
Chapter 11

Scattering Theory

Much of our understanding about the structure of matter is extracted from the scattering of

particles. Had it not been for scattering, the structure of the microphysical world would have

remained inaccessible to humans. It is through scattering experiments that important building

blocks of matter, such as the atomic nucleus, the nucleons, and the various quarks, have been

discovered.

11.1 Scattering and Cross Section

In a scattering experiment, one observes the collisions between a beam of incident particles and

a target material. The total number of collisions over the duration of the experiment is pro-

portional to the total number of incident particles and to the number of target particles per unit

area in the path of the beam. In these experiments, one counts the collision products that come

out of the target. After scattering, those particles that do not interact with the target continue

their motion (undisturbed) in the forward direction, but those that interact with the target get

scattered (deflected) at some angle as depicted in Figure 11.1. The number of particles coming

out varies from one direction to the other. The number of particles scattered into an element

of solid angle d ( d sin d d ) is proportional to a quantity that plays a central role in

the physics of scattering: the differential cross section. The differential cross section, which
is denoted by d d , is defined as the number of particles scattered into an element of

solid angle d in the direction per unit time and incident flux:

d

d

1

Jinc

dN

d
(11.1)

where Jinc is the incident flux (or incident current density); it is equal to the number of incident
particles per area per unit time. We can verify that d d has the dimensions of an area; hence

it is appropriate to call it a differential cross section.

The relationship between d d and the total cross section is obvious:
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d (11.2)
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Figure 11.1 Scattering between an incident beam of particles and a fixed target: the scattered

particles are detected within a solid angle d along the direction .

Most scattering experiments are carried out in the laboratory (Lab) frame in which the

target is initially at rest while the projectiles are moving. Calculations of the cross sections

are generally easier to perform within the center of mass (CM) frame in which the center of

mass of the projectiles–target system is at rest (before and after collision). In order to be able

to compare the experimental measurements with the theoretical calculations, one has to know

how to transform the cross sections from one frame into the other. We should note that the total

cross section is the same in both frames, since the total number of collisions that take place

does not depend on the frame in which the observation is carried out. As for the differential

cross sections d d , they are not the same in both frames, since the scattering angles

are frame dependent.

11.1.1 Connecting the Angles in the Lab and CM frames

To find the connection between the Lab and CM cross sections, we need first to find how the

scattering angles in one frame are related to their counterparts in the other. Let us consider the

scattering of two (structureless, nonrelativistic) particles of masses m1 and m2; m2 represents
the target, which is initially at rest, and m1 the projectile. Figure 11.2 depicts such a scattering
in the Lab and CM frames, where 1 and are the scattering angles of m1 in the Lab and CM
frames, respectively; we are interested in detecting m1. In what follows we want to find the
relation between 1 and . If r1L and r1C denote the position of m1 in the Lab and CM frames,
respectively, and if R denotes the position of the center of mass with respect to the Lab frame,
we have r1L r1C R. A time derivative of this relation leads to

V1L V1C VCM (11.3)

where V1L and V1C are the velocities of m1 in the Lab and CM frames before collision and
VCM is the velocity of the CM with respect to the Lab frame. Similarly, the velocity ofm1 after
collision is

V 1L V 1C VCM (11.4)

From Figure 11.2a we can infer the x and y components of (11.4):
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Figure 11.2 Elastic scattering of two structureless particles in the Lab and CM frames: a

particle of mass m1 strikes a particle m2 initially at rest.

V1L cos 1 V1C cos VCM (11.5)

V1L sin 1 V1C sin (11.6)

Dividing (11.6) by (11.5), we end up with

tan 1
sin

cos VCM V1C
(11.7)

where VCM V1C can be shown to be equal to m1 m2. To see this, since V2L 0, we have

VCM
m1V1L m2V2L
m1 m2

m1
m1 m2

V1L (11.8)

which when inserted into (11.3) leads to V1L V1C m1V1L m1 m2 ; hence

V1C 1
m1

m1 m2
V1L

m2
m1 m2

V1L (11.9)

On the other hand, since the center of mass is at rest in the CM frame, the total momenta before

and after collisions are separately zero:

pC m1V1C m2V2C 0 V2C
m1
m2
V1C (11.10)

pCx m1V1C cos m2V2C cos 0 V2C
m1
m2
V1C (11.11)

In the case of elastic collision, the speeds of the particles in the CM frame are the same before
and after collision; to see this, since the kinetic energy is conserved, a substitution of (11.10)

and (11.11) into 1
2
m1V 21C

1
2
m2V 22C

1
2
m1V1C

2 1
2
m2V2C

2
yields V1C V1C and V2C V2C .

Thus, we can rewrite (11.9) as

V1C V1C
m2

m1 m2
V1L (11.12)
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Dividing (11.8) by (11.12) we obtain

VCM
V1C

m1
m2

(11.13)

Finally, a substitution of (11.13) into (11.7) yields

tan 1
sin

cos V2C V1C

sin

cos m1 m2
(11.14)

which, using cos 1 1 tan2 1 1, becomes

cos 1

cos m1
m2

1
m21
m22

2m1m2
cos

(11.15)

Remark

By analogy with the foregoing analysis, we can establish a connection between 2 and . From

(11.4) we have V2L V2C VCM . The x and y components of this relation are

V2L cos 2 V2C cos VCM cos 1 V2C (11.16)

V2L sin 2 V2C sin (11.17)

in deriving (11.16), we have used VCM V2C V2C . A combination of (11.16) and (11.17)
leads to

tan 2
sin

cos VCM V2C

sin

1 cos
cot

2
2

2
(11.18)

11.1.2 Connecting the Lab and CM Cross Sections

The connection between the differential cross sections in the Lab and CM frames can be ob-

tained from the fact that the number of scattered particles passing through an infinitesimal cross

section d is the same in both frames: d 1 1 d . What differs is the solid an-

gle d , since it is given in the Lab frame by d 1 sin 1d 1d 1 and in the CM frame by

d sin d d . Thus, we have

d

d 1 Lab
d 1

d

d CM
d

d

d 1 Lab

d

d CM

sin

sin 1

d

d 1

d

d 1
(11.19)

where 1 1 are the scattering angles of particle m1 in the Lab frame and are its angles

in the CM frame. Since there is cylindrical symmetry around the direction of the incident beam,

we have 1 and hence

d

d 1 Lab

d

d CM

d cos

d cos 1
(11.20)

From (11.15) we have

d cos 1

d cos

1 m1
m2
cos

1
m21
m22

2m1m2
cos

3 2
(11.21)
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which when substituted into (11.20) leads to

d

d 1 Lab

1
m21
m22

2m1m2
cos 3 2

1 m1
m2
cos

d

d CM
(11.22)

Similarly, we can show that (11.20) and (11.18) yield

d

d 2 Lab
4 cos 2

d

d 2 CM
4 sin

2

d

d 2 CM
(11.23)

Limiting cases: (a) If m2 m1, or when
m1
m2

0, the Lab and CM results are the same,

since (11.15) leads to 1 and (11.22) to d
d 1 Lab

d
d CM

. (b) If m2 m1 then

(11.15) leads to tan 1 tan 2 or to 1 2; in this case (11.22) yields d
d 1 Lab

4 d
d CM

cos 2 .

Example 11.1

In an elastic collision between two particles of equal mass, show that the two particles come

out at right angles with respect to each other in the Lab frame.

Solution

In the special case m1 m2, equations (11.14) and (11.18) respectively become

tan 1 tan
2

tan 2 cot
2

tan
2 2

(11.24)

These two equations yield

1
2

2
2 2 2

1 (11.25)

hence 1 2 2. In these cases, (11.22) and (11.23) yield

d

d 1 Lab
4
d

d CM
cos 1 4

d

d CM
cos

2
(11.26)

d

d 2 Lab
4

d

d 2 CM
cos 2 4

d

d CM
sin

2
(11.27)

11.2 Scattering Amplitude of Spinless Particles

The foregoing discussion dealt with definitions of the cross section and how to transform it

from the Lab to the CM frame; the conclusions reached apply to classical as well as to quantum

mechanics. In this section we deal with the quantum description of scattering. For simplicity,



622 CHAPTER 11. SCATTERING THEORY

we consider the case of elastic1 scattering between two spinless, nonrelativistic particles of

masses m1 and m2. During the scattering process, the particles interact with one another. If the
interaction is time independent, we can describe the two-particle system with stationary states

r1 r2 t r1 r2 e
i ET t h (11.28)

where ET is the total energy and r1 r2 is a solution of the time-independent Schrödinger

equation:

h2

2m1
2
1

h2

2m2
2
2 V r1 r2 r1 r2 ET r1 r2 (11.29)

V r1 r2 is the potential representing the interaction between the two particles.
In the case where the interaction betweenm1 and m2 depends only on their relative distance

r r1 r2 (i.e., V r1 r2 V r ), we can, as seen in Chapter 6, reduce the eigenvalue
problem (11.29) to two decoupled eigenvalue problems: one for the center of mass (CM),

which moves like a free particle of mass M m1 m2 and which is of no concern to us here,
and another for a fictitious particle with a reduced mass m1m2 m1 m2 which moves
in the potential V r :

h2

2
2 r V r r E r (11.30)

The problem of scattering between two particles is thus reduced to solving this equation. We

are going to show that the differential cross section in the CM frame can be obtained from

an asymptotic form of the solution of (11.30). Its solutions can then be used to calculate the

probability per unit solid angle per unit time that the particle is scattered into a solid angle

d in the direction ; this probability is given by the differential cross section d d . In

quantum mechanics the incident particle is described by means of a wave packet that interacts

with the target. The incident wave packet must be spatially large so that spreading during the

experiment is not appreciable. It must be large compared to the target’s size and yet small

compared to the size of the Lab so that it does not overlap simultaneously with the target and

detector. After scattering, the wave function consists of an unscattered part propagating in the

forward direction and a scattered part that propagates along some direction .

We can view (11.30) as representing the scattering of a particle of mass from a fixed

scattering center that is described by V r , where r is the distance from the particle to the

center of V r . We assume that V r has a finite range a. Thus the interaction between the
particle and the potential occurs only in a limited region of space r a, which is called the
range of V r , or the scattering region. Outside the range, r a, the potential vanishes,
V r 0; the eigenvalue problem (11.30) then becomes

2 k20 inc r 0 (11.31)

where k20 2 E h2. In this case behaves as a free particle before collision and hence can
be described by a plane wave

inc r Aeik0 r (11.32)

where k0 is the wave vector associated with the incident particle and A is a normalization factor.
Thus, prior to the interaction with the target, the particles of the incident beam are independent

of each other; they move like free particles, each with a momentum p hk0.

1In elastic scattering, the internal states and the structure of the colliding particles do not change.
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Figure 11.3 (a) Angle between the incident and scattered wave vectors k0 and k. (b) Incident

and scattered waves: the incident wave is a plane wave, inc r Aeik0 r , and the scattered

wave, sc r A f eik r

r , is an outgoing wave.

When the incident wave (11.32) collides or interacts with the target, an outgoing wave

sc r is scattered out. In the case of an isotropic scattering, the scattered wave is spherically

symmetric, having the form eik r r . In general, however, the scattered wave is not spherically
symmetric; its amplitude depends on the direction along which it is detected and hence

sc r A f
eik r

r
(11.33)

where f is called the scattering amplitude, k is the wave vector associated with the scat-
tered particle, and is the angle between k0 and k as displayed in Figure 11.3a. After the
scattering has taken place (Figure 11.3b), the total wave consists of a superposition of the inci-

dent plane wave (11.32) and the scattered wave (11.33):

r inc r sc r A eik0 r f
eik r

r
(11.34)

where A is a normalization factor; since A has no effect on the cross section, as will be shown
in (11.40), we will take it equal to one throughout the rest of the chapter. We now need to de-

termine f and d d . In the following section we are going to show that the differential

cross section is given in terms of the scattering amplitude by d d f 2.

11.2.1 Scattering Amplitude and Differential Cross Section

The scattering amplitude f plays a central role in the theory of scattering, since it deter-

mines the differential cross section. To see this, let us first introduce the incident and scattered
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flux densities:

Jinc
ih

2
inc inc inc inc (11.35)

Jsc
ih

2
sc sc sc sc (11.36)

Inserting (11.32) into (11.35) and (11.33) into (11.36) and taking the magnitudes of the expres-

sions thus obtained, we end up with

Jinc A 2
hk0

Jsc A 2
hk

r2
f

2
(11.37)

Now, we may recall that the number dN of particles scattered into an element of solid

angle d in the direction and passing through a surface element d A r2d per unit

time is given as follows (see (11.1)):

dN Jscr
2d (11.38)

When combined with (11.37) this relation yields

dN

d
Jscr

2 A 2
hk

f
2

(11.39)

Now, inserting (11.39) and Jinc A 2hk0 into (11.1), we end up with

d

d

1

Jinc

dN

d

k

k0
f

2
(11.40)

Since the normalization factor A does not contribute to the differential cross section, we will be
taking it equal to one. For elastic scattering k0 is equal to k; hence (11.40) reduces to

d

d
f

2
(11.41)

The problem of determining the differential cross section d d therefore reduces to that of

obtaining the scattering amplitude f .

11.2.2 Scattering Amplitude

We are going to show here that we can obtain the differential cross section in the CM frame

from an asymptotic form of the solution of the Schrödinger equation (11.30). Let us first focus

on the determination of f ; it can be obtained from the solutions of (11.30), which in turn

can be rewritten as
2 k2 r

2

h2
V r r (11.42)

The general solution to this equation consists of a sum of two components: a general solution

to the homogeneous equation:

2 k20 homo r 0 (11.43)
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and a particular solution to (11.42). First, note that homo r is nothing but the incident plane
wave (11.32). As for the particular solution to (11.42), we can express it in terms of Green’s
function. Thus, the general solution of (11.42) is given by

r inc r
2

h2
G r r V r r d3r (11.44)

where inc r eik0 r and G r r is Green’s function corresponding to the operator on

the left-hand side of (11.43). The function G r r is obtained by solving the point source

equation
2 k2 G r r r r (11.45)

where G r r and r r are given by their Fourier transforms as follows:

G r r
1

2 3
eiq r r G q d3q (11.46)

r r
1

2 3
eiq r r d3q (11.47)

A substitution of (11.46) and (11.47) into (11.45) leads to

q 2 k 2 G q 1 G q
1

k 2 q 2
(11.48)

The expression for G r r is obtained by inserting (11.48) into (11.46):

G r r
1

2 3

eiq r r

k2 q2
d3q (11.49)

To integrate over the angles in

G r r
1

2 3
0

q2dq

k2 q2 0

eiq r r cos sin d
2

0

d (11.50)

we need simply to make the variables change x cos :

0

eiq r r cos sin d
1

1

eiq r r xdx
1

iq r r
eiq r r e iq r r (11.51)

Hence (11.50) becomes

G r r
1

4 2i r r 0

q

k2 q2
eiq r r e iq r r dq (11.52)

or

G r r
1

4 2i r r

qeiq r r

q2 k2
dq (11.53)

We may evaluate this integral by the method of residues by closing the contour in the upper

half of the q-plane: it is equal to 2 i times the residue of the integrand at the poles. Since there



626 CHAPTER 11. SCATTERING THEORY

- -

6 6

Re q Re q

Im q Im q

0 0k

k k

k
- - - -

(a) Contour for outgoing waves

¾ ¾

CCO¤¤²
CCO¤¤²

- -- - -

(b) Contour for incoming waves

Figure 11.4 Contours corresponding to outgoing and incoming waves.

are two poles, q k, the integral has two possible values. The value corresponding to the
pole at q k, which lies inside the contour of integration in Figure 11.4a, is given by

G r r
1

4

eik r r

r r
(11.54)

and the value for the pole at q k (Figure 11.4b) is

G r r
1

4

e ik r r

r r
(11.55)

Green’s function G r r represents an outgoing spherical wave emitted from r and the

function G r r corresponds to an incoming wave that converges onto r . Since the
scattered waves are outgoing waves, only G r r is of interest to us. Inserting (11.54) into

(11.44) we obtain the total scattered wave function:

r inc r
2 h2

eik r r

r r
V r r d3r (11.56)

This is an integral equation; it does not yet give the unknown solution r but only contains it
in the integrand. All we have done is to rewrite the Schrödinger (differential) equation (11.30)

in an integral form (11.56), because the integral form is suitable for use in scattering theory.

We are going to show that (11.56) reduces to (11.34) in the asymptotic limit r . But

let us first mention that (11.56) can be solved approximately by means of a series of successive

or iterative approximations, known as the Born series. The zero-order solution is given by

0 r inc r . The first-order solution 1 r is obtained by inserting 0 r inc r into
the integral sign of (11.56):

1 r inc r
2 h2

eik r r1

r r1
V r1 0 r1 d

3r1

inc r
2 h2

eik r r1

r r1
V r1 inc r1 d

3r1 (11.57)

The second order is obtained by inserting 1 r into (11.56):

2 r inc r
2 h2

eik r r2

r r2
V r2 1 r2 d

3r2
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inc r
2 h2

eik r r2

r r2
V r2 inc r2 d

3r2

2 h2

2 eik r r2

r r2
V r2 d

3r2
eik r2 r1

r2 r1
V r1 inc r1 d

3r1

(11.58)

Continuing in this way, we can obtain r to the desired order; the nth order approximation
for the wave function is a series which can be obtained by analogy with (11.57) and (11.58).

Asymptotic limit of the wave function

We are now going to show that (11.56) reduces to (11.34) for large values of r . In a scattering
experiment, since the detector is located at distances (away from the target) that are much larger

than the size of the target (Figure 11.5), we have r r , where r represents the distance from
the target to the detector and r the size of the detector. If r r we may approximate k r r
and r r 1 by

k r r k r2 2r r r 2 kr k
r

r
r kr k r (11.59)

1

r r

1

r

1

1 r r r 2
1

r
1

r r

r2
1

r
(11.60)

where k kr is the wave vector associated with the scattered particle. From the previous two
approximations, we may write the asymptotic form of (11.56) as follows:

r eik0 r
eikr

r
f r (11.61)

where

f
2 h2

e ik r V r r d3r
2 h2

V (11.62)

where r is a plane wave, r eik r , and k is the wave vector of the scattered wave; the
integration variable r extends over the spatial degrees of freedom of the target. The differential
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cross section is then given by

d

d
f 2

2

4 2h4
e ik r V r r d3r

2 2

4 2h4
V

2

(11.63)

11.3 The Born Approximation

11.3.1 The First Born Approximation

If the potential V r is weak enough, it will distort only slightly the incident plane wave. The
first Born approximation consists then of approximating the scattered wave function r by
a plane wave. This approximation corresponds to the first iteration of (11.56); that is, r is
given by (11.57):

r inc r
2 h2

eik r r

r r
V r inc r d3r (11.64)

Thus, using (11.62) and (11.63), we can write the scattering amplitude and the differential cross

section in the first Born approximation as follows:

f
2 h2

e ik r V r inc r d3r
2 h2

eiq r V r d3r (11.65)

d

d
f

2 2

4 2h4
eiq r V r d3r

2

(11.66)

where q k0 k and hq is the momentum transfer; hk0 and hk are the linear momenta of the
incident and scattered particles, respectively.

In elastic scattering, the magnitudes of k0 and k are equal (Figure 11.6); hence

q k0 k k20 k2 2kk0 cos k 2 1 cos2 2k sin
2

(11.67)

If the potential V r is spherically symmetric, V r V r , and choosing the z-axis along
q (Figure 11.6), then q r qr cos and therefore

eiq r V r d3r
0

r 2V r dr
0

eiqr cos sin d
2

0

d

2
0

r 2V r dr
1

1

eiqr xdx
4

q 0

r V r sin qr dr

(11.68)

Inserting (11.68) into (11.65) and (11.66) we obtain

f
2

h2q 0

r V r sin qr dr (11.69)
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d

d
f

2 4 2

h4q2 0

r V r sin qr dr
2

(11.70)

In summary, we have shown that by solving the Schrödinger equation (11.30) to first-order

Born approximation (where the potential V r is weak enough that the scattered wave function
is only slightly different from the incident plane wave), the differential cross section is given by

equation (11.70) for a spherically symmetric potential.

11.3.2 Validity of the First Born Approximation

The first Born approximation is valid whenever the wave function r is only slightly differ-
ent from the incident plane wave; that is, whenever the second term in (11.64) is very small

compared to the first:

2 h2
eik r r

r r
V r eik0 r d3r inc r

2 (11.71)

Since inc eik0 r we have

2 h2
eik r r

r r
V r eik0 r d3r 1 (11.72)

In elastic scattering k0 k and assuming that the scattering potential is largest near r 0, we

have

h2 0

r eikr V r dr
0

eikr cos sin d 1 (11.73)

or

h2k 0

V r e2ikr 1 dr 1 (11.74)

Since the energy of the incident particle is proportional to k (it is purely kinetic, Ei h2k2 2 ),

we infer from (11.74) that the Born approximation is valid for large incident energies and

weak scattering potentials. That is, when the average interaction energy between the incident
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particle and the scattering potential is much smaller than the particle’s incident kinetic energy,

the scattered wave can be considered to be a plane wave.

Example 11.2

(a) Calculate the differential cross section in the first Born approximation for a Coulomb

potential V r Z1Z2e2 r , where Z1e and Z1e are the charges of the projectile and target
particles, respectively.

(b) To have a quantitative idea about the cross section derived in (a), consider the scattering

of an alpha particle (i.e., a helium nucleus with Z1 2 and A1 4) from a gold nucleus

(Z2 79 and A2 197). (i) If the scattering angle of the alpha particle in the Lab frame is

1 60 , find its scattering angle in the CM frame. (ii) If the incident energy of the alpha

particle is 8MeV, find a numerical estimate for the cross section derived in (a).

Solution

In the case of a Coulomb potential, V r Z1Z2e2 r , equation (11.70) becomes

d

d

4Z21Z
2
2e
4 2

h4q2 0

sin qr dr
2

(11.75)

where

0

sin qr dr lim
0 0

e r sin qr dr
1

2i
lim
0 0

e iq r dr
0

e iq r dr

1

2i
lim
0

1

iq

1

iq

1

q
(11.76)

Now, since q 2k sin 2 , an insertion of (11.76) into (11.75) leads to

d

d

2Z1 Z2e2

h2q2

2
Z1Z2 e2

2h2k2

2

sin 4

2

Z21Z
2
2e
4

16E2
sin 4

2
(11.77)

where E h2k2 2 is the kinetic energy of the incident particle. This relation is known as the

Rutherford formula or the Coulomb cross section.
(b) (i) Since the mass ratio of the alpha particle to the gold nucleus is roughly equal to the

ratio of their atomic masses, m1 m2 A1 A2
4
197

0 0203, and since 1 60 , equation

(11.14) yields the value of the scattering angle in the CM frame:

tan 60
sin

cos 0 0203
61 (11.78)

(ii) The numerical estimate of the cross section can be made easier by rewriting (11.77) in terms

of the fine structure constant e2 hc 1
137
and hc 197 33MeV fm:

d

d

Z21Z
2
2

16E2
e2

hc

2

hc 2 sin 4

2

Z1Z2
4

2 hc

E

2

sin 4

2
(11.79)

Since Z1 2, Z2 79, 61 , 1
137
, hc 197 33MeV fm, and E 8MeV, we have

d

d

2 79

4 137

2
197 33MeV fm

8MeV

2

sin 4 30 5

30 87 fm2 0 31 10 28m2 0 31 barn (11.80)
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where 1 barn 10 28m2.

11.4 Partial Wave Analysis

So far we have considered only an approximate calculation of the differential cross section

where the interaction between the projectile particle and the scattering potential V r is con-

sidered small compared with the energy of the incident particle. In this section we are going to

calculate the cross section without placing any limitation on the strength of V r .

11.4.1 Partial Wave Analysis for Elastic Scattering

We assume here the potential to be spherically symmetric. The angular momentum of the
incident particle will therefore be conserved; a particle scattering from a central potential will

have the same angular momentum before and after collision. Assuming that the incident plane

wave is in the z-direction and hence inc r exp ikr cos , we may express it in terms

of a superposition of angular momentum eigenstates, each with a definite angular momentum

number l (Chapter 6):

eik r eikr cos

l 0

i l 2l 1 jl kr Pl cos (11.81)

We can then examine how each of the partial waves is distorted by V r after the particle

scatters from the potential. The most general solution of the Schrödinger equation (11.30) is

r
lm

ClmRkl r Ylm (11.82)

Since V r is central, the system is symmetrical (rotationally invariant) about the z-axis. The
scattered wave function must not then depend on the azimuthal angle ; hence m 0. Thus,

as Yl0 Pl cos , the scattered wave function (11.82) becomes

r
l 0

al Rkl r Pl cos (11.83)

where Rkl r obeys the following radial equation (Chapter 6):

d2

dr2
k2

l l 1

r2
r Rkl r

2m

h2
V r r Rkl r (11.84)

Each term of (11.83), which is known as a partial wave, is a joint eigenfunction of L 2 and L z .
A substitution of (11.81) into (11.34) with 0 gives

r
l 0

i l 2l 1 jl kr Pl cos f
eikr

r
(11.85)

The scattered wave function is given, on the one hand, by (11.83) and, on the other hand, by

(11.85).
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In almost all scattering experiments, detectors are located at distances from the target that

are much larger than the size of the target itself; thus, the measurements taken by detectors

pertain to scattered wave functions at large values of r . In what follows we are going to show
that, by establishing a connection between the asymptotic forms of (11.83) and (11.85), we can

determine the scattering amplitude and hence the differential cross section.

First, since the limit of the Bessel function jl kr for large values of r (Chapter 6) is given
by

jl kr
sin kr l 2

kr
r (11.86)

the asymptotic form of (11.85) is

r
l 0

i l 2l 1 Pl cos
sin kr l 2

kr
f

eikr

r
(11.87)

and since sin kr l 2 [ i leikr i le ikr ] 2i , because e il 2 e i 2 l i l , we
can write (11.87) as

r
e ikr

2ikr
l 0

i2l 2l 1 Pl cos
eikr

r
f

1

2ik
l 0

i l i l 2l 1 Pl cos

(11.88)

Second, to find the asymptotic form of (11.83), we need first to determine the asymptotic

form of the radial function Rkl r . At large values of r , the scattering potential is effectively
zero, for it is short range. In this case (11.84) becomes

d2

dr2
k2 r Rkl r 0 (11.89)

As seen in Chapter 6, the general solution of this equation is given by a linear combination of

the spherical Bessel and Neumann functions

Rkl r Al jl kr Blnl kr (11.90)

where the asymptotic form of the Neumann function is

nl kr
cos kr l 2

kr
r (11.91)

Inserting of (11.86) and (11.91) into (11.90), we obtain the asymptotic form of the radial func-

tion:

Rkl r Al
sin kr l 2

kr
Bl
cos kr l 2

kr
r (11.92)

If V r 0 for all r (free particle), the solution of (11.84), r Rkl r , must vanish at r 0;

thus Rkl r must be finite at the origin. Since the Neumann function diverges at r 0, the

cosine term in (11.92) does not represent a physically acceptable solution; hence, it needs to be

discarded near the origin. By rewriting (11.92) in the form

Rkl r Cl
sin kr l 2 l

kr
r (11.93)
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we have Al Cl cos l and Bl Cl sin l , hence Cl A2l B2l and

tan l
Bl
Al

l tan 1 Bl
Al

(11.94)

We see that, with l 0, the radial function Rkl r of (11.93) is finite at r 0, since (11.93)

reduces to jl kr . So l is a real angle which vanishes for all values of l in the absence of the
scattering potential (i.e., V 0); l is called the phase shift. It measures, at large values of
r , the degree to which Rkl r differs from jl kr (recall that jl kr is the radial function when
there is no scattering). Since this “distortion,” or the difference between Rkl r and jl kr , is
due to the potential V r , we would expect the cross section to depend on l . Using (11.93) we

can write the asymptotic limit of (11.83) as

r
l 0

al Pl cos
sin kr l 2 l

kr
r (11.95)

This wave function is known as a distorted plane wave, for it differs from a plane wave by
having phase shifts l . Since sin kr l 2 l [ i leikrei l i le ikre i l ] 2i , we can
rewrite (11.95) as

r
e ikr

2ikr
l 0

al i
le i l Pl cos

eikr

2ikr
l 0

al i lei l Pl cos (11.96)

Up to now we have shown that the asymptotic forms of (11.83) and (11.85) are given by

(11.96) and (11.88), respectively. Equating the coefficients of e ikr r in (11.88) and (11.96),
we obtain 2l 1 i2l al i le i l and hence

al 2l 1 i lei l (11.97)

Substituting (11.97) into (11.96) and this time equating the coefficient of eikr r in the resulting
expression with that of (11.88), we have

f
1

2ik
l 0

i l i l 2l 1 Pl cos
1

2ik
l 0

2l 1 i l i le2i l Pl cos (11.98)

which, when combined with e2i l 1 2i ei l sin l and i l i l 1, leads to

f
l 0

fl
1

2ik
l 0

2l 1 Pl cos e2i l 1
1

k
l 0

2l 1 ei l sin l Pl cos

(11.99)

where fl is known as the partial wave amplitude.

From (11.99) we can obtain the differential and the total cross sections

d

d
f

2 1

k2
l 0 l 0

2l 1 2l 1 ei l l sin l sin l Pl cos Pl cos

(11.100)
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d

d
d

0

f 2 sin d
2

0

d 2
0

f 2 sin d

2

k2
l 0 l 0

2l 1 2l 1 ei l l sin l sin l
0

Pl cos Pl cos sin d

(11.101)

Using the relation
0
Pl cos Pl cos sin d [2 2l 1 ] ll , we can reduce (11.101) to

l 0
l

4

k2
l 0

2l 1 sin2 l (11.102)

where l are called the partial cross sections corresponding to the scattering of particles in var-
ious angular momentum states. The differential cross section (11.100) consists of a superposi-

tion of terms with different angular momenta; this gives rise to interference patterns between
different partial waves corresponding to different values of l. The interference terms go away
in the total cross section when the integral over is carried out. Note that when V 0 every-

where, all the phase shifts l vanish, and hence the partial and total cross sections, as indicated

by (11.100) and (11.102), are zero. Note that, as shown in equations (11.99) and (11.102), f
and are given as infinite series over the angular momentum l. We may recall that, for cases of
practical importance with the exception of the Coulomb potential, these series converge after a

finite number of terms.

We should note that in the case where we have a scattering between particles that are in

their respective s states, l 0, the scattering amplitude (11.99) becomes

f0
1

k
ei 0 sin 0 l 0 (11.103)

where we have used P0 cos 1. Since f0 does not depend on , the differential and total

cross sections are given by the following simple relations:

d

d
f0
2 1

k2
sin2 0 4 f0

2 4

k2
sin2 0 l 0 (11.104)

An important issue here is the fact that the total cross section can be related to the forward
scattering amplitude f 0 . Since Pl cos Pl 1 1 when 0, equation (11.99) leads to

f 0
1

k
l 0

2l 1 sin l cos l i sin2 l (11.105)

which when combined with (11.102) yields the connection between f 0 and :

4

k
Im f 0

4

k
l 0

2l 1 sin2 l (11.106)

This is known as the optical theorem (it is reminiscent of a similar theorem in optics which deals
with the scattering of light). The physical origin of this theorem is the conservation of particles

(or probability). The beam emerging (after scattering) along the incidence direction ( 0)
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contains fewer particles than the incident beam, since a number of particles have scattered in

various directions. This decrease in the number of particles is measured by the total cross

section ; that is, the number of particles removed from the incident beam along the incidence

direction is proportional to or, equivalently, to the imaginary part of f 0 . We should note
that, although (11.106) was derived for elastic scattering, the optical theorem, as will be shown

later, is also valid for inelastic scattering.

11.4.2 Partial Wave Analysis for Inelastic Scattering

The scattering amplitude (11.99) can be rewritten as

f
l 0

2l 1 fl k Pl cos (11.107)

where

fl k
1

k
ei l sin l

1

2ik
e2i l 1

1

2ik
Sl k 1 (11.108)

with

Sl k e2i l (11.109)

In the case where there is no flux loss, we must have Sl k 1. However, this requirement is

not valid whenever there is absorption of the incident beam. In this case of flux loss, Sl k is
redefined by

Sl k l k e
2i l (11.110)

with 0 l k 1; hence (11.108) and (11.107) become

fl k
le2i l 1

2ik

1

2k
[ l sin 2 l i 1 l cos 2 l ] (11.111)

f
1

2k
l 0

2l 1 [ l sin 2 l i 1 l cos 2 l ] Pl cos (11.112)

The total elastic scattering cross section is given by

el 4

l 0

2l 1 fl
2

k2
l

2l 1 1 2
l 2 l cos 2 l (11.113)

The total inelastic scattering cross section, which describes the loss of flux, is given by

inel
k2

l 0

2l 1 1 2
l k (11.114)

Thus, if l k 1 there is no inelastic scattering, but if l 0 we have total absorption,

although there is still elastic scattering in this partial wave. The sum of (11.113) and (11.114)

gives the total cross section:

tot el inel
2

k2
l 0

2l 1 1 l cos 2 l (11.115)
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Next, using (11.107) and (11.111), we infer

Im f 0
l 0

2l 1 Im fl
1

2k
l 0

2l 1 1 l cos 2 l (11.116)

A comparison of (11.115) and (11.116) gives the optical theorem relation, Im f 0 k tot 4 ;

hence the optical theorem is also valid for inelastic scattering.

Example 11.3 (High-energy scattering from a black disk)

Discuss the scattering from a black disk at high energies.

Solution

A black disk is totally absorbing (i.e., l k 0). Assuming the values of l do not exceed a
maximum value lmax (l lmax ) and that k is large (high-energy scattering), we have lmax ka
where a is the radius of the disk. Since l 0, equations (11.113) and (11.114) lead to

inel el
k2

ka

l 0

2l 1
k2
ka 1 2 a2 (11.117)

hence the total cross section is given by

inel el inel 2 a2 (11.118)

Classically, the total cross section of a disk is equal to a2. The factor 2 in (11.118) is due
to purely quantum effects, since in the high-energy limit there are two kinds of scattering: one

corresponding to waves that hit the disk, where the cross section is equal to the classical cross

section a2, and the other to waves that are diffracted. According to Babinet’s principle, the
cross section for the waves diffracted by a disk is also equal to a2.

11.5 Scattering of Identical Particles

First, let us consider the scattering of two identical bosons in their center of mass frame (we will
consider the scattering of two identical fermions in a moment). Classically, the cross section
for the scattering of two identical particles whose interaction potential is central is given by

cl (11.119)

In quantum mechanics there is no way of distinguishing, as indicated in Figure 11.7, between

the particle that scatters at an angle from the one that scatters at . Thus, the scattered

wave function must be symmetric:

sym r eik0 r e ik0 r fsym
eikr

r
(11.120)

and so must also be the scattering amplitude:

fboson f f (11.121)
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Figure 11.7 When scattering two identical particles in the center of mass frame, it is impossible
to distinguish between the particle that scatters at angle from the one that scatters at

.

Therefore, the differential cross section is

d

d boson
f f

2
f

2
f

2
f f f f

f
2

f
2

2Re f f (11.122)

In sharp contrast to its classical counterpart, equation (11.122) contains an interference term

2Re f f . Note that when 2, we have d d boson 4 f 2 2; this

is twice as large as the classical expression (which has no interference term): d d cl

2 f 2 2. If the particles were distinguishable, the differential cross section will be four

times smaller, d d distinguishable f 2 2.

Consider now the scattering of two identical spin 1
2
particles. This is the case, for example,

of electron–electron or proton–proton scattering. The wave function of a two spin 1
2
particle

system is known to be either symmetric or antisymmetric. When the spatial wave function is

symmetric, that is the two particles are in a spin singlet state, the differential cross section is

given by
d S

d
f f 2 (11.123)

but when the two particles are in a spin triplet state, the spatial wave function is antisymmetric,

and hence
d A

d
f f 2 (11.124)

If the incident particles are unpolarized, the various spin states will be equally likely, so the

triplet state will be three times as likely as the singlet:

d

d f ermion

3

4

d a

d

1

4

d s

d

3

4
f f 2 1

4
f f 2

f 2 f 2 Re f f (11.125)
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When 2, we have d d f ermion f 2 2; this quantum differential cross section

is half the classical expression, d d cl 2 f 2 2, and four times smaller than the ex-

pression corresponding to the scattering of two identical bosons, d d boson 4 f 2 2.

We should note that, in the case of partial wave analysis for elastic scattering, using the

relations cos cos and Pl cos Pl cos 1 l Pl cos and

inserting them into (11.99), we can write

f
1

k
l 0

2l 1 ei l sin l Pl cos

1

k
l 0

1 l 2l 1 ei l sin l Pl cos (11.126)

and hence

f f
1

k
l 0

1 1 l 2l 1 ei l sin l Pl cos (11.127)

Example 11.4

Calculate the differential cross section in the first Born approximation for the scattering between

two identical particles having spin 1, mass m, and interacting through a potential V r
V0e ar .

Solution

As seen in Chapter 7, the spin states of two identical particles with spin s1 s2 1 consist of

a total of nine states: a quintuplet 2 m (i.e., 2 2 , 2 1 , 2 0 ) and a singlet 0 0 ,

which are symmetric, and a triplet 1 m (i.e., 1 1 , 1 0 ), which are antisymmetric under

particle permutation. That is, while the six spin states corresponding to S 2 and S 0

are symmetric, the three S 1 states are antisymmetric. Thus, if the scattering particles are

unpolarized, the differential cross section is

d

d

5

9

d S

d

1

9

d S

d

3

9

d A

d

2

3

d S

d

1

3

d A

d
(11.128)

where

d S

d
f f

2 d A

d
f f

2
(11.129)

The scattering amplitude is given in the Born approximation by (11.69):

f
2V0

h2q 0

re ar sin qr dr
V0

ih2q 0

re a iq r dr
V0

ih2q 0

re a iq r dr

V0

h2q q 0

e a iq r dr
V0

h2q q 0

e a iq r dr

V0

h2q q

1

a iq

V0

h2q q

1

a iq

V0

h2q

i

a iq 2

i

a iq 2

4V0 a

h2
1

a2 q2 2
4V0 a

h2
1

a2 4k2 sin2 2
2

(11.130)
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where we have used q 2k sin 2 , with m 2. Since sin[ 2] cos 2 , we

have

d S

d

16V 20
2a2

h4
1

a2 4k2 sin2 2
2

1

a2 4k2 cos2 2
2

2

(11.131)

d A

d

16V 20
2a2

h4
1

a2 4k2 sin2 2
2

1

a2 4k2 cos2 2
2

2

(11.132)

11.6 Solved Problems

Problem 11.1

(a) Calculate the differential cross section in the Born approximation for the potential

V r V0e r R r , known as the Yukawa potential.
(b) Calculate the total cross section.

(c) Find the relation between V0 and R so that the Born approximation is valid.

Solution

(a) Inserting V r V0e r R r into (11.70), we obtain

d

d

4 2V 20
h4q2 0

e r R sin qr dr
2

(11.133)

where

0

e r R sin qr dr
1

2i 0

e 1 R iq r dr
1

2i 0

e 1 R iq r dr

1

2i

1

1 R iq

1

1 R iq

q

1 R2 q2
(11.134)

hence

d

d

4 2V 20
h4

1

1 R2 q 2

4 2V 20
h4

1

1 R2 4k2 sin2 2
2

(11.135)

Note that a connection can be established between this relation and the differential cross section

for a Coulomb potential V r Z1Z2e2 r . For this, we need only to insert V0 Z1Z2e2

into (11.135) and then take the limit R ; this leads to (11.77):

d

d Ruther f ord
lim
R

d

d Yuka a
(11.136)

(b) The total cross section can be obtained at once from (11.135):

d

d
sin d d 2

0

d

d
sin d 2

4 2V 20 R
4

h4 0

sin d

1 4k2R2 sin2 2
2

(11.137)
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The change of variable x 2kR sin 2 leads to sin d x dx k2R2 ; hence

8 2V 20 R
4

h4
1

k2R2

2kR

0

xdx

1 x2
2

16 2V 20 R
4

h4
1

1 4k2R2

16 2V 20 R
4

h4
1

1 8 ER2 h2
(11.138)

where we have used k2 2 E h2; E is the energy of the scattered particle.
(c) The validity condition of the Born approximation is

V0

h2k2 0

e ar

r
e2ikr 1 dr 1 (11.139)

where a 1 R. To evaluate the integral

I
0

e ar

r
e2ikr 1 dr (11.140)

let us differentiate it with respect to the parameter a:

I

a 0

e ar e2ikr 1 dr
1

a 2ik

1

a
(11.141)

Now, integrating over the parameter a such that I a 0, we obtain

I ln a ln a 2ik ln 1 2i
k

a

1

2
ln 1

4k2

a2
i tan 1 2k

a
(11.142)

Thus, the validity condition (11.139) becomes

V0

h2k2
1

4
ln 1 4k2R2

2
tan 1 2kR

2 1 2

1 (11.143)

Problem 11.2

Find the differential and total cross sections for the scattering of slow (small velocity) particles

from a spherical delta potential V r V0 r a (you may use a partial wave analysis).

Discuss what happens if there is no scattering potential.

Solution

In the case where the incident particles have small velocities, only the s-waves, l 0, contribute

to the scattering. The differential and total cross sections are given for l 0 by (11.104):

d

d
f0
2 1

k2
sin2 0 4 f0

2 4

k2
sin2 0 l 0 (11.144)

We need now to find the phase shift 0. For this, we need to consider the Schrödinger equation

for the radial function:

h2

2m

d2u r

dr2
V0 r a

l l 1 h2

2mr2
u r Eu r (11.145)
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where u r r R r . In the case of s states and r a, this equation yields

d2u r

dr2
k2u r (11.146)

where k2 2mE h2. The acceptable solutions of this equation must vanish at r 0 and be

finite at r :

u r
u1 r A sin kr 0 r a
u2 r B sin kr 0 r a

(11.147)

The continuity of u r at r a, u2 a u1 a , leads to

B sin ka 0 A sin ka (11.148)

On the other hand, integrating (11.145) (with l 0) from r a to r a , we obtain

h2

2m

a

a

d2u r

dr2
dr V0

a

a
r a u r dr E

a

a
u r dr (11.149)

and taking the limit 0, we end up with

du2 r

dr r a

du1 r

dr r a

2mV0

h2
u2 a 0 (11.150)

An insertion of u1 r and u2 r as given by (11.147) into (11.150) leads to

B k cos ka 0
2mV0

h2
sin ka 0 Ak cos ka (11.151)

Dividing (11.151) by (11.148), we obtain

k cot ka 0
2mV0

h2
k cot ka tan ka 0

1

tan ka

2mV0

kh2

1

(11.152)

This equation shows that, when there is no scattering potential, V0 0, the phase shift is zero,

since tan ka 0 tan ka . In this case, equations (11.103) and (11.104) imply that the
scattering amplitude and the cross sections all vanish.

If the incident particles have small velocities, ka 1, we have tan ka ka and tan ka

0 tan 0 . In this case, equation (11.152) yields

tan 0
ka

1 2mV0a h
2

sin2 0
k2a2

k2a2 1 2mV0a h2
2

(11.153)

Inserting this relation into (11.144), we obtain

d

d 0

a2

k2a2 1 2mV0a h
2 2

0
4 a2

k2a2 1 2mV0a h
2 2

(11.154)
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Problem 11.3

Consider the scattering of a particle of mass m from a hard sphere potential: V r for

r a and V r 0 for r a.
(a) Calculate the total cross section in the low-energy limit. Find a numerical estimate for

the cross section for the case of scattering 5 keV protons from a hard sphere of radius a 6 fm.

(b) Calculate the total cross section in the high-energy limit. Find a numerical estimate for

the cross section for the case of 700MeV protons with a 6 fm.

Solution

(a) As the scattering is dominated at low energies by s-waves, l 0, the radial Schrödinger

equation is

h2

2m

d2u r

dr2
Eu r r a (11.155)

where u r r R r . The solutions of this equation are

u r
u1 r 0 r a
u2 r A sin kr 0 r a

(11.156)

where k2 2mE h2. The continuity of u r at r a leads to

sin ka 0 0 tan 0 tan ka sin2 0 sin2 ka (11.157)

since sin2 1 1 cot2 . The lowest value of the phase shift is 0 ka; it is negative,
as it should be for a repulsive potential. An insertion of sin2 0 sin2 ka into (11.104) yields

0
4

k2
sin2 0

4

k2
sin2 ka (11.158)

For low energies, ka 1, we have sin ka ka and hence 0 4 a2, which is four times
the classical value a2.
To obtain a numerical estimate of (11.158), we need first to calculate k2. For this, we need

simply to use the relation E h2k2 2m p 5 keV, since the proton moves as a free particle

before scattering. Using m pc2 938 27MeV and hc 197 33MeV fm, we have

k2
2m pE

h2
2 m pc2 E

hc 2
2 939 57MeV 5 10 3MeV

197 33MeV fm 2
0 24 10 3 fm 2

(11.159)

Thus k 0 0155 fm 1; the wave shift is given by 0 ka 0 093 rad 5 33 .

Inserting these values into (11.158), we obtain

4

0 24 10 3 fm 2
sin2 5 33 449 89 fm2 4 5 barn (11.160)

(b) In the high-energy limit, ka 1, the number of partial waves contributing to the scat-

tering is large. Assuming that lmax ka, we may rewrite (11.102) as

4

k2

lmax

l 0

2l 1 sin2 l (11.161)
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Since so many values of l contribute in this relation, we may replace sin2 l by its average value,
1
2
; hence

4

k2
1

2

lmax

l 0

2l 1
2

k2
lmax 1 2 (11.162)

where we have used n
l 0 2l 1 n 1 2. Since lmax 1 we have

2

k2
l2max

2

k2
ka 2 2 a2 (11.163)

Since a 6 fm, we have 2 6 fm 2 226 1 fm2 2 26 barn. This is almost half the

value obtained in (11.160).

In conclusion, the cross section from a hard sphere potential is (a) four times the classical

value, a2, for low-energy scattering and (b) twice the classical value for high-energy scatter-
ing.

Problem 11.4

Calculate the total cross section for the low-energy scattering of a particle of mass m from an
attractive square well potential V r V0 for r a and V r 0 for r a, with V0 0.

Solution

Since the scattering is dominated at low energies by the s partial waves, l 0, the Schrödinger

equation for the radial function is given by

h2

2m

d2u r

dr2
V0u r Eu r r a (11.164)

h2

2m

d2u r

dr2
Eu r r a (11.165)

where u r r R r . The solutions of these equations for positive energy states are

u r
u1 r A sin k1r r a
u2 r B sin k2r 0 r a

(11.166)

where k21 2m E V0 h2 and k22 2mE h2. The continuity of u r and its first derivative,
u r du r dr , at r a yield

u2 r

u2 r r a

u1 r

u1 r r a

1

k2
tan k2a 0

1

k1
tan k1a (11.167)

which yields

0 k2a tan 1 k2
k1
tan k1a (11.168)

Since

tan k2a 0
sin k2a cos 0 cos k2a sin 0

cos k2a cos 0 sin k2a sin 0

tan k2a tan 0

1 tan k2a tan 0
(11.169)
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we can reduce Eq. (11.167) to

tan 0
k2 tan k1a k1 tan k2a

k1 k2 tan k1a tan k2a
(11.170)

Using the relation sin2 0 1 1 1 tan2 0 , we can write

sin2 0 1
k1 k2 tan k1a tan k2a

k2 tan k1a k1 tan k2a

2 1

(11.171)

which, when inserted into (11.104), leads to

0
4

k21
sin2 0

4

k21
1

k1 k2 tan k1a tan k2a

k2 tan k1a k1 tan k2a

2 1

(11.172)

If k2a 1 then (11.170) becomes tan 0
tan k1a k1a

k1 k2 k2a tan k1a
, since tan k2a k2a. Thus, if

k2a 1 and if E (the scattering energy) is such that tan k1a k1a, we have tan 0 0; hence

there will be no s-wave scattering and the cross section vanishes. Note that if the square well

potential is extended to a hard sphere potential, i.e., E 0 and V0 , equation (11.168)

yields the phase shift of scattering from a hard sphere 0 ka, since k2 k1 tan k1a 0.

Problem 11.5

Find the differential and total cross sections in the first Born approximation for the elastic scat-

tering of a particle of mass m, which is initially traveling along the z-axis, from a nonspherical,
double-delta potential V r V0 r ak V0 r ak , where k is the unit vector along the
z-axis.

Solution

Since V r is not spherically symmetric, the differential cross section can be obtained from

(11.66):

d

d

m2

4 2h4
V0 r ak r ak eiq r d3r

2 m2V0

4 2h4
I 2 (11.173)

Since r ak x y z a we can write the integral I as

I x ei xqx dx y eiyqy dy [ z a z a ] ei zqz dz

eiaqz e iaqz 2 cos aqz (11.174)

The calculation of qz is somewhat different from that shown in (11.67). Since the incident
particle is initially traveling along the z-axis, and since it scatters elastically from the potential
V r , the magnitudes of its momenta before and after collision are equal. So, as shown in
Figure 11.8, we have qz q sin 2 2k sin2 2 , since q k0 k 2k sin 2 . Thus,

inserting I 2 cos aqz 2 cos 2ak sin2 2 into (11.173), we obtain

d

d

m2V0
2h4

cos2 2ak sin2
2

(11.175)
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Figure 11.8 Particle traveling initially along the z-axis (taken here horizontally) scatters at an
angle , with q k0 k 2k sin 2 , since k0 k and qz q sin 2 .

The total cross section can be obtained at once from (11.175):

d

d
sin d d 2

0

d

d
sin d

2
m2V0
2h4 0

sin cos2 2ak sin2
2

d (11.176)

which, when using the change of variable x 2ak sin2 2 with dx 2ak sin 2 cos 2 d ,
leads to

2m2V0

h4 0

2 sin
2
cos

2
cos2 2ak sin2

2
d

2m2V0

akh4

1

0

cos2 x dx

m2V0

akh4

1

0

[1 cos 2x ] dx

m2V0

akh4
(11.177)

Problem 11.6

Consider the elastic scattering of 50MeV neutrons from a nucleus. The phase shifts measured

in this experiment are 0 95 , 1 72 , 2 60 , 3 35 , 4 18 , 5 5 ; all other

phase shifts are negligible (i.e., l 0 for l 6).

(a) Find the total cross section.

(b) Estimate the radius of the nucleus.

Solution

(a) As l 0 for l 6, equation (11.102) yields

4

k2

6

l 0

2l 1 sin2 l

4

k2
sin2 0 3 sin2 1 5 sin2 2 7 sin2 3 9 sin2 4 11 sin2 5

4

k2
10 702

(11.178)
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To calculate k2, we need simply to use the relation E h2k2 2mn 50MeV, since the

neutrons move as free particles before scattering. Using mnc2 939 57MeV and hc
197 33MeV fm, we have

k2
2mnE

h2
2 mnc2 E

hc 2
2 939 57MeV 50MeV

197 33MeV fm 2
2 41 fm 2 (11.179)

An insertion of (11.179) into (11.178) leads to

4

2 41 fm 2
10 702 55 78 fm2 0 558 barn (11.180)

(b) At large values of l, when the neutron is at its closest approach to the nucleus, it feels
mainly the effect of the centrifugal potential l l 1 h2 2mnr2 ; the effect of the nuclear
potential is negligible. We may thus use the approximations E l l 1 h2 2mnr2c
42h2 2mnr2c where we have taken l 6, since l 0 for l 6. A crude value of the radius

of the nucleus is then given by

rc
21h2

mnE

21 hc 2

mnc2 E

21 197 33MeV fm 2

939 57MeV 50MeV
4 17 fm (11.181)

Problem 11.7

Consider the elastic scattering of an electron from a hydrogen atom in its ground state. If the

atom is assumed to remain in its ground state after scattering, calculate the differential cross

section in the case where the effects resulting from the identical nature of the electrons (a) are

ignored and (b) are taken into account (in part (b), discuss the three cases when the electrons

are in (i) a spin singlet state, (ii) a spin triplet state, or (iii) an unpolarized state).

Solution

(a) By analogy with (11.63) we may write the differential cross section for this process as

d

d
f 2

2 h2
f V i

2

(11.182)

where me 2, since this problem can be viewed as the scattering of a particle whose reduced
mass is half that of the electron. Assuming the atom to be very massive and that it remains in

its ground state after scattering, the initial and final states of the system (incident electron plus

the atom) are given by i r k0 r eik0 r 0 r and f r k r eik r 0 r , where

eik0 r and eik r are the states of the incident electron before and after scattering, and 0 r

a30
1 2
e r a0 is the atom’s wave function. We have assumed here that the nucleus is located

at the origin and that the position vectors of the incident electron and the atom’s electron are

given by r and r , respectively. Since the incident electron experiences an attractive Coulomb
interaction e2 r with the nucleus and a repulsive interaction e2 r r with the hydrogen’s

electron, we have

f
2 h2

d3reiq r d3r 0 r
e2

r

e2

r r
0 r (11.183)
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with q k0 k 2k sin 2 , since k k0 (elastic scattering). Using 0 sin qr dr 1 q

(see (11.76)), and since 0 e
iqr cos sin d 1

1 e
iqr xdx 2 qr sin qr , we obtain the

following relation:

d3r
eiq r

r 0

r dr
0

eiqr cos sin d
2

0

d
4

q 0

dr sin qr
4

q2
(11.184)

which, when inserted into (11.183) and since d3r 0 r 0 r 1, leads to

f
2 h2

4 e2

q2
d3reiq r d3r 0 r

e2

r r
0 r (11.185)

By analogy with (11.184), we have d3reiq r r r r 4 q2; hence we can reduce the
integral in (11.185) to

d3r eiq r d3r 0 r
e2

r r
0 r e2 d3r 0 r eiq r 0 r d3r

eiq r r

r r

4 e2

q2
d3r 0 r eiq r 0 r (11.186)

The remaining integral of (11.186) can, in turn, be written as

d3r 0 r eiq r 0 r
1

a30 0

r 2e 2r a0 dr
0

eiqr cos sin d
2

0

d

4

qa30 0

r e 2r a0 sin qr dr 1
a20q

2

4

2

(11.187)

where we have used the expression for 0 re ar sin qr dr calculated in (11.130). Inserting
(11.187) into (11.186), and the resulting expression into (11.185), we obtain

f
2 e2

h2q2
1 1

a20q
2

4

2
e2

2k2h2 sin2 2
1 1 a20k

2 sin2
2

2

(11.188)

We can thus reduce (11.182) to

d

d

4 2e4

h4q4
1 1

a20q
2

4

2 2
2e4

4k4h4 sin4
2

1 1 a20k
2 sin2 2

2 2

(11.189)

with q 2k sin 2 .

(b) (i) If the electrons are in their spin singlet state (antisymmetric), the spatial wave function

must be symmetric; hence the differential cross section is

d S

d
f f

2
(11.190)
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where f is given by (11.188) and

f
2 e2

h2q2
1 1

a20q
2

4

2
e2

2k2h2 cos2
2

1 1 a20k
2 cos2 2

2

(11.191)

since sin 2 cos 2 .

(ii) If, however, the electrons are in their spin triplet state, the spatial wave function must be

antisymmetric; hence
d A

d
f f

2
(11.192)

(iii) Finally, if the electrons are unpolarized, the differential cross section must be a mixture of

(11.191) and (11.192):

d

d

1

4

d S

d

3

4

d A

d

1

4
f f 2 3

4
f f 2 (11.193)

Problem 11.8

In an experiment, 650MeV 0 pions are scattered from a heavy, totally absorbing nucleus of

radius 1 4 fm.

(a) Estimate the total elastic and total inelastic cross sections.

(b) Calculate the scattering amplitude and check the validity of the optical theorem.

(c) Using the scattering amplitude found in (b), calculate and plot the differential cross

section for elastic scattering. Calculate the total elastic cross section and verify that it agrees

with the expression found in (a).

Solution

(a) In the case of a totally absorbing nucleus, l k 0, the total elastic and inelastic cross

sections, which are given by (11.113) and (11.114), become equal:

el
k2

lmax

l 0

2l 1 inel (11.194)

This experiment can be viewed as a scattering of high-energy pions, E 650MeV, from a

black “disk” of radius a 1 4 fm; thus, the number of partial waves involved in this scattering

can be obtained from lmax ka, where k 2m 0E h2. Since the rest mass energy of a 0

pion is m 0c2 135MeV and since hc 197 33MeV fm, we have

k
2m 0E

h2
2 m 0c2 E

hc 2
2 135MeV 650MeV

197 33MeV fm 2
2 12 fm 1 (11.195)

hence lmax ka 2 12 fm 1 1 4 fm 2 97 3. We can thus reduce (11.194) to

el inel
k2

3

l 0

2l 1
16

k2
16

2 12 fm 1 2
40 1 fm2 0 40 barn (11.196)
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Figure 11.9 Plot of dd
1
4k2

1 3 cos 5
2
3 cos2 1 7

2
5 cos3 3 cos

2
.

The total cross section

tot el inel
32

k2
0 80 barn (11.197)

(b) The scattering amplitude can be obtained from (11.112) with l k 0:

f
i

2k

3

l 0

2l 1 Pl cos

i

2k
1 3 cos

5

2
3 cos2 1

7

2
5 cos3 3 cos (11.198)

where we have used the following Legendre polynomials: P0 u 1, P1 u u, P2 u
1
2
3u2 1 , P3 u

1
2
5u3 3u . The forward scattering amplitude ( 0) is

f 0
i

2k
1 3

5

2
3 1

7

2
5 3

8i

k
(11.199)

Combining (11.197) and (11.199), we get the optical theorem: Im f 0 k 4 tot 8 k.
(c) From (11.198) the differential elastic cross section is

d

d
f 2 1

4k2
1 3 cos

5

2
3 cos2 1

7

2
5 cos3 3 cos

2

(11.200)

As shown in Figure 11.9, the differential cross section displays an interference pattern due to

the superposition of incoming and outgoing waves. The total elastic cross section is given by

el 0
f

2
sin d 2

0
d which, combined with (11.200), leads to

el
2

4k2 0

1 3 cos
5

2
3 cos2 1

7

2
5 cos3 3 cos

2

sin d
16

k2
(11.201)

This is the same expression we obtained in (11.196). Unlike the differential cross section, the

total cross section displays no interference pattern because its final expression does not depend

on any angle, since the angles were integrated over.
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11.7 Exercises

Exercise 11.1

Consider the scattering of a 5MeV alpha particle (i.e., a helium nucleus with Z1 2 and

A1 4) from an aluminum nucleus (Z2 13 and A2 27). If the scattering angle of the

alpha particle in the Lab frame is 1 30 ,

(a) find its scattering angle in the CM frame and

(b) give a numerical estimate of the Rutherford cross section.

Exercise 11.2

(a) Find the differential and total cross sections for the classical collision of two hard spheres

of radius r and R, where R is the radius of the larger sphere; the larger sphere is considered to
be stationary.

(b) From the results of (a) find the differential and total cross sections for the scattering of

pointlike particles from a hard stationary sphere of radius R. Hint: You may use the classical
relation d d [b sin ]db d , where b is the impact parameter.

Exercise 11.3

Consider the scattering from the potential V r V0e r2 a2 . Find

(a) the differential cross section in the first Born approximation and

(b) the total cross section.

Exercise 11.4

Calculate the differential cross section in the first Born approximation for the scattering of a

particle by an attractive square well potential: V r V0 for r a and V r 0 for r a,
with V0 0.

Exercise 11.5

Consider the elastic scattering from the delta potential V r V0 r a .
(a) Calculate the differential cross section in the first Born approximation.

(b) Find an expression between V0, a, , and k so the Born approximation is valid.

Exercise 11.6

Consider the elastic scattering from the potential V r V0e r a , where V0 and a are constant.
(a) Calculate the differential cross section in the first Born approximation.

(b) Find an expression between V0, a, , and k so the Born approximation is valid.
(c) Find the total cross section using the Born approximation.

Exercise 11.7

Find the differential cross section in the first Born approximation for the elastic scattering of a

particle of mass m, which is initially traveling along the z-axis, from a nonspherical, double-
delta potential:

V r V0 r ak V0 r ak

where k is the unit vector along the z-axis.

Exercise 11.8

Find the differential cross section in the first Born approximation for neutron–neutron scattering

in the case where the potential is approximated by V r V0e r a .
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Exercise 11.9

Consider the elastic scattering of a particle of mass m and initial momentum hk off a delta
potential V r V0 x y z a , where V0 is a constant.
(a) What is the physical dimensions of the constant V0?
(b) Calculate the differential cross sections in the first Born approximation.

(c) Repeat (b) for the case where the potential is now given by

V r V0 x y b z y z a

Exercise 11.10

Consider the S-wave (l 0) scattering of a particle of mass m from a repulsive spherical
potential V r V0 for r a and V r 0 for r a, with V0 0.

(a) Calculate S wave (l 0) phase shift and the total cross section.

(b) Show that in the limit V0 , the phase shift is given by 0 ka. Find the total
cross section.

Exercise 11.11

Consider the S-wave neutron–neutron scattering where the interaction potential is approximated
by V r V0S1 S2e r a , where S1 and S2 are the spin vector operators of the two neutrons,
and V0 0. Find the differential cross section in the first Born approximation.

Exercise 11.12

Consider the S-partial wave scattering (l 0) between two identical spin 1 2 particles where

the interaction potential is given approximately by

V r V0S1 S2 r a

where S1 and S2 are the spin vector operators of the two particles, and V0 0. Assuming that

the incident and target particles are unpolarized, find the differential and total cross sections.

Exercise 11.13

Consider the elastic scattering of 170MeV neutrons from a nucleus or radius a 1 05 fm.

Consider the hypothetical case where the phase shifts measured in this experiment are given by

l
180
l 2 .

(a) Estimate the maximum angular momentum lmax .
(b) Find the total cross section.


