993 - M] 1) he ² 2) he ²ⁿ 3) he ⁴ⁿ 4) h
	1) 1 ms ⁻¹ 2) $\frac{\sqrt{3}}{2}$ ms ⁻¹ 3) 0.5 ms ⁻¹ 4) 2 ms ⁻¹		

COLLISIONS

24. 25.	A bomb of mass 9 kg explodes into two pieces of mass 3 kg and 6 kg. The velocity of 3 kg, mass is 16 m/s. The KE of the 6 kg piece is [1993 - E] 1) 96 J 2) 192 J 3) 384 J 4) 768 J A ball of mass 'M' moving with a velocity \vec{x} col-	31.	A heavy steel ball of mass greater than 1 kg moving with a speed of $2m/s$ collides head on with a sta- tionary ping pong ball of mass less than 0.1 g. The collision is elastic. After the collision the ping pong ball moves approximately with a speed [1982] 1) 2 m/s 2) 4 m/s
25.	A call of mass in moving with a velocity \sqrt{V} col- lides head on elastically with another body of the same mass 'M' moving with a velocity - \vec{V} in the opposite direction. After the collision [1992-E] 1) The velocities are exchanged by the two balls 2) Both the balls come to rest 3) Both of them move at right angles to the origi- nal line of motion 4) One ball comes to rest and the other ball trav- els back with a velocity $2v$ A railway truck of mass 2×10^4 kg travelling at 0.5 m/s collides with another of half of its mass moving in opposite direction with a velocity of 0.4 m/sec. If they collide with each other then their common velocity is 1) 0.2 ms ⁻¹ 2) 0.4 ms ⁻¹ 3) 0.6 ms ⁻¹ 4) 0.8 ms ⁻¹	32.33.34.	1) 2 m/s 2) 4 m/s 3) $2 \times 10^4 \text{ m/s}$ 4) $2 \times 10^3 \text{ m/s}$ A railway truck of mass 16,000 kg moving with avelocity of 5 ms^{-1} strikes another truck of mass4,000 kg at rest. If they move together after impact, their common velocity is1) 2 ms^{-1} 2) 4 ms^{-1} 1) 2 ms^{-1} 2) 4 ms^{-1} 2) ms^{-1}2) 4 ms^{-1} 3) 6 ms^{-1} 4) 8 ms^{-1} Consider the following statements A and B andidentify the correct answer:A: Coefficient of restitution varies between 0 and 1.B: In inelastic collision, the law of conservation ofenergy is satisfied.[2005-M]1. A and B are true2. A and B are false3. A is true but B is false4. A is false but B is true.Consider the following statements A and B andidentify the correct answer:[2005-E]A: In an elastic collision, if a body suffers a headon collision with another of same mass at rest, thefirst body comes to rest while the other startsmoving with the velocity of the first one.
27.	into three fragments. Two of the fragments each of mass "m" are found to move with a speed of 'v' each in mutually perpendicular directions. The total energy released in this process is [1991-M] $1)\frac{1}{2}$ mv ² 2)2. $\frac{1}{2}$ mv ² 3)3. $\frac{1}{2}$ mv ² 4)4. $\frac{1}{2}$ mv ² A sum fines a hullet of mass 50 givith a value ity	<u>KEY</u>	B: Two bodies of equal masses suffering a head-on elastic collision merely exchanges their velocities. 1. A and B are true 2. A and B are false 3. A is true but B is false 4. A is false but B is true 01) 1 02) 1 03) 3 04) 2 05) 1 06) 4 07) 2 08) 2 09) 1 10) 2
20.	of mass 30 ms^{-1} . Because of this, the gun is pushed back with a velocity of 1 ms^{-1} . The mass of the gun is [1989-E] 1) 15 kg 2) 30 kg 3) 1.5 kg 4) 20 kg A shell at rest explodes into two pieces of equal		11) 412) 313) 114) 215) 116) 417) 118) 219) 220) 121) 222) 123) 224) 225) 126) 127) 328) 329) 330) 231) 232) 233) 234) 1
30.	 mass. The two [1988 - E] 1) be at rest 2) move with different velocities in different directions 3) same speed in opposite direction 4) same velocity in the same direction A body of mass 'M' collides against a wall with a velocity 'v' and retraces its path with the same velocity, the change in momentum is		

LEVEL-IV

I. When U-238 releases an α - particle, it turns into Thorium. If α particle produced from uranium has a velocity of 3×10^5 m/s is used in Rutherfords α -ray scattering experiment on nucless of mass number 'A'it deviates by angle of 180^0 with original path. The rebound α -particle collides daugh-

ter nucleus and looses $\frac{1}{5}^{th}$ of its velocity.

Answer the following Questions:

- 1. The above example reveals.
 - 1. Collision between α particle and nucleus.
 - 2. No collision between α particle and nucleus. 3. A perfectly elastic collision between α - particle and nucleus.

4. A semi elastic collision between α - particle and nucleus.

- 2. Velocity of Throium when α ray is released.
 - 1. $5 \times 10^3 ms^{-1}$ 2. $5 \times 10^4 ms^{-1}$

3. $5 \times 10^5 ms^{-1}$ 4. $5 \times 10^2 ms^{-1}$

- 3. Velocity of Thorium after it collides the rebounding α particle.
 - 1. $602 \times 10^3 ms^{-1}$ 2. $6.02 \times 10^3 ms^{-1}$
 - 3. $60.2 \times 10^3 ms^{-1}$ 4. $0.602 \times 10^3 ms^{-1}$
- 4. Heat energy will be released in
 a) Uranium disintigration
 b) α ray reflection
 c) collision between rebounding α particle & thorium.
 - 1) a is correct 2) a & b correct
 - 3) a,b,c are correct 4) a&c are correct

<u>KEY</u> 3.2

1.3 2.1

II. An object is projected at certain angle with certain velocity on the horizontal hard surface. Then it under-goes bounces. The coefficient of restitution is 'e'.

H,T&R are initial maximum hight, Time of flight and range respectively.

4.1

Then answer the following questions.

1. What is the total vertical distance travelled before stopping bouncing.

1.
$$H \begin{bmatrix} 1+e^2 \end{bmatrix}$$

2. $\frac{H}{1-e^2}$
3. $\frac{H}{1+e^2}$
4. $H \begin{bmatrix} 1-e^2 \end{bmatrix}$

2. What is the total time elapsed before stopping bouncing.

1.
$$T \begin{bmatrix} 1-e \end{bmatrix}$$

2. $T \begin{bmatrix} 1+e \end{bmatrix}$
3. $\frac{T}{1-e}$
4. $\frac{T}{1+e}$

3. What is the total horizontal distance travelled by it before stopping bouncing.

1.
$$R \begin{bmatrix} 1-e \end{bmatrix}$$
 2. $R \begin{bmatrix} 1+e \end{bmatrix}$
3. $\frac{R}{1-e}$ 4. $\frac{R}{1+e}$

$$1-e$$
 4. $\frac{1}{1+e}$

- **III.** A rollerskater of mass 50Kg on a friction less surface is having two balls of masses 1kg and 2 kg in his two hands. If he throws the lighter mass he recoils with velocity of 2m/s and when heavier mass is thrown he recoils with 1 m/s. Answer the following questions.
- 1. The ratio of velocity of projection of the two balls approximately is

3. If he throws the two balls at a time with their respective velocities, the velocity of recoil of the skater is

$$1.3.1 \text{ m/s} \quad 2.6.2 \text{ m/s} \quad 3.1.5 \text{ m/s} \quad 4.12 \text{ m/s}$$
