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Figure 1 Schematic and scanning electron microscope (SEM) image of a gate electrode pattern 
on a GaAsIAIGaAs heterostructure used to create a quantum dot of complex shape in the underly- 
ing two-dimensional (2D) electron gas. (Courtesy of C. Marcus.) 



The previous chapter addressed solids with spatial confinement at the 
nanometer scale along one direction: surfaces, interfaces, and quantum wells. 
These systems were effectively two-dimensional, which we define as extended 
in two directions but of nanometer scale in the third. Only a small number of 
quantized states-often only one-are occupied in the confined direction. In 
this chapter we discuss solids confined in either two or three orthogonal direc- 
tions, creating effectively one-dimensional (ID) or zero-dimensional (OD) 
nanostructures. Important 1D examples are carbon nanotubes, quantum 
wires, and conducting polymers. Examples of OD systems include semiconduc- 
tor nanocrystals, metal nanoparticles, and lithographically patterned quantum 
dots. Some examples are shown in Figs. 1 to 3. We will almost exclusively focus 
on nanostructures that are created from confined periodic solids. Nonperiodic 
nanostructures are of great interest in other fields, such as molecular assem- 
blies in chemistry and organic macromolecules in biology. 

The techniques for the creation of nanostructures can be divided into two 
broad categories. Top-down approaches use lithographic patterning to struc- 
ture macroscopic materials at the nanoscale, such as the metallic electrodes 
on top of a semiconductor heterostructure shown in Fig. 1. Bottom-up ap- 
proaches utilize growth and self-assembly to build nanostructures from atomic 
or molecular precursors. A CdSe nanocrystal grown in solution is shown in 
Fig. 2. It is typically difficult to create structures smaller than 50 nm with 

Figure 2 Model and transmission electron lnicroscope (TEM) image of a CdSe nanocrystal. 
Individual rows of atoms are clearly resolved in the TEM image. (Courtesy of A. P. Alivisatos.) 



Figure 3 Atomic force microscope (AFM) ili~age of.1 pair of crossed carbon nanotuhes contacted 
by Au electrodes patterned by electron beam lithography. (Image courtesy of M. S. Fuhrer.) Also 
shown is a model of the nanotube cross region, showing the honeycomb lattice of the graphene 
sheets that form the nanotube walls. (Courtesy of P. Avouris.) 

top-down techniques, while it is often difficult to create structures larger than 
50 nm by bottom-up techniques. A major challenge of nanoscience and tech- 
nology is to combine these approaches and develop strategies to reliably create 
complex systems over all length scales, from the molecular to the macroscopic. 
Figure 3 shows one example, where 100-nm-wide lithographic electrodes make 
contact to 2-nm-wide carbon nanotubes grown by chemical vapor deposition. 

When the extent of a solid is reduced in one or more dimensions, the 
physical, magnetic, electrical, and optical properties can be dramatically al- 
tered. This makes nanostructures a subject of both fundamental and practical 
interest; their properties can be tailored by controlling their size and shape on 



the nanometer scale. One class of effects is related to the large ratio of number 
of surface atoms to bulk atoms in a r~anostructure. For a spherical nanoparticle 
of radius R composed of atorrls with an average spacing a, thc ratio is given by 

For R = Ga - 1 nm, half of the atoms are on the surface. The large surface 
area of nanoparticles is advantageous for applications in gas storage, where 
molcculcs are adsorbed on the surfaces, or in catalysis, wl~ere reactions occur 
on the surface of the catalyst. It also has dra~rlatic effects on the stability of thc 
nanoparticle. The cohesive energy is dra~natically lowercd because atoms on 
the surcace are inco~npletely bonded. Yanoparticlcs therefore melt at temper- 
atures far below the melting temperaturc of the corresponding bulk solid. 

The fundamental electronic and vibrational excitations of a nanostructure 
also become quantized, and these excitations determine many of the most irnpor- 
tant properties of the nanostructured material. These quantization phenomena 
will be the primary subject of this chapter. Typicdl5 they are important in the 
1-100-nanometer size range. 

IMAGING TECHNIQUES FOR NANOSTRUCTURES 

The development of new techniques to image and probe nanostructures 
has been essential to the evolutior~ of the field. For periodic 3D structures, the 
diffraction of electrons or X-rays can be used to determine structure in rccip- 
rocal space, which can then be inverted to find the rcal-space atomic arrange- 
rnents, as discussed in Chapter 2. For individual nanoscale solids, diffraction is 
only of limited utility for both fundamental and practical reasons. The solid's 
small size intcrn~pts the periodicity of the lattice, blurring rllffraction peaks, 
and also produces a very small scattered signal. 

Real-space probes that can directly determine the properties of the nano- 
structure are therefore very valuable. These probes use thc interaction of a 

typically an electron or photon, with the object under study, to create 
an image. The techniques fall into two major classes, which we will refer to as 
focal and scanned probc. 

In focal microscopy, the probe particle is focused by a series of lenses onto 
the sample. Figure 4 shows a schematic. The ultimate resolution of the system 
is limited by the wavelike nature of the particle through the Heisenberg Un- 
certainty Principle, or, equivalently, diffraction. This smallest fcature spacing 
d that can be resolved is given by 

where h is the wavelength of the probe and P = sin 8 is the numerical 
aperture defined in Fig. 4. Achieving nanoscale resolution rcqnires using par- 
ticles with srnall wavelengths and maximizing the nnmerical aperture. 



1 Source 

Figure 4 Schematic diagram of a focal mi- 
croscope. A beam emitted from a source is 
focused onto the sample by a series of lenses. 
An equivalent focal system can be used to 
focus particlelwaves emitted from the sample 
onto a detector. 

In scanned probe microscopy, by contrast, a tiny probe is brought close to 
the sample and scanned over its surface. The resolution of the microscope is 
determined by the effective range of the interaction between the probe and 
the structure under study, rather than by the wavelength of the probe particle. 

In addition to imaging, scanned and focal probes provide information 
about the electrical, vibrational, optical, and magnetic properties of individual 
nanostructures. Of particular importance is the electronic structure, expressed 
in the density of states. For a finite-sized system, the density of states is a se- 
ries of delta functions 

D(E) = Z ~ ( E  - E,) , 
I 

(3) 

where the sum is taken over all the energy eigenstates of the system. For 
extended solids, the density of states can be represented by a continuous func- 
tion, but for a nanostructure the discrete sum form is necessary along the con- 
fined directions. This quantized density of states determines many of the most 
important properties of nanostructures, and it can be directly measured using 
the techniques described below. 

Electron Microscopy 

A very powerful focal tool is the electron microscope. A collimated beam 
of electrons is accelerated by high voltages and focused through a series of 
electrostatic or magnetic lenses onto the sample under study. 

In transmission electron microscopy, or TEM, the electron beam trav- 
els through the sample and is focused on a detector plate in much the same 



way as the image is focused onto the eyepiece of an optical microscope. The ul- 
timate resolving power d is set by the wavelength of the accelerated electrons 

where V is the accelerating voltage (measured in volts). For typical accelerat- 
ing voltages (100 kV), the theoretical resolving power is therefore subatomic. 
Other effects, such as imperfections in the lenses, keep the TEM resolution well 
above this limit, hut d-  0.1 nm has been acllieved. Figure 2 shows a TEM 
irnage of a semiconductor nanocrystal, where rows of atoms are clearly resolved. 

,4 major limitation of TEM is that the electron beam must penetrate the 
sample, making it impossible to examinc stn~ctnres on solid substrates. This 
problem is overcome in the scanning electron microscope (SEM). In an 
SEM, a high-energy (100 V to 100 kV), tightly focused electron beam is scanned 
over the sample. The numhcr of hackscattered electrons and/or the secondary 
electrons generated by the beam that emerge from the sample depends on the 
local composition and topography of the sample. These electrons are collected by 
an electron detector, and an image is fornled by plotting this detector signal as a 
function of the beam location. This powerful technique can be used on most 
kinds of samples, but it typically has a lower resolution (>1 nm) than the TEM. 
Figure 1 is an SEM irnage of metallic electrodes on a GaAsIAlGaAs substrate. 

In addition to imaging, the SEM beam can be used to expose an electron- 
sensitive material and draw small features in a technique known as electron 
beam lithography. The ultimate resolution (<10 urn) is very high, but it is a 
slow process because the patterns must be drawn pixel by pixel. It is therefore 
used primarily in research, prototyping, and optical mask fahrication. 

Optical Microscopy 

The optical microscope is the prototypical focal instrument. Using visi- 
ble light and a high numerical aperture ( P  = I ) ,  the highest obtainable resolu- 
tion is 200400 nm. For direct imaging, optical microscopy thcrcfore only 
reaches the edge of the nanoscale realm. However, inany of the optical spectro- 
scopies discussed in Chapter 15 have been successfully adapted to study 
individual nanostructures. These include elastic light scattering, absorption, 
luminescence, and Raman scattering. Measurements of a single nanostructure, 
or even a single molecule, are possible if only one is in the field of view of the 
microscope. 

Here we briefly review the emission and absorption of electromagnetic 
radiation by matter in a manner suitable for applications to nanostnictures. 
Within the electric dipole approximation, Fermi's golden rule gives the transition 
rate between an initial state i and a higher energy statcj due to absorption: 



Transitions therefore occur between states that have a nonzero dipole matrix 
element and whose energies differ Ly the absorbed photon energy hw. Simi- 
larly, the emission rate from statej to i is given by 

2 I+,= (~n-/fi)l(jle~.rli)l  - E; + hw) + (4rrw;/c2)l{jlrli)12 , (6) 

where wji = (8, - ei)/fi and a is the fine striicturc constant. The first and sec- 
ond terms represent stimulated and spontaneous emission, respectivcly. 

By summing over all possible states, these relations can be used to calcll- 
late the total power u'E2 absorbed frorr~ tlle electromagnetic field and hence 
the real part of the conductivity: 

where ii is a unit vector pointing in the direction of the electric field. The 
absorption is proportional to the joint density of all initial and final states sepa- 
rated by an energy hw, weighted by the dipole matrix elemcnt and thc occupa- 
tion factors of the states. The Fermi functions inmcate that absorption only 
occurs when the initial state i is filled and the final statej is empty. 

The above relations show that absorptio~l and emission can be used to 
probe the rlectronic energy level spectra of nanostructures. Measurerr~erlts can 
readily he performed on macroscopic collections of no~nina l l~  identical narios- 
tructures, hrlt the effects of inhomogcnous broadening due to the variation in 
the properties of the individual nanostnlct~lres are significant. Furthermore, 
sometimes only a few or even a single nanostructure is a\-ailahle for measnre- 
rnent. Optical measurements that probe single nanostructures have therefore 
proven to be particularly valuable. 

Figure 5 shows an example of spor~taneous emission, or  fluorescence, from 
individual optically excited semiconductor quantu~n dots. The ernission occurs 
from the lowcst cner,g state in the conduction band to the highest energy state 
in the valence band. The linewidths of the emission lines from single nanocrys- 
tals are very narrow, bnt they are distributed over a rangc of energies due to 
variations in the nanocrystal size, shape, and local environment. Meas~lremmts 
of an ensemble therefore show a broad peak that does not accurately reflect the 
properties of a single nanocrystal. 

In addition to their use in probing nanostructures, optical focal systerms 
arc also widely used for microfabrication. In projection photolithography, a 
pattern on a mask is projected onto a photosensitive resist using optical 
elements. Following exposure and development of the resist, the pattern is 
transferred into the material of interest by etching or deposition through the 
resist stencil. Optical lithography is the basis for the mass-fabrication of 
microelectronic and microrrlechanical systems. By using wavelengths into the 
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Figure 5 Left: Image of the fluorescence from individual CdSe nanocrystals dilutely distributed 
on a surface at T = 10 K. Right: Spectra of the fluorescence of a number of different individual 
nanocrystals. In each spectrum, the high-energy peak is the primary transition between the lowest 
electronic state in the conduction band and the highest energy state in the valence hand. The 
lower energy peaks are associated transitions involving the emission of an LO phonon. Variations 
in the nanocrystal size and local electronic environment shift the positions of the peaks. The broad 
peak is the spectrum obtained for an ensemble of nominally identical nanoclystals. (After 
S. Empedocles et al.) 

deep-UV, devices with features of 100 nm are in commercial production. Fur- 
ther improvements using Extreme UV light or even X-rays are possible, but 
the masks and focusing elements become more and more challenging to fabri- 
cate and control. 

Scanning Tunneling Microscopy 

The most famous scanned probe instrument is the scanning tunneling 
microscope (STM), schematically shown in Fig. 6. Its invention was a break- 
through in the field of nanoscience. In an STM, a sharp metal tip, preferably 
one with a single atom protruding from the end, is brought to within a 
nanometer of the conducting sample to be studied. The position of the tip is 
controlled with picometer precision using piezoelectric materials that expand 
or contract in response to electrical signals from a control system. A voltage 
bias V is applied to the sample, and a tunneling current I flowing between 
the tip and the sample is measured. The current is proportional to 3, the 



Figure 6 Schematic of a scanning tunneling microscope (STM). Ilihen operated in feedback 
mode, the piezos scan the tip over the sample and maintain a constant tunneling current between 
the tip and the sample. (Courtesy of D. LePage.) Lower: STM image of a carbon nanotube. (Cour- 
tesy of C. Dekker.) 

tunneling probability through the gap between the tip and sample. The 
tunneling probability is exponentially sensitive to the tunneling distance. In 
the WKB approximation, 

where z is the distance between the tip and sample and 4 is the effective bar- 
rier height for tunneling. For typical parameters, a 0.1-nm change in the tip 
position leads to an order of magnitude change in 3. 

When the STM operates in feedback mode, I is maintained at a con- 
stant value by changing the tip height z. The STM thus tracks the surface 
topography, and very small changes in the height of the surface can be detected 



Figure 7 A "quantum corral" of mean radius 7.1 nm was formed by moving 48 Fe atoms on a Cu 
(111) surface. The Fe atoms scatter the surface state electrons, confining them to the interior of 
the corral. The rings in the corral are the density distribution of the electrons in the three quan- 
tum states of the corral that lie close to the Fermi energy. The atoms were imaged and moved into 
position by a low-temperature, ultra-high vacuum scanning tunneling microscope. (Image cour- 
tesy of D. M. Eigler, IBM Research Division.) 

(<1 pm). This is illustrated in Fig. 6, where an STM image of a carbon 
nanotube is shown. The STM can also be used to manipulate individual atoms 
on a surface. An example is shown in Fig. 7, where the STM tip is used to con- 
struct a "quantum corral" by pushing Fe atoms on a Cu (111) surface into 
a ring. 

The STM tunneling current I as a function of bias V can give spatial and 
spectroscopic information about the quantum states of a nanostructure. At 
zero temperature, the derivative of the current with respect to voltage is 

It is proportional to the density of states at the tunneling electron energy 
eF + eV, weighted by the electron probability density of those states at the 
STM tip position r,. 

For the quantum corral, the electrons in the 2D surface state of Cu are re- 
flected by the Fe atoms, creating a discrete set of states in the interior of the 
corral. The observed ripples in the image in Fig. 7 are due to the modulations 
of the probability density l+,(rt)l2 of these localized states near the tunneling 
electron energy. Images at different bias voltages yield the spatial structure of 
quantized states at different energies. 



Atomic Force Microscopy 

The atomic force microscope (AFM) was developed soon after the STM. 
It is a much more flexible technique than STM and can be used on both con- 
ducting and insulating samples. However, it typically has poorer resolution. An 
AFM measures the force between the tip and the sample, rather than the tun- 
neling current. A sharp tip is mounted on the end of a millimeter-sized can- 
tilever, as shown in Fig. 8. A force F exerted on the tip by the sample deflects 
the cantilever by Az: 

where C is the force constant of the cantilever. The displacement of the can- 
tilever is measured as a function of tip position, often by using the back of 
the cantilever as a reflector for a laser beam (Fig. 8). Motion of the reflector 
changes the path of the laser beam, which is detected using a photodiode array; 
picometer-scale displacements can easily be measured. Since a typical value of 
the force constant is C = 1N/m, pN-scale forces can be transduced. Forces well 
below 1 fN have been measured under special circumstances. 

The simplest mode of operation is contact mode, where the tip is dragged 
along in contact with the surface and the cantilever deflection is measured. 
This gives a measure of the sample topography, but it can damage the sample. 
Noncontact or intermittent-contact imaging modes are less invasive, and they 
also can give information about the long-range forces between the sample and 
the tip. In these techniques, the cantilever oscillates just above the sample 
due to an applied driving force of amplitude F,  near the cantilever resonance 

Figure 8 (a) Schematic of an atomic force microscope (AFM). Deflections of the cantilever are 
measured by a photodetector registering the position of a laser beam that reflects off the top of 
the cantilever. (Courtesy of Joost Frenken.) Inset: SEM image of an AFM tip. The effective 
radius of curvature of the tip can he less than 10 nm. 
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frequency o,. Modeling the cantilever as a driven simple harmonic oscillator, 
the magnitude of the cantilever response at a frequency o is given by 

where Q, the quality factor of the oscillator, is the ratio of the energy stored 
in the cantilever to the enerm dissipated per cycle. Note that on-resonance, 
w = o, ,  the response is Q tirnes larger than at low frequencies, making the 
dctcction of small forces possible. 

The parameters charactcrixing the oscillating cantilever are sensitive to 
any forces that occur between the tip and the sample. These forces can he van 
der Waals, electrostatic, magnetic, or many others. Thc interaction shifts the 
resonance frequency w,  andlor modifies Q. This change is recorded and uscd 
to construct an image. For example, in tapping mode imaging, the tip 'taps' the 
surface during the closest approach of the oscillation cycle, causing both a fre- 
qucncy shift and additional dissipation. The nanotube device shown in Fig. 3 is 
imagcd in tapping mode. 

Another important technique is Magnetic Force Microscopy (MFM), 
briefly discussed in Chapter 12. The tip is coated with a magnetic material 
so that it has a magnetic moment p normal to the surface of the sample. It 
then feels a force due to variations in local magnetic fields produced by the 
sample 

where 2, is the tip's equilibrium position and Az is the displacement during the 
oscillation. The term p(aB/az) produces a static deflection of the cantilever, 
but does mot alter the oscillation frequency or the damping. The term 
p(a2~laz2)Az, OII the other hand, has the form of a force constant change 6C, 
since it is linear in the displacenlent Az of the cantilever. It therefore shifts the 
resonance frcqucncy of the cantilever. Monitoring this frequency shift 
produces an image. Gradicnts of other local force fields can be similarly 
measured. 

There are many other scanned probe techniqnes. Ncar-ficld scanning 
optical ~nicroscopy (NSOM) creates optical images with a resolution below 
the diffraction limit by using a scanned subwavelength aperture through 
which photons 'tunnel'. Scanning capacitance microscopy (SCM) measures 
capacitancc variations between the tip and the sample as a function of posi- 
tion. This ever-growing family of techniques is increasingly used to character- 
ize objects ranging from individual molecllles to Si transistors in integrated 
circuits. 



ELECTRONIC STRUCTURE OF 1D SYSTEMS 

The quantized electro~lic states of nanostructures deterrr~ir~e their electri- 
cal and optical properties, and they influence the physical and chemical prop- 
erties as well. To descrihe these states, we take as our starting point the band 
structure of the bulk material. An effective mass approximation is used tbr thc 
electronic dispersion of a given hand, and the associated wavefiinctions are 
treated as plane waves. These are simplifications; the bands are not always par- 
abolic, and the true eigenstates are Bloch states, not plane waves. However, 
these assumptions greatly simplify the ~nathenlatics and are qualitatively (and 
often quantitatively) correct. We will also often neglect the Coulomb interac- 
tions hctwccn clcctrons. However, thcre are many cases in the physics of 
nanostructi~res where electron-electron interactions cannot bc ignored, as dis- 
cussed later in this chapter. 

One-dimensional ( ID)  Subbands 

Consider a nanoscale solid in the geometry of a wire. Its dirnensions along 
the r and y are nanoscale, but it is continuous in z .  The energies and eigen- 
states of such a wire arc: given by 

E = eiZj + fi2k2 / 2 m  ; +(x,y,z) = +i,j(x,y)eikz , (13) 

where i a n d j  are the quantum numbers labeling the eigenstates in the r,y 
plane and k is the wavevector in the z direction. For the rectangular wire 
shown i11 Fig. 9, E , ~  and +,J ((~,y)  are just particle-in-a-box energies and eigen- 
states discussed in Chapter 6. 

The dispersion relation consists of a series or 1D subbands, each corre- 
sponding to a different transverse energy state E,,,. The total density of elec- 
tronic states D(E) is the sum of thc dmsity of statcs of thc individual subhands: 

where Did(&) is given by 

k - i z , r z , ~ [  rn ]lb - Di,,(s) = -- - - -- 
dk dE 

4L for 6 > cSi 
2n 2f i2 (& - E , ~ )  hvif (15) 

= 0 for E < E , ~  

The first factor of two in the middle expression is due to spin degeneracy and 
the second from incltiding both positivc and ncgativc values of k. I11 thc right 
expression, v , ,~  is the velocity of the electron in the i,j suhhand with kinetic 
energy E - E ~ ~ .  Note that the density of states diverges as (E - E,,~)-'~' at each 
subband threshold. These are called van Hove singularities. This behavior 
stands in contrast to three dimensions, where D(E) goes to zero at low energies 
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Figure 9 Schematic of a rectangular quasi-one-dimensional wire, along with the dispersion rela- 
tions and the dens~ty of states of the 1D subbands. The peaks in the density of states at the sub- 
band thresholds are called Van Hove singularities. The probability density for the i = 2, j = 1 state 
is shown as a gray scale on the cross section of the wire. 

(Chapter 6), and two dimensions, where D(E) steps up a constant value at the 
bottom of each 2D subband (Prob. 17.3) 

Spectroscopy of Van Hove Singularities 

The Van Hove singularities described by (15) affect the electrical and opti- 
cal properties of 1D systems. Here, we discuss the case of a semiconducting 
carbon nanotube, whose band structure is calculated in Prob. 1 and shown in 
Fig. 10a. Van Hove singularities are seen in scanning tunneling spectroscopy, 
as shown in Fig. lob. Peaks in the differential conductance, which is propor- 
tional to the density of states by (9), are observed at bias voltages correspond- 
ing to the energies of these singularities. 

The optical absorption and emission of semiconducting nanotubes are also 
dominated by these singularities, since they depend on the initial and final 
density of states by (5)-(7). Figure 10c shows the photoluminescence intensity 
of a collection of carbon nanotubes as a function of the wavelength of the ex- 
citing and emitted light. The absorption of the incident light is enhanced when 
the energy matches E,, - E,,, the energy difference between the 2nd Van Hove 
singularities in the conductance and valence bands. The electrons and holes 
relax quickly to the bottom of the first subband, where they recombine, 



0 2 4 6 8 1 0  
Density of electronic states 

(a) 

Figure 10 (a) The density of states for a semiconducting carbon nanotube as a function of 
energy. The Van Hove singularities are seen in the STM tunneling spectra of a nanotube shown in 
(b). In (c), the emission intensity is plotted as a function of the emission wavelength and the exci- 
tation wavelength. Peaks in the intensity are observed when the absorption and emission energies 
correspond to those shown in the diagram (a). Different peaks correspond to nanotnbes with 
different radii and chirality. [After Bachilo et al. (a and c) and C. Dekker (b).] 



producing luminescence with energy - E , ~ .  Peaks are therefore observed 
when the emitted and absorbed light simultaneously match the energies be- 
tween the 1st and 2nd van Hove singularities, respectively. Different peaks in 
the emission intensity in the plot correspond to nanotubes of varying diame- 
ters and chiralities. 

1D Metals-Coulomb Interactions and Lattice Couplings 

In a quasi-one-dimensional metal, electrons fill up individual 1D sub- 
bands, with the Fermi energy and the total number of subbands occupied de- 
termined by the electron density. For a strictly 1D metal, there is only one 
(spin-degenerate) subband occupied. In this case, if there are nlD carriers per 
unit length: 

The Fermi surface of a 1D metal consists of just two points, at +k, 
and -kF, as shown in Fig. 11. This is quite different from the Fermi surfaces 
in 3D and 2D free-electron metals, which consist of a sphere and a circle, 
respectively. Two consequences of this unusual Fermi surface are discussed 
below. 

Coulomb interactions cause scattering among electrons near the Fermi en- 
ergy. For 3D metals, scattering is strongly suppressed near &, by the restrictions 
of energylmomentum conservation combined with the Pauli exclusion principle. 
At an energy E measured relative to E,,  IT,, = ( 1 1 ~ ~ )  (E/&,)~, where 117, is the 

Figure 11 Electronic structure of a 1D metal near the Ferlni energy. The Fermi surface consists 
of two points at + k,. The scattering of electrons from filled states 1 and 2 to empty states 3 and 4 
conserves energy as long as the energy difference is the same between 1 and 3 and between 2 and 
4. Momentum is simultaneously consewed because the energy is locally linear ink. 



classical scattering rate. By the uncertainty principle, this prod~ices an iincer- 
tainty in thc energy of the electron: 

8 ~ ( 3 ~ )  =  IT,, - ( ~ L / T ~ ) ( E / E ~ ) ~  . (17 )  

As the energy becomes small (measured relative to E ~ ) ,  the uncertai~ity ~ I I  the 
energy goes to zero as the second power of E .  The uncertainty 6.3 is therefore 
guaranteed to be small in conlparison to .s sufficiently close to 8,. This ensures 
that the quasiparticles near the Fermi surfacc arc wcll dcfincd. 

Thc case of one dimension is shown in Fig. 11. Energy and momentum 
conservation are eqriivalent in this case since for small s the energy is locally 
linear in the momentum change Ak = k-k,: 

Referring to Fig. 11, energy conservation requires that for an electron in state 
1 at energy E to scatter to state 3,  a si~nultaneous scattering of an electron from 
state 2 to 4 must occur. The only restriction is that the final state encrgy 3 bc 
positive and less than E .  This gives a rcduction factor I/%, - ( l / r 0 )  (sIsFJ, and, 
from the uncertainty principle, 

Since the uncertainty is linear in s, there is no guarantee that 8 s  will be 
smaller than E as E + 0. The fundamental assu~r~ption behind Fermi liquid 
theory, that weakly interacting quasiparticles exist as E + 0, is therefore not 
guaranteed in I D .  In fact, the ground state of the interacting I D  clcctron gas 
is believed not to be a Fermi liquid, but rather a Luttingcr liquid whose low- 
energy excitations are collective in nature. Thc cxcitations are more analogous 
to phonons or plasmons-a collective motion of many objects-than isolated 
electrons moving independently of their neighbors. This collective nature has 
a number of effects. For example, tunneling into a 1D rr~etal is suppressed at 
low energies because the tunneling electron must excite the collective modes. 
In spite of this issue, the independent electron picture rerrlains a useful ap- 
proxiniatiori for the 1D electron gas. It has been successful in describing most, 
but not all, experiments on real 1 D  systems, and will bc adoptcd below. 

A second unusual propcrty of 1D metals is that they are unstable to per- 
turhations at a wavevector 2kp For example, a &stortion of the lattice at this 
wavevector will open up a bandgap in the electronic spectrum, converting the 
metal to an insulator. This is the Peierls instability treated in detail in Chapter 
14. This effect is particularly important in 1U conducting polylners such as 
polyacetylene (Fig. 12).  It has one conduction electron per carbon atom spac- 
ing a, and therefore from ( 1 6 )  kF = 7ri2n. Without any distortions, polyacety- 
lene would have a half-filled band and be a metal. However, a lattice distortion 
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Figure 12 Structure of polyacetylene. Doe to the Peierls distortion, the lattice is dimerized, with 
carbon atoms joined by douhlc bonds in the diagram closer together than those linked by single 
bonds. The Peierls distortion opens a semiconducting gap o l  approximately 1.5 e17. 

at 2k ,  = nla, corresponding to a wavelength 2a, opens up a gap at the Fermi 
cnergy. This corresponds to a dimerization of the lattice. This dimerization 
produces alternating single and double bonds along the chain and turns poly- 
acetylene into a se~r~iconductor with a bandgap of 1.5 e\! 

Polyacetylene and related semiconducting polymers can be made into 
field-effect transistors, light-emitting diodes, and other semiconducting de- 
vices. They can also he doped chemically, producing metallic behavior with 
conductivities comparable to traditional metals. However, they retain the me- 
chanical flexibility and ease of processing characteristic of polymers. Their dis- 
covew has led to a revolution in flexible plastic elcctronics. 

A 

The Peierls distortion is large in polymers because their backbone consists 
of a single atomic chain, \vhich can casily distort. Other 1D systems such as 
nanotubes and nanowires arc much stiffer, and the Peierls transition is not ob- 
served at experimentally relevant temperatures. 

ELECTRICAL TRANSPORT IN 1D 

Conductance Quantization and the Landauer Formula 

A 1D channel has a finite current-carrying capacity for a given voltage ap- 
plied across its ends. It therefore llas a finite conductance even if there is no 
scattering in the wire. Cor~sider a wire with one siihband occupied connecting 
two larger reservvirs with a voltage difference V between them, as shown in 
Fig. 13. The right-going states will be populated up to an electrochemical po- 
tential pi and left-going states will he populated up to fi2, where p, - p2 = qV 
and 9 = -e for clcctrons and + e  for holes. The net current flowing throngh 
the channel due to the excess right-moving carrier density An is then 

D,(s)qV 
I = Anqv = - 

243% 2 vq2\r = -v L 4O=hz; h '  

where DR(&), the density of states of right-moving carriers, is '/2 the total den- 
sity of states given in (15). 



Figure 13 (a) The net current propagating between two reservoirs for an applied bias voltage dif- 
ference V, - V,. (b) Schematic representation of transmission probability 3 and reflection proba- 
bility !I? from a barrier in the channel, where 3 + !I? = 1. 

Remarkably, in 1D the velocity exactly cancels with the density of states to 
create a current that depends only on the voltages and fundamental constants. 
The two-terminal conductance I/V and resistance V/I are then 

A perfectly transmitting one-dimensional channel has a finite conductance 
whose value is the ratio of fundamental constants. This is called the conduc- 
tance quantum GQ; its inverse is called the resistance quantum RQ. While 
derived here in the effective mass approximation, it is true for a 1D band of 
arbitrary dispersion. 

The quantization of conductance is dramatically illustrated in the data in 
Fig. 14. A short quasi-1D channel is formed between two regions of a 2D elec- 
tron gas in a GaAs/AlGaAs heterostructure. As the carrier density of the chan- 
nel is increased, the conductance increases in discrete steps of height 2e2/h. 
Each step corresponds to the occupancy of an additional 1D subband in the 
wire. Conductance quantization is also observed in atomic-scale bridges be- 
tween macroscopic metals. 

If the channel is not perfectly conducting, the overall conductance is the 
quantum of conductance times the probability 3(+) for electron transmission 
through the channel (Fig. 13): 
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Gate voltage (volts) 

Figure 14 Conductance quantization in a short channel electrostatically defined in a GaAsI 
AlGaAs heterostmcture at different temperatures. A negative gate voltage Vg applied to the metal- 
lic gates on the s~lrface of the sample depletes the carriers in the underlying two-dimensional 
electron gas, creating a narrow channel. The channel is fully depleted of carriers at Vp = -2.1V 
Individual 1D subbands become occupied with increasing VR, with each new subband adding a 
conductance of 2e'llz. (Courtesy of H. Van Houten and C. Beenakker.) 

This equation is often called the Landauer Formula. For a quasi-1D system 
with multiple channels, we sum over the contributions of each channel, since 
conductances in parallel add: 

where i, j label the transverse eigenstates. For example, for N perfectly 
transmitted channels in parallel, 9 = N, as for the data in Fig. 14. 



At finite temperatures or biases, the Fermi-Dirac energ); distributions f  of 
thc clcctrons in thr left and right lcads must hc takcn into account: 

m 

I ( s ,V ,n  = (%/h j  1 blip - rb7j - f n ( s j ] 3 ( r )  . (24)  
-a 

The net current is simply the difference behveen the left- and right-moving 
currents, intcgratcd ovrr all mcrgics. 

The Landauer formula (22)  directly relates the resistance of a system to the 
transmission properties of the channel. Let us rewrite the resistance for the 
one-channel case in the following way: 

where A = 1 - 3 is thc rcflcction corfficicnt. Thc rcsistancc of the device is 
the sum of the first term, the quantized contact resistance, and the second term, 
the resistance due to scattering from barriers in the channel. The latter term is 
zero for a perfect conductor. Below we consider an application of the Landauer 
formula to the proble~ri of two barriers in series. We treat this ill both the colier- 
ent and incoherent limits o l  electron propagation between the barriers. 

Two Barriers in Series-Resonant Tunneling 

Consider two barriers in series separated by a distance L, with transmis- 
sion/reflection amplitudes t,, r, and t,, r,; as shown in Fig. 15. These ampli- 
tudes are complex: 

To calculate the transmission probability 3 t l~rougl~ t l ~ e  entire double barrier 
structure, we need the corresponding tra~lsrrlissio~l amplitude. For an incident 
wave from the left whose amplitude is 1, the amplitudes defined in Fig. 15 arc 
givcn by 

where p = 2kL is the phase that an clcctron with kinctic energy h2k2/2m accll- 
mulates propagating the distance 2L on a round trip between the barriers. 
Combining these to solve for the transmitted amplitude yields: 

The tra~is~nission t l~rougl~ the double barrier is then 

3 = I C i Y  = 
It, l"t2 IZ 

l+  lrl 121r2 l2 - 21r1 I Ir2 lcos(va) 

where p* = 2 7 ,  + cp,, + cp, 
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Figure 15 Resonant tunneling through two identical barriers in series separated by a length L. 
The upper diagram shows the transmission amplitudes between and outside the barriers for a 
unity amplitude incident wave. The transmission resonances at the energies of the quasibound 
states between the barriers are shorn. 

This is plotted in Fig. 15. Note the round-trip phase accumulation cp* includes 
the phase shifts associated with reflections from the barriers. 

The transmission probability (29) is greatly enhanced when cos(q~*) ap- 
proaches unity, because the denominator becomes small. This occurs for the 
resonance c o d t i o n  

where n is an integer. This is a general property of waves, and is due to the 

constructive interference of many pathways through the sample. This can be 
m 

easily seen by rewriting (28) using the series expansion 1/(1 - x) = 2 xm: 
m=O 

The mth order in the expansion corresponds to a path with m round trips be- 
tween the barriers. On resonance, these paths add in phase to yield a strongly 
enhanced transmission. 

Consider the special case where the barriers are the same: t l  = t,. We 
then have 

The transmission on resonance through a symmetric double-barrier structure 
is 1, even if the transmission through each of the individual barriers is small. 



This is called resonant tunneling. Ollresonance, the denominator of (29) is of 
order unity for opaque barriers, and the transmission is ronghly the product of 
the transmission coefficients of each of the two barriers in series: 3 - ltll"t212. 

The resonance condition 9* = 2 m  corresponds to the energies of the 
quasibound electronic states confined between the two barriers. For very 
opaque walls, this is just the particle-i~i-a-box quantizatiorl condition: kL = ml. 

We derived the resonant tunneling condition for a one-dimensional case, but it 
is a general result. The transmission through a confincd clcctron systcm is 
strongly enhanced at energies corresponding to the hound-state energy levels 
of the confined electrons. This is also evident from the STM tunneling expres- 
sion (9); quasibound states produce peaks in the differential conductance. 

For the case of opaque barriers, lt,l~It,l2 91, the cosine term in the de- 
nominator of (29) can be expanded, as shown in Prub. 3, yielding the familiar 
Breit-W7igner form for a resonance: 

4rJ-2 A< 
'(&) -- ( r L  +r2)' + 4(& & , , ) 2  

where r. = - It ' . 
J 2Tr J 

(33) 

The resonances are thus Lorentzian peaks with a width in energy of r = 

r, + r2 determined by the energy level spacing A& and the tra~~s~rlission prob- 
abilities through the two barriers. This is just the uncertainty principle broad- 
ening of the level due to the finite lifetime of the double-barrier bound state. 

Incoherent Addition and Ohm's Law 

If we instead treat the electron classically, we add probabilities rather than 
amplitudes. This is valid if the electron effectively loses track of its phase be- 
tween the barriers due to, for example, inelastic scattering from phonons. This 
corresponds to replacing (27) by 

I n 1 2 = l t 1 1 2 + j r l / Z / h 1 2 ;  h 2 = a 2 r 2 ;  I ~ i ~ = l a 1 ~ 1 t ~ ~ .  (34) 

This gives 

Some elementary manipulations (Proh. 4) yield 

The resistance is just the sum of the quantized contact resistance and the 
intrinsic resistances of the indwidual barriers (see Eq. 25). This is Ohm's law- 
resistors in series add. It is valid if interference effects can be neglected. 

Equation (36) allows us to connect to the Drude Iormula. Consider a process 
that gives a backscattering rate l/rh This backscattering could rcsult from either 
an elastic scattering process such as impilrity scattering or from an inelastic 



process such as phonon scattering. For propagation over a small distance dL, the 
reflection probability d% (@ 1) is 

This gives a contribution to the resistance, yielding a resistivity: 

= t l ~ l d ~  = (h/2e2)lCb . (38) 

This is equal to the 1D Drude resistance a;; = (nlDe2r1m)-', as shown in 
Prob. 4. Ignoring interference effects, the resistances of individual segments 
add ohmically, giving 

R = R ~ + ( ~ / % " ) L / ~ ~ )  . (39) 

Localization 

Now consider when two barriers are connected in series, hut coherence is 
not neglected. However, we average over all possihle phases, corresponding to 
an average over different energies. From Eq. (29), the average resistance is 

Notably, the phase-averaged resistance (40) is larger than the resistance in the 
incoherent limit (36). 

To understand the scaling with length associatcd with (40), consider a long 
conductor of length L consisting of a series of only elastic (phase-prese~ng)  
scatterers cl~aracterized by an elastic backscattering length C , .  Assume that the 
conductor has a large rcsistance (R), so that 31 = 1 and 3 4 1. For a small 
additional length dL, there will be an additional reflection and transmission 
d31 = dLlC,, as in (37), and d9 = 1 - d31. Combining these according to the 
prescription of (40), and assuming that d31 4 1, gives 

or equivalently, 

( d ~ )  = ( ~ ) ( 2 d ~  I C,) 

Separating variables and integrating both sides of the eqnation yields 

(R) = (h / 2e2) exp(2L 1 tz) . (43) 

Remarkably, the resistance grows exponentially with the length of the sample, 
rather than linearly as in an ollrnic conductor. This bchavior is a result of localiza- 
tion. Due to quar~tu~rl interference among the states scattered by disorder, the 
states become localized on a size scale 8 - C,, where 6 is called the localization 



length. There are no extended states that traverse the cntirc lcngth of thc con- 
ductor, so the resistance is exponentially large. A similar result holds for quasi-1D 
systems, but with a localization length 5 - Ne,, where N is the number of 1D 
subbands occupied. 

At very low temperatures, only coherent scattering processes occur arid 
thc rcsistance is exponentially large by (43). At finite temperatures, electrons 
retain their phase memory only over thc phase coherence length P, due to their 
interaction with other degrees of freedom such as phonons or electrons. This 
length typically is a power-law function of temperature, Y ,  = AT-", since the 
number of electronic and vibrational excitations present is a power law in T The 
resistance of each phase coherent segment can be approximated by (43) with t ,  
replacing L. The resistance of each phase coherent segrrlerlt decreases rapidly 
with increasing temperature (as the exponential of a power law in T). This 
dramatically decreases the overall rcsistancc, which is the (incoherent) series 
combination of L/ t ,  such phase coherent sections. At a siifficiently high tcm- 
perature where t!, 5 e,, all phase coherence is lost between scattering events 
and the ohmic expression (36) is applicable. 

A related issue is the nature of the electronic states in 2D and 3D systems 
in the presence of disorder. In 2D, it is believed that, for riorliriteractiiig elec- 
trons, all states are also localized by disorder. I11 3D, on the other hand, a criti- 
cal amount of disorder is required to localize the states. The subject of local- 
ization continlies to he of great fundamental intrrest and controversy, 
particularly when the effects of coulomb interactions between the electrons 
are included. 

Voltage Probes and the Buttiker-Lundauer Formalism 

In many measurements, Inore than two probes are connected to a conduc- 
tor. Some are used as voltage probes (which draw no nct cl~rrcnt from the 
sample) and others as current probes, as shown in Fig. 16. Biittiker extended 
the Landauer formalism to deal with this multiprobe case. Define 31nm' as 
the total transmission probability for an electron leaving contact in to arrive 
at contact n, including the contributions from all the 1D channels. For a 
current probe n with N,, channels, the electrochemical potential of the contact 
is fixed by an applied voltage, and the net current that flows through the con- 
tact is 

This is just the current flowing out of the contact rrlirius the currents flowing in 
that originated from each of the other contacts. Note that N ,  = z3'"2'"). which ,,! 
can be easily obtained from (44) by considering the equilibrium case where all 
the voltages are equal arid all the currents are zero. 



Figure 16 Schematic representation of a multiterminal conductor. Contacts 1 and 2 are current 
probes; contact 3 is a voltage probe. The transmission probability from contact 1 to 2 and from 
1 to 3 is schematically indicated. 

For a voltage probe, the potential V, adjusts itself so that no net current 
flows (I" = 0): 

2 3(nm)vm 
Vn = n i f n  

2 CJ(n,m) 
(45) 

m f n  

The electrochemical potential measured by the probe is the weighted average - 
of the electrochemical potentials of the different contacts, where the weight- 
ing coefficients are the transmission probabilities. - 

Equations (44-45) have a number of surprising consequences. Since the 
measured currents and voltages depend on 3("."), the details of the path that 
an electron takes in traversing the sample influences the resistance. A voltage 
probe can disturb the paths, and the measured voltage can in turn be affected 
by transmission through all parts of the sample. Below we present three exam- 
ples that illustrate these properties. 

Consider a voltage probe connected to the center of an otherwise ballistic 
1D conductor, as shown in Fig. 16. Assume that electrons leaving from probe 1 
either arrive at probe 2 or 3, but none are directly backscattered. The voltage 
read by probe 3 is then 

where for the last step we assumed that the voltage probe couples symmetri- 
cally to the left and right moving channels, 3(3.1) = 3 ( 3 , 2 ) .  The voltage mea- 
sured in the channel is just the average of the voltage of the two contacts. 

The current flowing out of contact 1 is given by: 

where (46) has been employed in the second step. Note that the presence of 
the voltage probe decreases the transmission below the unity value of a perfect 



Figure 17 Four-terminal Hall resistance measurements of submicron junctions of different 
shapes. In the junction shown schematically in the upper left, the Hall resistance is negative at 
small B and positive at large B. The reason is indicated in the diagram; at small B, the electrons 
bounce off the wall into the "wrong" probe. (After C. Ford et al.) 

channel. Some of the electrons scatter into the voltage probe, are re-emitted, 
and then return to contact 1. This shows that voltage probes are in general in- 
vasive; they influence what they measure unless they only couple very weakly 
to the system. 

Figure 17 shows a measurement of the Hall resistance of two nanoscale 
crosses patterned in a high mobility 2D electron gas whose geometries are 
shown in the insets. The junction region is ballistic, meaning that there is no 
scattering from disorder, only from the sample walls. The measured Hall resis- 
tance is not of the form B/n,e, where n, is the sheet carrier concentration, as 
expected for a macroscopic 2D electron gas, but has instead a number of 
notable features. Most surprisingly, the Hall voltage is of the opposite sign at 
low B compared to high B for the sample shown in the upper left inset. This 
can be easily understood from the shape of the classical electron paths 
sketched on the figure. At high B, the Lorentz force preferentially deflects the 
electron into the upper electrode, giving the expected sign of the Hall voltage. 
At low B, however, the electron bounces off the boundary of the conductor 
and arrives at the lower electrode, reversing the sign of the measured Hall 
voltage. For a small multiprobe conductor, the resistance is a measure of the 
electron trajectories through the sample and not simply related to intrinsic 
material properties like the electron density. 

Equations (44-45) can be used to treat arbitrarily complex microscopic (or 
even macroscopic) conductors. It has been widely used to describe measure- 
ments on small disordered metal samples at low temperatures as a function of 
magnetic field B. These samples have many transverse channels and contain 
impurities. The elastic scattering length 4, is less than the sample dimensions, 



but the phase coherence length 4, is greater. Electrons therefore propagate 
diffusively, but phase-coherently, through the sample. This is called the meso- 
scopic regime. In a semiclassical picture, the transmission amplitude between 
two probes n and m corresponds to the sum of many different classical paths 
through the sample: 

Note that the phase associated with each path amplitude a] contains a contri- 
bution from the magnetic vector potential A, as described in Appendix G. 
Since 3 ( n 3 m )  = It(n,m)12, quantum interference among different conducting path- 
ways through the sample modulates the transmission. 

An interesting example is shown in Fig. 18. On the left, the four-terminal 
resistance of a nanoscale metallic wire is shown. Aperiodic fluctuations are 
seen in the conductance versus magnetic field B. These fluctuations are due to 
modulations of the interference between the many diffusive paths linking the 
contacts. Since there are many paths, the result is an essentially random varia- 
tion. These modulations are referred to as conductance fluctuations. 

When an additional loop is added that is outside the region between the con- 
tacts, as shown on the right of Fig. 18, the conductivity G qualitatively changes. A 
periodic modulation with magnetic field is seen. Ths  is due to the Abaronov- 
Bohm effect. The vector potential modulates the quantum interference between 
those electron paths that encircle the ring and those that do not. For simplicity, 
consider the interference between just two such paths with transmission ampli- 
tudes al and a2 (Fig. 18) in the absence of a magnetic field. At finite B, 

In the last step we have employed Stokes's theorem, where Q, is the magnetic 
flux going through the loop and hc/e is the magnetic flux quantum (h/e in SI). 
With increasing flux, the transmission though the wire oscillates with the pe- 
riod of one flux quantum. This effect is closely related to the superconducting 
flux quantization discussed in Chapter 10, except that the charge appearing in 
the flux quantum here is e, not 2e, since the carriers here are electrons, not 
Cooper pairs. 
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Figure 18 Upper: SEM micrographs of two vertical Au wires with current and voltage probes at- 
tached. In the device on the right, an extra loop has been added outsidc the regio~i betwee11 the 
probes. Thc diagram to the right shows two paths, one that encircles the ring and one that does 
not. Lower left: Conductance versus magnetic field for the left sample. Aperiodic conductance 
fluctuations are seen due to quantum interfercncc bctwee~i tlie conducting paths through the 
sample. Lower right: Periodic oscillations are ohserved associated with the Aharonov-Bohm effect 
for paths enclosing the loop nominally outside the region between the contacts, showing the non- 
local nature of diffusive coherent transport in mcsoscopic systerris. (After R. Webb.) 

It is remarkable that the addition of a loop outside of the region between 
the voltage contacts changes the measured properties. Resistances in the 
mesoscopic regime are nonlocal. Electrons coherently diffuse throughout the 
entire sample while journeying between contacts, arid their phase remembers 
the joiirney. 
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ELECTRONIC STRUCTURE OF OD SYSTEMS 

Quantized Energy Levels 

A system of electrons fully confined in all three dimensions will have dis- 
crete charge and electronic states, as do atonis and molecules. They are often 
called artificial atoms or quantum dots to reflect the importance of quantiza- 
tion phenomcna on their properties. 

As a simple example, consider an electron in a spherical potential well. 
Due to the spherical sym~netry, the Hamitonian separates into angular and ra- 
dial parts, giving eigenstates and eigenenergies: 

where Yf,,(O,+) are the spherical harrnouics and R,,,Jr) are the radial wave- 
functions. The energy levels and radial wavefunctions depend on the details of 
the particular confining potential. For an infinite spherical well, where V = 0 
for r < R and is infinite othenvise, 

The function jl(x) is the lth spherical BesseI function and the coefficient P,:l 
is the nth zero ofjfix). For example, Po." = T (IS), = 4.5 (IP) ,  = 5.8 
( ID) ,  Pl,o = 2~ (2S), and = 7.7 (2P). The labels in parentheses arc the 
atornic notations for the states, which have the usual degeneracies associated 
with spin and angular momentum orientation. 

Semiconductor Nanocrystals . 
A semiconductor r~anocrystal such as the one shown in Fig. 2 can, to a 

good approximation, be described by the spherical model given above. Both 
the electron states in the condiiction band and the liole states in the valence 
band are quantized. For a CdSe nanoparticle, the conduction hand effective 
rnass m: = 0.13 m, and the electron energy levels arc c,,, = (2.9 eV/R2) 
(~n,i/Po,o)', where R, the radius of the nanoparticle, is expressed in nanometers. 
For R = 2 nm, the spacing between t h e  lowest two energy levels is 
E ~ , ~ - E ~ , ~ =  0.76 eV. 

The 1s electron state increases in energy with decreasiug K ,  while the I S  
hole state decreases. The handgap therefore grows and can be tuned over a 
wide range by changing R. This is shown in Fig. 19, where thc ahsorption 
spectra of CdSc nanocrystals of different sizes are presented. For the smallest 
radii, the threshold for absorption shifts by nearly 1 eV from its bulk value. A 
similar shift is seen in the err~ission spectrum. The optical spectra of nanocrys- 
tals can be tuned continuously across the visible spectrum, malong them use- 
ful in applications from fluorescent labeling to light-emitting diodes. 



Bulk band gap 

1.i 1.9 2.1 2.3 2.5 2.7 2.9 3 1  

Energy (eV) 

Figure 19 Optical absorption spectra for a series of CdSe nanocrystal samples of different aver- 
age radii. The lowest transition energy in the smallest nanoclystal samplc is shifted by rrearly 1 eV 
from the bulk bandgap. Two dominart tra~~sitions are labeled. (Co~lrtesy of A. P. Ali\lsatos.) 

The absorption intensity in nanocrystals becomes concentrated at thc spc- 
cific frequencies corresponding to the transitions between discrete states, as 
described by (7). An important result for the integrated absorption can be ob- 
tained from the Kramers-Kronig relations discussed in Chapter 15. From 
Eq. (15.11b), we have: 

At very high frequencies, o + GO, thc clectron's response is identical to that of 
a free electron. By (15.20), 

In addition, as w + m, the frequency s in the denominator of (52) can be ne- 
glected. Combining (52)  and (53) then gives 

A bulk semiconductor and a nanoclystal therefore have the same overall 
absorption per unit voh~mc when integrated over all frequencies. It is distrib- 
uted very differently, however. The absorption spectrum of macroscopic 



semiconductor is continuous, but in a nanocrystal it consists of a series of dis- 
crete transitions with very high absorption intensity at the transition frequen- 
cies. These strong transitions at particular frequencies have motivated re- 
searchers to create lasers that work on the quantized electronic transitions of 
quantum dots. 

Metallic Dots 

For small spherical metallic dots, such as alkali-metal clusters created in an 
atomic beam, the electrons in the conduction band fa up the quantized 
energy levels described by (50), as shown in Fig. 20a. These quantized levels af- 
fect the electrical and optical properties, and can even influence the stability of 
the dot. Small clusters can be analyzed by mass spectroscopy to determine the 
number of atoms in the cluster (Fig. 20b). Since there is one conduction elec- 
tron per atom in an alkali metal, this is also the number of electrons in the con- 
duction band. Large abundances are seen at certain "magic numbers" of atoms 
in the cluster. These result from the enhanced stability for clusters with filled 
electronic shells. For example, the 8-atom cluster peak corresponds to the fill- 
ing of the 1S (n = 1, e = 0) and the 1P (n = 1, [ = 1) shells. These filled-shell 
clusters are analogous to chemically stable filled-shell atoms (the noble gases). 

For larger or irregularly shaped metallic dots, the shell structure is de- 
stroyed. The level spacing becomes small in comparison to the shifts in the 
levels due to shape imperfections, faceting of the crystals, or disorder. While 
the details of the level spectrum are difficult to predict, the average level spac- 
ing at the Fermi energy can be estimated using (6.21) as 

AE = l/D(eF) = 2eF13N . (55) 

For a spherical Au nanoparticle with R = 2 nm, the average level spacing is 
A& - 2 meV. This is much smaller than the spacing between the lowest states 
in the CdSe nanocrystal conduction band (0:76%V?calculated earlier. Energy- 
level quantization effects are much more important in semiconductor dots 
than they are in metallic ones. This is because the energy-level spacing is 
larger for low-lying states in a 3D potential well and also because the electron 
effective mass for semiconductors is typically smaller than for metals. 

The optical properties of a small metallic dot are typically dominated 
by its surface plasmon resonance. The polarizability of a sphere is, from 
(16.11), 

(CGS) P = 
xE0 , 

1 + 457x13 ' 

where Eo is the external electric field and x is the electronic susceptibility. 
This relation was presented in Chap. 16 for the static case, but it applies at 
high frequencies as long as the dot is small enough for retardation effects to be 
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Figure 20 (a) Energy level diagram for the states in a small spherical alkali metallic cluster. The 
numbers at right of the diagram show the number of electrons required to fill successive elec- 
tronic shells. (b) Abundance spectrum of Na clusters, showing high intensities for clusters with 
completely filled electronic shells. (After W. A. de Heer et al.) 

absent. Modeling the carriers in the dot as a lossless free electron gas, the sus- 
ceptibility is, from (14.6), 

(CGS) ~ ( o )  = -ne2/mw2 ; (57) 

Combining (56) and (57) gives 
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where wl, is the plasma frequency of the bulk metal. The polarization diverges 
at a frequency: 

Ws = Or /v5 (59) 

This is the surface plasrriorl resonance frcqnency for a sphere. It shifts the bulk 
plasma resonance for metals like An and Ag from the UV into the visiblc por- 
tion of the spectrum. The rcst~lt (59) is independent of particle sizc. rn reality, 
however, the optical properties do depend so~riewliat on size dne to retar- 
dation effects at larger radii and losses and intraband transitions at smaller 
radii. 

Liquids or glasses contair~ing metallic nanoparticles are often brilliantly 
colored due to absorption by the surface plasmon resonance. They have been 
used for hundreds of years in stained glasses. Other optical applications of 
metallic nanoparticles make use of the large electric field just outside the 
nanoparticle near resonance. In techniques like surface enhanced Raman scat- 
tering (SERS) or sccond harmonic generation (SHG), wcak optical processes 
i11 nanostructurcs near the surface of the nanoparticlc become measurable due 
to the locally high electric fields. 

Discrete Charge States 

If a quantum dot is relatively isolated electrically from its environment, it 
has a set of well-defined charge states, like an atom or niolecule. Each succes- 
sive charge state corresponds to the addition of one more electron to the dot. 
Because of the coulomb repulsion between electrons, the energy difference 
between successive charge states can be very large. It'ithin the Thomas-Fermi 
approximation (28). the electrochemical potential for adding the (N + 1)th 
electron to a dot containing A' electrons is given by: 

I*.%+, = F ~ + ~  - ecp = F,+, + h7U - a~'17~ , (60)  

where U is the coulomb interaction energy between any two electrons on the dot, 
often called the charging energy. The dimensionless number a is the rate at 
which a voltage Vg applied to a nearby mctal, typically referred to as the gate 
(see Fig. 21), shifts the electrostatic potential cp of the dot. 

In general, C' will vary for different electronic states in the dot, but we as- 
sume here it is a constant, as in a classical metal. In this case, we can describe 
the electrostatics and interactions in terms of capacitances: 

U = e2/c and a = Cg/C , (61) 

where C is the total electrostatic capacitance of the dot and Cg is the capaci- 
tance bctween the dot and the gate. The quantity e/C is the electrostatic po- 
tential shift of the dot when one electron is added. 

If the dot is in weak electrical contact with a metallic reservoir, electrons 
will tunnel or~to the dot until the electrochemical potential for adding another 
electron exceeds the elcctrochemical potential p of the rcsenroir (Fig. 21). 



Figure 21 (a) Schematic illustration of a quantum dot in tunnel contact with two metallic reser- 
voirs and capacitatively coupled to a gate. Main: Energy level diagrams illustrating the coulomb 
blockade. In (b) the gate voltage is such that the dot is stable with N electrons, so no current flows. 
In (c) the blockade is lifted when the electrochemical potential is lowered into the window be- 
tween the potentials in the leads, allowing successive charging and discharging of the dot and a net 
current flow. 

This sets the equilibrium occupancy N of the dot. The charge state can be 
changed using the gate voltage Vg. The additional gate voltage AVg required to 
add one more electron from a reservoir of fixed p is, from (60), 

Adding an extra electron to the dot requires enough energy to fill up the next 
single-particle state and also enough energy to overcome the charging energy. 

The charging energy U  depends on both the size of the dot and the local 
electrostatic environment. Nearby metals or dielectrics will screen the coulomb 
interaction and reduce the charging energy. In general, U  must be calculated for 
the specific geometly. As a simple model, consider a spherical dot of radius R 
surrounded by a spherical metal shell of radius R + d. This shell screens the 
coulomb interaction between electrons on the dot. An elementary application of 
Gauss's law (Problem 5) gives the capacitance and therefore the charging energy: 

e2 d 
(CGS) U = z m ;  (63) 

For R = 2 nm, d = 1 nm, and E = 1, the charging energy is e2/C = 0.24 eV. 
This far exceeds kgT = 0.026 eV at room temperature, indicating that thermal 



fluctuations in the charge of the dot will be strongly suppressed. It is compara- 
ble to the energy level spacing (0.76 eV) between the lowest two states in a 2-nm- 
radius CdSe dot. In contrast, it is much larger than the level spacing (2 meV) for 
a 2-nm-radius metallic dot. The addition energy of a metallic dot is therefore 
dominated by the charging energy, but in a semiconductor dot the clrarging 
energy and the level spacing are of comparable importance. 

Charging effects are destroyed if the tunneling rate between the dot and 
the electrodes is too rapid. The charge resides on the dot for a time scale of 
order 6t = RC, where R is thc resistance for tunneling to the elrctrodes. By 
the uncertainty principle, the energy level wiIl be broadened by 

The uncertainty in the energy of the electron beco~nes comparable to the 
chargng energy when R - h/e2. For resistances below this value, quantum fluc- 
tuations due to the uncertainty principle smear out the colllomb charging 
effects. The conditions for well-defined charge states of a quantum dot are then 

n * h/e2 and e2/C /C kk,T . (65) 

ELECTRICAL TRANSPORT IN OD 

Coulomb Oscillations 

At temperatures 2' < (Ll  + A&)lkg, the charging energy CT and the level 
spacing A s  coritrol the flow of electrons through a quantum dot, as shown in 
Fig. 21. Transport through the dot is suppressed where the Fermi levels of the 
leads lie between the electrochemical potential for thc N and N + 1 charge 
states (Fig. 21h). This is called the Coulomb blockade. Current can only flow 
when pe(N + 1) is lowered to lie between the Fermi levels of the left and right 
leads. Then an electron can hop on the dot from the left electrode and off the 
dot to the right electrode, resulting in current flow (Fig. 21c). This process re- 
peats with increasing V, for each new charge state. This leads to so-called 
Coulomb oscillations in the conductance as a function of shown in Fig. 22. 
If CT %-- ksT, these peaks can be very sharp. The spacing between the Coulo~nl  
peaks is determined by (62). 

Coulomb oscillations are first and foremost a result of charge quantiza- 
tion. They will occur if CT /C ksT even if the single particle level spacing is very 
small, A s  + k,T This is often thc case in metallic quantum dots. A device 
showing Coulomb oscillations is called a single electron transistor (SET), 
since it turns on and off periodically as the occupancy of thc dot is changed 
by e. This effect is qnite remarkable, and can be used as an ultrasensitive 
electrometer. It detects electric fields much as a SQUID (Chap. 10) detects 
magnetic fields. One is based on the quantization of charge, the other on the 
quantization of flux. 



Figure 22 Conductance oscillations versns gate voltage Vp measured in a quantum dot formed in 
a gated GaAsIAIGaAs heterostructure at T = 0.1 K. The data are plotted on a log scalc. As the gate 
voltage increases, the bamers become lnorc transparent and the peaks get hroader. The lineshape 
of thc peak in (b)  is determined hy thermal broadening alone, while the one in (c) also reflects the 
intrinsic Rreit-Wigner lineshape. (Adapted from Foxman et al.) 

SETS can also be used to make single electron turnstiles and pumps. Oscil- 
lating voltages at a frequency f applied to the gates of a properly designed 
quantum dot system can shuttle a single electron through dot per cycle of the 
oscillation. This results in quantized current flowing through the dot: 

Such devices are under investigation as current standards in metrology. 
For the quanturn dot in Fig. 22, the level spacing A& B kBT The Nth 

Coulomb oscillation then corresponds to resonant tunneling through a single 



Figure 23 (a) Schematic of a 2D circular quantum dot formed in a GaAsIAIGaAs heterostmc- 
ture. (b) The differential conductance dlldV as a function of both gate voltage and source drain 
bias, plotted as a gray scale. The white diamond regions correspond to different charge states of 
the dot. A larger charging energy is observed for N = 2 and 6 electrons on the dot, corresponding 
to filled electronic shells. The additional lines on the diagram correspond to excited energy levels 
of the dot. (Courtesy of L. Kouwenhoven.) 

quantized energy level EN. The coulomb oscillations in this case are analogous 
to the theoretical resonant tunneling peaks described by (29) and shown in 
Fig. 15. A crucial difference from (29) is that the positions of the coulomb 
peaks are determined by both the level spacing and the coulomb charging 
energy (62). The lower right panel of Fig. 22 shows a fit of one coulomb peak 
to the Breit-Wigner form for resonant tunneling (33). 

The I-V characteristics of a quantum dot are in general complex, reflect- 
ing the interplay of the charging energy, the excited state level spacing, and 
the source-drain bias voltage. In Fig. 23, measurements of the first few elec- 
trons added to a small, 2D circular dot are shown. The differential conduc- 
tance dI/dV is represented using a gray scale as both the gate voltage and the 



source drain bias are varied. Each of the lines seen corresponds to tunneling 
through an individual quantum state of the dot. The white diamonds along the 
ITg axis, indicating dIldV = 0, correspond to the Coulomb blockade. Each 
successive chamond corresponds to anothcr clcctron on the dot. The point at 
which different diamonds touch along the axis are thr Coulomb oscillations 
where the charge state of the dot changes. The height of thc diamond corre- 
sponds to eV,,, = e 2 / c  + A s ,  t11e maximum voltage that can he applied with- 
out current flowing in a given charge state. The diamonds corresponding to 
N = 2 and N = ' arc noticeably larger than neighboririg diamonds, indicating 
a larger adchtion energy for adding the third and seventh electron to the dot. 

This dot can be effectively modeled hy a 2D harmonic oscillator confining 
potential U(x,  y) = ~ r n w z ( x z  + yZ ) ,  with energy levels: 

where i and j are nonnegative integers. This levcl spectrum can be used in 
conjunction with ( 6 2 )  to find the addition energies that determinc the sizes of 
the diamonds in the figure. The first electron fills the spin-degenerate gronnd 
statc cnergy level .coo. The second electror~ fills the same quantum state, but 
with opposite spin, at a gate voltage AVg, = L1/ac: after the first electron is 
added. The third electron fills one of the degenerate states sol or s10 after a 
AVg, = ( U  + fiw)/ae. The next thrcc clcctrons fill the rest of these states, each 
spaced in gate voltage by U/ae .  The seventh electron fills one of the degener- 
ate states s l l ,  szO,  or cO2, after a gate voltage AVg, = ( U  + Rw)lae.  This simple 
model correctly predicts the larger addition energies for the 3rd and 7th 
electrons seen in the experiment. The addition energy is larger by the level 
spacing when the extra electron is added to a new energy level above a filled 
electronic shell (N = 2 and N = 6). 

Spin, Mott Insulators, and the Kondo Effect 

Consider a quantum dot that is occupied hy an odd number of electrons in 
the blockaded region, as shown in Fig. 24.  The highest single particle cnergy 
level of the dot is doubly degenerate and an electron can either reside in a 
spin-up or spin-down state. The addition of a second electron of opposite spin 
is allowed by the Pauli exclusion pri~lciple but is energetically prohibited by 
the coulomb interaction between the electrons. This is analogous to the Mott 
Insulator where a half-filled band is insulating because coulomb interactions 
prohibit double-occupancy of the lattice sites hy clcctrons. 

The dot therefore has a spin-'/, magnetic moment with two dcgcnerate 
configurations, spin up and spin down, in the absence of coupling to the leads. 
If coupling to the leads is included, however, this degeneracy is lifted at low 

- ~ 

temperatures. The ground state is a quantu~n superposition of the two 
spin config~irations, with transitions between them accomplished by a virtual 
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Figure 24 The Kondo effect in a quantum dot. For an unpaired spin on the dot, a virtual process 
(h) can occur that converts the spin up (a) to the spin down (c) state and transfers an electron from 
one side of the dot to the other. The ground state of the system is a coherent superposition on the 
initial and final states shown, creating a spin singlet between the spin on the dot and the spins in 
the leads. This is called the Kondo effect, and produces a narrow peak of width -k,T, in the den- 
sity of states at EF in addition to the original broadened level of width T, as shown in (d). 

intermediate state involving an exchange of electrons with the leads, as is illus- 
trated in Fig. 24. This is known as the Kondo effect. The local moment pairs 
with electrons in the metallic electrodes to create a spin singlet. This occurs 
below a temperature known as the Kondo temperature TK:  

where r is the level width defined in (33 )  and E, is indicated in Fig. 24 
(E,, < 0).  A peak in the density of states of the dot of width kBTK appears at the 
Fermi energy due to the admixture of states in the electrodes at an energy EF. 

The Kondo temperature is very small unless the coupling r to the leads is 
large, since the process involves a virtual intermediate state. 



Because the Kondo effect involves exchange of electrons with the leads, it 
causes transmission through the dot even in the blockaded region, as illus- 
trated in Fig. 24a+. For symmetric harriers and T < T,, the transmission 
coefficient through the Kondo resonance can be unity, just as for resonant tun- 
neling. This effect has been seen in transport through qilantum dots and in 
STM measurements of magnetic impurities on metal surfaces. The Kondo ef- 
fect was first observed in metals containing magnetic impurities. The forma- 
tion of a spin singlet hetwecn the magnetic impurities and the conduction 
electrons enhances the scattering of the electrons. This will be discussed fur- 
ther in Chap. 22. 

Cooper Pairing in Superconducting Dots 

In a small metallic dot made of a superconductor, there is an interest- 
ing competition between single electron charging and the Cooper pairing 
of electrons. m7ith an odd number of elcctrons residing on the dot, there is 

Figure 25 Measnremnnt of coulomb oscillations in a superconducting metallic dot with dccreas- 
ing temperature. A crossover from e-periodic oscillations to 2s-periodic oscillations is seen as the 
temperature is lowered due to the Cooper pairing of electrons on the dot. (After M. Tinkham, 
J. M. Hergmrnther, and J. 6. Lu.) 



necessarily an unpaired electron. If the Cooper pair binding energy 2A is 
larger than the charging energy U,  it is energetically favorable to add an elec- 
tron to the dot, paying the energy U in order to gain the pairing energy 2A. 
The odd-charge states are thus energetically unfavorable. Electrons will be 
added to the dot in Cooper pairs, and the Coulomb oscillations will be 2e- 
periodic. This is shown in Fig. 25. This is a re~narkable rnanifcstation of Cooper 
pairing. 

VIBRATIONAL AiiD THERMAL PROPERTIES 

To treat the vibrational propcrties of nanostructures, we will begin from a 
continuunl description of the elastic properties. This is analogous to employ- 
ing the band structure as the starting point to describe the electronic proper- 
ties. It is a good approximation for all but the smallest of nanostr~ictiires. 

In general, the components of stress and strain in a solid are related by a 
matrix. A stress along one axis will produce a strain along that axis, but it will 
aIso produce strains along other axes. For example, a cube stretched along one 
axis will typically contract somewhat along the orthogonal axes. To si~rlplify the 
discussion below, we will ignore the off-diagonal elements and treat the stress- 
strain matrix as diagonal and isotropic. In other words, strains will only occnr 
along the direction of the stress and the magnitude will be independcnt of the 
axis direction. For a more complete treatrrlent, we refer the rcader to advanced 
texts on mechanics. 

Quantized Vibrational Modes 

Just as the electronic degrees of freedom are quantized, the vibrational 
frequencies become discrete in a 1D or OD solid. The continuous low- 
frequency modes associated with the acoustic modes, w = o,K, becomc instead 
a series of discrete frequencies o,. The exact frequencies and wavevectors 
depend in detail on the shape and boundary conditions of'the solid. 

An illustrative example is the vibrations aronnd the circumference of a 
thin cylinder of radus K and thickness h < A, as shown in Fig. 26. In Fig. 26a, 

(a) (b) (c) 

Figure 26 Funda~ne~ital  vibrational modes of a thin-walled cylinder. Image (a) is a longitudinal 
compressional mode, (h) is the radial breatlring mode (RBM), and (c! is a transverse mode. 



a quantized longitudinal acoustic mode is schematically illustrated. The al- 
lowed frequencies can be found by applying periodic b o n n d a ~  conditions 
around the circumference of the cylinder: 

Another mode, called the radial breathing mode (RBM), is shown in 
Fig. 26b. The radius of the cylinder uniformly expands and contracts, producing 
circumferential tension and compression. From elasticity theory, the elastic 
energy associated with a strain e for an isotropic medium is given by 

where Y is the elastic (Young's) modulus. The strain in the cylindcr for a radius 
change d r  is e = dr/K, yielding 

where V is the volume of the cylinder. Equation (71) has the form of a Hooke's 
law spring energy, wherc the spring constant is give11 by YV/R2. The vibrational 
frequency is then 

where in the last step we have defined a longitudinal sound velocity uL = m. 
The final class of quantized modes around the circumference, correspond- 

ing to transverse acoustic modes, are shown in Fig. 26c. Their wavevectors and 
frequencies are given by 

Note the frequency scales like K;. The origin of this behavior will he discussed 
further below. 

Qnantizcd vibrational modes can be measured in a variety of ways. One 
technique widely used to probe the vibrational structure of individual 
nanoscale objects is Raman spectroscopy (see Chap. 15). Raman spectroscopy 
of single nanotubes is shown in Fig. 27. For a nanotube, tiL = 21 km/s, and the 
energy of the radial breathing mode is, from (721, 

The measured values are in good agreement with this expression. As a 
result, measurements of the RBM can be used as a diagnostic to infer the 
radius o i a  nanotube. 
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Figure 27 Raman spectra of individual carbon 
nanotubes. The radial breathing mode frequencies 
are labeled in the main panel, along with the struc- 
tural assignments (n, m). Note: 160 cm-' - 20 meV 
(After A. Jorio et al.) 

Transverse Vibrations 

We now address the phonons propagating in the direction of the axis of a 
long, thin object, such as the cylinder discussed in the previous section or a 
thin, solid beam (Fig. 28). The longitudinal phonons are similar to the 3D 
case, with a dispersion o = uLK where K is the continuous wavevector. How- 
ever, there is a fundamental modification of the transverse phonons at wave- 
lengths longer than the thickness h of the beam. Instead of shearing, as in a 
bulk transverse phonon, the solid bends, as shown in Fig. 28a. This is the 
classical problem of transverse flexural waves on a beam. The energy of bend- 
ing comes from the longitudinal compression/stretching of the solid along the 
innerlouter arcs of the bend. The linear wavevector dependence w, = uTK 
characteristic of a bulk solid is changed to hspersion quadratic in K, as we 
show below. 

Consider a transverse standing wave on a solid rectangular beam of 
thickness h, width w, and length L whose displacement is given by y(z,t) = yo 
cos(Kz - ot). The strain at a given point inside the beam is given by the local 
curvature and the distance t from the center line of the beam (Fig. 28a): 

e = -(a2ylaz2)t = P y t  . (74) 

The total energy associated with this strain is again given by (70): 

where (y2) is averaged over one period of the oscillation. This again gives an 
effective spring constant and, from steps analogous to (70-72), an oscillation 
frequency: 

wr = u L h ~ 2 ~ ~  . (76) 



Figure 28 (a) Stresses in a bent beam, showing the inner portion under compression while the 
outer portion is under tension. (b) SEM micrograph of a series of suspended Si beams of varying 
lengths L and the measured resonance frequency as a function of L. The line is a £it to the func- 
tional form f = B/L2, where B is a constant. (After D. W. Carr e t  al.) 

Note that the frequency depends on the longitudinal sound velocity and not 
the transverse sound velocity, since the mode is now essentially compressional 
in nature. It is no longer linear in K since the effective restoring force grows 
stronger with increasing curvature, i.e., increasing K. In contrast, the torsional 
mode, correspondng to a twist of the beam along its length, retains its shear 
character and, o,,, 

Transverse vibrational modes described by (76) are frequently observed in 
microscale and nanoscale beams. A set of nanoscale beams constructed in 
Si using electron beam lithography and etching is shown in Fig. 28b. The 
frequencies associated with fundamental resonance K ,  = 2vlL of these beams 
scale as 1/L2 (Fig. 28c), as expected from (76). 

Note that the modification of the dispersion relation (76) for long wave- - 
length transverse modes is not restricted to nanoscale systems. The only re- 
quirement is that the system be in the geometry of a thin beam or slab with 
transverse dimension h smaller than the wavelength, i.e., Kh < 1. For exam- 
ple, AFM cantilevers operated in the noncontact mode, as discussed above, 



are well described by this relation. The dispersion relation (76) is also related 
to the w - f? dependence seen in (73) for the class of modes shown in Fig. 
26c. Both describe the transverse flexural vibrations, one of a beam and the 
other of a thin shell. 

A revolution is underway in the fabrication of small, complex mechanical 
structures using techniques adapted from microelectronic processing. The 
beams shown in Fig. 28b are a simple example. These structures can be inte- 
grated with electronic devices, creating rr~icroelectromechanical systems 
(MEMs) and nanoelectromechanical systems (NEMs). They are being ex- 
plored for a variety of applications, including scnqing, data storage, arid signal 
processing. 

Heat Capacity and Thermal Transport 

The above relations indicate that the quantized vibrational mode energies 
are typically less than k,T at room temperature except in the very smallest 
structures. Modes along the confined directions will thus he thermally excited 
at room temperature. As a result, the lattice thermal properties of nariostruc- 
tures will he similar to their bulk counterparts. In particular, the lattice heat 
capacity and thermal co~lductivit~ will be proportional to T ~ ,  as for a 3D solid 
(Chap. 5 ) .  

At low temperatures, however, vibrational excitations of frequency o in 
the corlfi~ied directions xyill freeze out when T < hwlk,. In the case of a long, 
thin structure, the system will behave as 1D tlier~nal system at siifficiently low 
temperatures, with a set of 1D phono~l subhands analogoils to the 1D elec- 
tronic suhhands shown in Fig. 9. A calculation analogoils to the one perfomled 
in Chap. 5 for a 3D solid yields the heat capacity per 1D acoustic phorlon sub- 
band with a dispersio~l w = uk (Prob. 6): 

The thermal conductance Gth of the wire is defined as thc ratio of the net en- 
ergy flow through the wire divided by the temperatrlre difference AT between 
its ends. The thermal conductance per 1D phonon subband CjiD' is 

This result is derived in Prob. 6 using an approach analogous to the one em- 
ployed to derive the Landauer formula for conductance of a 1D channel. Note 
3 is now the transmission probability for phonons through the structure. For a 
transverse flexural  node, where o p, the result (77) is modified, but (78) is 
the same. 

Both (77) and (78) are linear in temperature, in contrast to the T3 result 
for 3D. The difference reflects the nurrllrer of modes with energies ko < k,T, 
or equivalently, with wavevectors K < kBT/hu. The number of modes scales 
like KD, where D is the dimensionality, producing T3 in 3D and T in  ID. 



Note that in the case of perfectly transmitted phonons through the chan- 
nel, the thermal conductance (78) is determined only by fundamental con- 
stants and the absolute temperature. This result is analogous to the quantized 
electronic conductance (21) of a 1D channel, which was independent of the 
electron velocity in the channel. Both the ballistic thermal conductance (78) 
and the 1D for~n of the heat capacity (77) have been observed in experiments 
on narrow wires at very low temperatures. 

SUMMARY 

Real spacc probcs can give atomic-scale images of nanostructures. 

The density of states of a ID  subband, D(E) = 4L/ho, diverges at the 
subband thresholds. These arc called van Hove singularities. 

The electrical conductancc of a 1D system is given by the Landauer formula, 
G = (2e2/h)3, where 3 is the transmission coefficient through thc sample. 

The conductance of a quasi-1D system can he strongly influenced by quan- 
tum interference among the electron paths traversing the sample, leading to 
resonant tunneling, localization, and the Aharonov-Bohm effect. 

The optical properties of a quantum dot can be tuned by changing its size 
and hence its quantized energy levels. 

Adding an extra charge e to a quantum dot requires an additional electro- 
chemical potential given by U + A&, where U is the charging energy and A s  
is the level spacing. 

The vibrational modes of a nano~neter-scale object are quantized. 

Problems 

1.  Carbon nanotube band structure. Figure 29 shows the graphene lattice with the 
primitive lattice translation vectors of length a = 0.246 nm, along with the first 
Brillouin zone. (a) Find the set of reciprocal lattice vectors G associated with the 
lattice. (b) Find the length of the vectors K and K' shown in Fig. 29 in terms of a. 

For energies near the Fermi energy and wavevectors near the K point, thc 2D 
band structure can be approximated as 

where v, = 8 X lo5 d s .  A similar approximation holds near the K' point. Consider 
a tube rolled up along the x-axis with a circumference nu. By applying periodic 
boundary conditions along the rollcd up direction, the dispersions nf the 1D sub- 
bands near the K point can bc found. (c) Show that, if n is divisible by 3, there exists 
a "massless" subband whosc cncrgy is linear in Aky. Sketch this sr~hband. These 
nanotubes arc 11) metals. (d) If n is not divisihle by 3, the s~~h l~and  structure is that 
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Figure 29 (a) The graphene lattice and 
(h) the first Brillouin zone of the 
graphene lattice showing the conical dis- 
persion of the energies near the K and K' 
points. 

as shown in Fig. 10. For the case of n = 10, find the magnitude of the semiconduct- 
ing bandgap E,, in eV and show that E ~ ~ / E ~ ~  = 2. (e) Again for the n = 10 case, show 
that the dispersion relation of the lowest electron subband is of the form of a rela- 
tivistic particle, E' = (m*c2)' + ( p ~ ) 2 ,  where v, plays the role of the speed of light, 
and find the ratio of effective mass rn" to the free electron mass m. 

2. Filling subbands. For electrons in a square GaAs wire of width 20 nm, find the 
linear electron density at which the n, = 2, n, = 2 subband is first populated in 
equilibrium at T = 0. Assume an infinite confining potential at the wire boundary. 

3. Breit-Wigner form of a transmission resonance. The purpose of this problem is 
to derive (33) from (29). (a) By expanding the cosine for small phase differences away 
from resonance, 69  = 9' - 2 m ,  find a simplified form of (29) involving only lt,I2, lt2I2, 
and 69. (b) Show that, for states in a 1D box, the following relation holds between 
small changes in the phases and small changes in the energy: S ~ l h s  = Sp/2~r, where 
AE is the level spacing. (c) Combine (a) and (b) to obtain (33). 

4 .  Barriers in series and Ohm's Law. (a) Derive (36) from (35). (b) Show that the 
1D Drude conductivity a,, = n,,e2r/m can be written as ulD = (2e2/h)tB. (Note: 
The momentum relaxation rate and the backscattering rates are related as 117 = 217, 
because the former corresponds to the relaxation from p to 0 while the latter corre- 
sponds to relaxation from p to -p.) 



5 .  Energies of a spherical quantum dot. (a) Derive the formula (63) for the charg- 
ing energy. (b) Show that, for d 4 R, the result is the same as that obtained using 
the parallel plate capacitor result, C = ecOA/d. (c) For the case of an isolated dot, 
d + m,  find the ratio of the charging energy to lowest quantized energy level. Express 
your answer in terms of the radius R of the dot and the effective Bohr radius a;. 

6. Thermal properties in ID. (a) Derive the formula (77) for the low temperature heat 
capacity ofa  single 1D phonon mode within the Debye approximation. (b) Derive the 
relation for the thermal conductance (78) of a 1D phonon mode between two reser- 
voirs by calculating the energy flow out of one reservoir at a temperature T ,  and 
subtracting the energy flow from the other reservoir at a temperature T,. Use an ap- 
proach analogous to that used to obtain (20) and (24) for the electrical conductance. 


